
HAL Id: hal-00848500
https://hal.science/hal-00848500

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of a CDD-Based Fault Injection Framework for
AUTOSAR Systems

As’Ad Salkham, Antonio Pecchia, Nuno Silva

To cite this version:
As’Ad Salkham, Antonio Pecchia, Nuno Silva. Design of a CDD-Based Fault Injection Framework for
AUTOSAR Systems. SAFECOMP 2013 - Workshop SASSUR (Next Generation of System Assurance
Approaches for Safety-Critical Systems) of the 32nd International Conference on Computer Safety,
Reliability and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848500�

https://hal.science/hal-00848500
https://hal.archives-ouvertes.fr

Design of a CDD-Based Fault Injection Framework for

AUTOSAR Systems

As’ad Salkham
1
, Antonio Pecchia

2
 and Nuno Silva

1

1ASD-T Aeronautics, Space, Defense and Transportation – Critical Software S.A.

Parque Industrial de Taveiro, Lote 49, 3045-504, Coimbra, Portugal

{asad.salkham, nsilva}@criticalsoftware.com

2 Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI)

Università degli Studi di Napoli Federico II

Via Claudio 21, 80125, Naples, Italy

antonio.pecchia@unina.it

Abstract. Over the past years, developing automotive software has been of an

Electronic Control Unit (ECU)-specific nature despite the wide range of in-

vehicle electronics. With the increasing maintainability cost of such an approach,

the AUTomotive Open System Architecture (AUTOSAR) has emerged as a col-

lective effort among different elements in the automotive industry in order to

provide standardized and open software architecture for different types of vehi-

cles. This paper presents a framework design to assess AUTOSAR systems by

means of fault injection, which is recommended by the ISO 26262 standard for

validating safety requirements at software, system and hardware level. Our pro-

posal stems from a number of technical challenges characterizing AUTOSAR

systems, and leverages AUTOSAR’s Complex Device Driver (CDD) cross-layer

and memory partitioning to support the implementation of a minimally intrusive

fault injection framework. The potential of the approach in triggering error han-

dling mechanisms implemented across the different layers of a given AUTOSAR

system is discussed by means of examples.

Keywords: Fault injection, error handling, AUTOSAR, ISO 26262, validation.

1 Introduction

Vehicles are part of our daily life whether we use them privately or in public transpor-

tation. Despite the growing environmental concern, vehicles are continuously increas-

ing in numbers per capita in many countries [‎1]. The reliance on using more and more

ECUs in the automotive industry is clear. For example, some vehicles contain up to 70

ECUs [‎2]. Consequently, given the safety-critical nature of most vehicles, special at-

tention is given to the development of those ECUs and to their affiliated cost particu-

larly that electronics and software can amount to 40% of a given vehicle's overall cost

[‎2]. Indeed, situations where vehicles have to be recalled due to system or software

issues, (e.g., Honda issued a recall for ~2.5 million CRV and Accord sedan in 2011 due

to a transmission software glitch [‎3]) have to be avoided.

mailto:nsilva%7d@criticalsoftware.com

Traditionally, the automotive sector has focused on developing software in an ECU-

specific manner. This practice proved to be costly in terms of maintenance, lack of

reusability, management and update. Consequently, a wide group of automotive manu-

facturers and third-party companies put in place a collective effort to realize a stan-

dardized and open software architecture that can be used for the diverse in-vehicle

systems without compromising the quality and with cost-efficiency, i.e., AUTOSAR

(www.autosar.org). The aim is to make automotive software development more of an

application-specific nature. More important, AUTOSAR also faces the safety-critical

nature of vehicle systems. It has to abide by high functional safety requirements during

the development process and indeed in providing a set of recommended safety mecha-

nisms. The ISO 26262 (tailored from IEC 61508) standard [‎4] provