
HAL Id: hal-00848542
https://hal.science/hal-00848542

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reliable Fault-Tolerant Scheduling Algorithm for Real
Time Embedded Systems

Chafik Arar, Hamoudi Kalla, Salim Kalla, Hocine Riadh

To cite this version:
Chafik Arar, Hamoudi Kalla, Salim Kalla, Hocine Riadh. A Reliable Fault-Tolerant Scheduling Al-
gorithm for Real Time Embedded Systems. SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS
Workshop on Dependable Embedded and Cyber-physical Systems) of the 32nd International Confer-
ence on Computer Safety, Reliability and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848542�

https://hal.science/hal-00848542
https://hal.archives-ouvertes.fr


A Reliable Fault-Tolerant Scheduling Algorithm

for Real Time Embedded Systems

Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh

Department of Computer Science
University of Batna, Algeria

{chafik.arar,hamoudi.kalla}@gmail.com

{salim.kalla,hocine.riadh}@univ-batna.dz

Abstract. In this paper, we propose a fault-tolerant scheduling for real-
time embedded systems. Our scheduling algorithm is dedicated to multi-
bus heterogeneous architectures, which take as input a given system de-
scription and a given fault hypothesis. It is based on a data fragmentation
and passive redundancy, which allow fast fault detection/retransmission
and efficient use of buses. Our scheduling approach consist of a list
scheduling heuristic based on a Global System Failure Rate (GSFR).
In order to maximize the reliability of the system, the size of each frag-
mented data depends on GSFR and the bus failure rates. variable frag-
ment size allows reliable communication and to maximize the reliability
of the system. Finally, simulation results show the performance of our
approach when using data fragmentation with a variable fragment size.

Keywords: Embedded systems, real-time systems, fault tolerance, re-
liability, passive redundancy, data fragmentation, scheduling algorithm.

1 Introduction

Heterogeneous systems are being increasingly used in many sectors of human ac-
tivity, such as transportation, robotics, and telecommunication. These systems
are increasingly small and fast, but also more complex and critical, and thus
more sensitive to faults. Due to catastrophic consequences (human, ecological,
and/or financial disasters) that could result from a fault, these systems must be
fault-tolerant. This is why fault tolerant techniques are necessary to make sure
that the system continues to deliver a correct service in spite of faults [5, 8]. A
fault can affect either the hardware or the software of the system; we chose to
concentrate on hardware faults. More particularly, we consider bus faults. A bus
is a multi-point connection characterized by a physical medium that connects all
the processors of the architecture. As we are targeting embedded systems with
limited resources (for reasons of weight, encumbrance, energy consumption, or
price constraints), we investigate only software redundancy solutions (Figure. 1).
The approach that we propose is a scheduling algorithm based on data fragmen-
tation. The size of each fragment data depends on two cost functions GSFR
(Global System Failure Rate) and schedule pressure σ.



2 Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh

Scheduling algorithm 

architecture specification 

distribution constraints 

execution times 

real-time constraints 

fault-tolerant distributed static schedule

code generator 

fault-tolerant distributed embedded code 

architecture algorithm 

variable data fragmentation 

fault hypothesis 

Fig. 1. The proposed approach.

The rest of this paper is organized as follows. In section 2, we give related
work on fault tolerance. In section 3, we give details about our systems and fault
model. In section 4, we present our scheduling algorithm. Sections 5 and 6 details
the performances of our approach. Finally, Section 7 concludes the paper.

2 Related work

In the literature, we can identify several fault tolerance approaches for dis-
tributed embedded real-time systems. There are several methods that tolerate
processor and bus faults. Here, we present only related work involving scheduling
heuristics to tolerate bus faults. Techniques proposed to tolerate exclusively bus
faults are based on proactive or reactive schemes. In the proactive scheme [6, 2],
multiple redundant copies of a message are sent along distinct buses. In contrast,
in the reactive scheme [7], only one copy of the message, called primary, is sent;
if it fails, another copy of the message, called backup, will be transmitted. In
[12], A method of identifying bus faults based on a support vector machine is
proposed. In [8], faults of buses are tolerated using a TDMA (Time Division
Multiple Access) communication protocol and an active redundancy approach.
The approach proposed in [13] tolerates only a specified set of buses permanent
faults. The method proposed in [13] is only suited to one class of algorithms
called fan-in algorithms.

In [11], failures are tolerated using the fault recovery scheme and a pri-
mary/backups strategy. In [9], Dima et al. propose an original off-line fault
tolerant scheduling algorithm which uses the active replication of tasks and com-
munications to tolerate a set of failure patterns; each failure pattern is a set of
processor and/or communications media that can fail simultaneously, and each
failure pattern corresponds to a reduced architecture. The proposed algorithm
starts by building a basic schedule for each reduced architecture plus the nominal
architecture, and then merges these basic schedules to obtain a distributed fault
tolerant schedule. It has been implemented very recently by Pinello et al. [1].

We have proposed in [3] a solution to tolerate transient faults in distributed
heterogeneous architectures with multiple-bus topology. However, the solution



Title Suppressed Due to Excessive Length 3

does not take into account hardware reliability. The approach that we propose
in this paper is more general since it uses only software redundancy solutions,
i.e., no extra hardware is required. Moreover, our approach can tolerate upto a
fixed number of arbitrary bus transient faults, and it is based on GSFR and data
fragmentation with a variable fragment size to maximize system reliability.

3 Models

The algorithm is modeled as a data-flow graph, called algorithm graph and
noted ALG. Each vertex of ALG is an operation (task) and each edge is a data-
dependence. A data-dependence, noted by →, corresponds to a data transfer
between a producer operation and a consumer operation. o1 → o2 means that
o1 is a predecessor of o2, and o2 is a successor of o1.

Operations with no predecessor (resp. no successor) are the input interfaces
(resp. output), handling the events produced by the sensors (resp. actuators).

Figure. 2 presents an example of an algorithm graph, with seven operations
v1, v2, v3, v4, v5, v6 and v7.

v2

v7v3

v4

v1 v6

v5

Fig. 2. Algorithm graph.

The architecture is modeled by a non-directed graph, noted ARC, where each
node is a processor, and each edge is a bus. Classically, a processor is made of
one computation unit, one local memory, and one or more communication units,
each connected to one communication link. Communication units execute data
transfers. We assume that the architecture is heterogeneous and fully connected.
Figure 3 is an example of ARC, with four processors P1, P2, P3 and P4, and
three buses B1, B2 and B3.

B3

B1
B2

P4P3P2P1

Fig. 3. Architecture graph.



4 Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh

Our real-time system is based on cyclic executive; this means that a fixed
schedule of the operations of ALG is executed cyclically on ARC at a fixed rate.
This schedule must satisfy one real-time constraint which is the length of the
schedule. As we target heterogeneous architecture, we associate to each opera-
tion oi a worst case execution time (WCET) on each processor pj of ARC, noted
exe(oi, pj). Also, we associate to each data dependency dpdi a worst case trans-
mission time (WCTT) on each bus bj of the architecture, noted exe(dpdi, bj).

3.1 Fault Model

We assume only hardware components (buses) failures and we assume that the
algorithm is correct w.r.t. its specification, i.e., it has been formally validated, for
instance with model checking and/or theorem proving tools. We consider only
transient bus faults. Transient faults, which persist for a short duration, are
significantly more frequent than other faults in systems [10]. Permanent faults
are a particular case of transient faults. We assume that at most nbf bus faults
can arise in the system, and that the architecture includes more than nbf buses.

4 The proposed solution

In this section, we present our reliable fault-tolerant scheduling algorithm. The
algorithm we propose is a greedy list scheduling heuristic, called A Reliable Bus
Fault-tolerant algorithm (rbf). It is based on a variable data fragmentation. The
objective of the algorithm is to maximize the reliability of the system, and at the
same time attempts to minimize the length of the whole generated schedule in
both presence and absence of failures. In our approach, we achieve high reliability
and fault tolerance in three ways:

– Data fragmentation: the communication of each data dependency is frag-
mented into nbf+1 fragments, sent by each operation source of the data-
dependency via nbf+1 distinct buses to each of operation destination. As
our approach uses variable data fragmentation, the size of each fragmented
data depends on GSFR and the bus failure rates λB .

– Passive replication: to tolerate nbf bus faults, each data dependency is repli-
cated on nbf+1 replicas. Each replica is fragmented on nbf+1 fragments
scheduled on nbf+1 distinct Buses. We called primary replica the replica
with the earliest ending time and the other ones are the backup replicas.
Only the primary replica (its nbf+1 fragments) is executed. If one frag-
ments fails, one of the backup fragments replicas is selected to become the
new primary.

– The Global System Failure Rate per time unit (GSFR)
The GSFR is the failure rate per time unit of the obtained multiprocessor
schedule. Using the GSFR is very satisfactory in the area of periodically
executed schedules. This is the case in most real-time embedded systems,
which are periodically sampled systems. In such cases, applying brutally the



Title Suppressed Due to Excessive Length 5

exponential reliability model yields very low reliabilities due to very long
execution times (the same remark applies also to very long schedules). Hence,
one has to compute beforehand the desired reliability of a single iteration
from the global reliability of the system during its full mission; but this
computation depends on the total duration of the mission (which is known)
and on the duration of one single iteration (which may not be known because
it depends on the length of the schedule under construction). In contrast,
the GSFR remains constant during the whole system’s mission: the GSFR
during a single iteration is by construction identical to the GSFR during the
whole mission.
Our fault tolerance heuristic is GSFR-based to control precisely the schedul-
ing of each fragmented data from the beginning to the end of the schedule.
In [4], we have defined the GSFR of scheduling an operation oi, noted Λ(Sn),
by the following equation:

Λ(Sn) =
− logR(Sn)

U(Sn)
(1)

where, Sn is the static schedule at step n of the algorithm, and U(Sn) is the
total utilization of the hardware resources, defined by:

U(Sn) =

j∑

i

exe(oi, pj) +
m∑

k

exe(dpdk, bm) (2)

The reliability R(Sn) is computed, for each operation oi and each proces-
sor pj , by the following equation:

R(Sn) =
∏

i

e−λkexe(oi,pk)+
∑

k

∑
j
λcexe(dpd

k
j ,bc) (3)

4.1 Scheduling algorithm

Our scheduling algorithm is a greedy list scheduling heuristic, which schedules
one operation at each step n. It generates a distributed static schedule of a given
algorithm ALG onto a given architecture ARC, which minimizes the system’s
run-time, and tolerates upto nbf bus faults. Our algorithm is based on two cost
functions GSFR and a schedule pressure. GSFR is used to select the reliable
bus for each data dependency and to choose the best size for each fragment.
The schedule pressure, noted by σ(n)(oi, pj) is used in our algorithm as a cost
function to select the best operation which minimize the length of the critical
path taking into account data fragmentation. It is computed for each operation
as follows:

σ(n)(oi, pj) = S(n)
oi,pj

+ S
(n)

oi
−Rn−1

where, Rn−1 is the critical path length of the partial schedule composed of the

already scheduled operations, S
(n)
oi,pj is the earliest time at which the operation



6 Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh

oi can start its execution on the processor pj , and S
(n)

oi
is the latest start time

from the end of oi, defined to be the length of the longest path from oi to ALG’s
output operations. The schedule pressure measures how much the scheduling of
the operation lengthens the critical path of the algorithm. Therefore it introduces
a priority between the operations to be scheduled. Note that, since all candidates
operations at step n have the same value R(n−1), it is not necessary to compute
R(n−1). The rbf scheduling algorithm is shown in Figure 4.

Algorithm rbf:

input: ALG, ARC, nbf;
output: a reliable fault-tolerant schedule;
Initialize the lists of candidate and scheduled operations:
n := 0;
O

(0)
cand := {o ∈ O | pred(o) = ∅};

O
(0)
sched := ∅;

While O
(n)
cand 6= ∅ do

À For each candidate operation ocand, compute σ(n) and GSFR on each processor pk.

σ
(n)(oi, pj) = S

(n)
oi,pj

+ S
(n)
oi

−R
n−1

Λ(Sn) =
− logR(Sn)

U(Sn)

Á For each candidate operation ocand, select the best processor p
ocand

best which
minimizes σ(n) and GSFR.

Â Select the most urgent candidate operation ourgent between all oicand of O
(n)
cand.

Ã fragment each data communication of ourgent on nbf fragments

Ä Schedule ourgent and its fragmented data;

Å Update the lists of candidate and scheduled operations:
O

(n)
sched := O

(n−1)
sched ∪ {ourgent};

O
(n+1)
cand := O

(n)
cand − {ourgent} ∪ {o′ ∈ succ(ourgent) | pred(o

′) ⊆ O
(n)
sched};

Æ n := n + 1;

end while
end

Fig. 4. The rbf scheduling algorithm.

The set of candidate operations Ocand is initialized as the operations without
predecessor. The set of scheduled operations Osched is initially empty. In the
selection step, a processor is selected among all the processor of ARC to schedule
each operation and its communication data. The selection rule is based σ(n) and
GSFR. The scheduled operation obest is removed from Ocand, and the operations



Title Suppressed Due to Excessive Length 7

of ALG which have all their predecessors in the new set of scheduled operations
are added to this set.

5 An Example

we have applied the rbf heuristic to an example of an algorithm graph and an
architecture graph composed of four processors and four buses. The algorithm
graph is presented in Figure 5. The failure rates of all the processors are all equal
to 10−5, and the failure rate of the Buses SAM MP2, SAM MP1, SAM MP3 and
SAM MP4 are respectively 10−6, 10−6, 10−5 and 10−4.

Fig. 5. Algorithm graph.

Figure 6 shows the non-reliable schedule produced for our example with
a basic scheduling heuristic (for instance the one of SynDEx). SynDEx is a
tool for optimizing the implementation of real-time embedded applications on
multicomponent architecture. The schedule length generated by this heuristic is
22.2. The GSFR of the non-reliable schedule Λsyndex is equal to 0.0000246.

Fig. 6. Schedule generated by SynDEx.



8 Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh

We apply our heuristic to the example of Figure 5. The user requires the
system to tolerate one bus failure, i.e., nbf = 1. Figure 7 shows the scheduled
generated by our heuristic. The schedule length generated by our heuristic is
17.2. The GSFR of the non-reliable schedule Λnbf = 1 is equal to 0.00000597.

Fig. 7. fault tolerant schedule for nbf=1.

Figure 8 shows the scheduled generated by our heuristic for nbf=2. The
schedule length generated by our heuristic is 15.2. The GSFR of the non-reliable
schedule Λnbf = 2 is equal to 0.00000613.

Fig. 8. fault tolerant schedule for nbf=2.

The important thing to note in Figures 7 and 8 is that data fragmentation
reduce the schedule length and improve significantly the reliability of the system.



Title Suppressed Due to Excessive Length 9

6 Simulation

To evaluate our heuristic, we have applied the rbf heuristic to a random algo-
rithm graphs and a heterogeneous and completely connected architecture graph
composed of 4 processors. The following figures have been obtained with a CCR
set to 1, 5, 10 and 20. CCR (Communication-to-Computation Ratio) is the ra-
tio between the average communication cost (over all the data dependencies)
and the average computation cost (over all the operations). A random algorithm
graph is generated as follows: given the number of operations N, we randomly
generate a set of levels with a random number of operations. Then, operations
at a given level are randomly connected to operations at a higher level. The
execution times of each operation are randomly selected from a uniform dis-
tribution with the mean equal to the chosen average execution time. Similarly,
the communication times of each data dependency are randomly selected from a
uniform distribution with the mean equal to the chosen average communication
time.

The general objective of our simulations is to study the impact of the data
fragmentation and CCR on the schedule length and reliability introduced by
rbf. Figure 9 (Respectively Figure 10) shows the impact on schedule length
obtained by rbf, for P=4 and nbf=1 (Respectively nbf=2). As we can see, the
schedule length grows almost linearly when CCR increases from 1 to 20.

Fig. 9. Impact on schedule length of the CCR for nbf=1.

Figure 11 (Respectively Figure 12) shows the impact on the GSFR obtained
by rbf, for P=4 and nbf=1 (Respectively nbf=2). As we can see, the GSFR
decreases when CCR increases from 1 to 20.

7 Conclusion

In this paper, we have studied the problem of fault-tolerance in embedded real-
time systems and proposed a software implemented fault-tolerance solution for
multi-buses architectures based on GSFR. We have proposed a new scheduling



10 Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh

Fig. 10. Impact on schedule length of the CCR for nbf=2.

Fig. 11. Impact on GSFR of the CCR for nbf=1.

Fig. 12. Impact on GSFR of the CCR for nbf=2.



Title Suppressed Due to Excessive Length 11

heuristic, called rbf, which produces automatically a static distributed fault-
tolerant schedule of a given algorithm ALG on a given multi-buses architecture
ARC. Our solution is based on the software redundancy of communications.
Only the fragments of the primary copy of the message, called primary, is sent;
if one fragment fails, another fragments of the message, called backup, will be
transmitted.

The implementation uses a scheduling heuristic for optimizing the critical
path and maximizing the reliability of the distributed algorithm obtained. Fi-
nally, we plan to experiment our method on an electric autonomous vehicle, with
a 5-processor multi-buses architecture.

References

1. L. Carloni C. Pinello and A. Sangiovanni Vincentelli. Fault-tolerant deployment
of embedded software for cost-sensitive real-time feedback-control applications de-
sign. In Automation and Test in Europe , DATE’04, IEEE, 2004.

2. S. Dulman, T. Nieberg, J. Wu, and P. Havinga. Trade-off between traffic over-
head and reliability in multipath routing for wireless sensor networks. In Wireless
Communications and Networking Conference, 2003.

3. A. Girault, H. Kalla, and Y. Sorel. Transient processor/bus fault tolerance for em-
bedded systems. In IFIP Working Conference on Distributed and Parallel Embed-
ded Systems, DIPES’06, pages 135–144, Braga, Portugal, October 2006. Springer.

4. Alain Girault and Hamoudi Kalla. A novel bicriteria scheduling heuristics provid-
ing a guaranteed global system failure rate. IEEE Transactions on Dependable and
Secure Computing, 6(4):241–254, 2009.

5. P. Jalote. Fault-Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

6. N. Kandasamy, J.P. Hayes, and B.T. Murray. Dependable communication synthe-
sis for distributed embedded systems. In International Conference on Computer
Safety, Reliability and Security, SAFECOMP’03, Edinburgh, UK, September 2003.

7. B. Kao, H. Garcia-Molina, and D. Barbara. Aggressive transmissions of short
messages over redundant paths. TPDS, 5(1):102–109, January 1994.

8. H. Kopetz and G. Bauer. The time-triggered architecture. PIEEE, 91(1):112–126,
October 2003.

9. C. Dima; A. Girault; C. Lavarenne; and Y. Sorel. Off-line real-time fault-tolerant
scheduling. In 9th Euromicro Workshop on Parallel and Distributed Processing,
pages 410–417, 2001.

10. M. Pizza, L. Strigini, A. Bondavalli, and F. Di Giandomenico. Optimal discrimina-
tion between transient and permanent faults. In 3rd IEEE High Assurance System
Engineering Symposium, pages 214–223, Bethesda, MD, USA, 1998.

11. X. Qin, H. Jiang, and D. R. Swanson. An efficient primary-segmented backup
scheme for dependable real-time communication in multihop networks. In
IEEE/ACM trans. on Networking, 2003.

12. Hong Song and Hao Wu. The applied research of support vector machine in bus
fault identification. In Natural Computation (ICNC), 2010 Sixth International
Conference on, volume 3, pages 1326–1329, Aug.

13. R. Vaidyanathan and S. Nadella. Fault-tolerant multiple bus networks for fan-in
algorithms. In International Parallel Processing Symposium, pages 674–681, April
1996.


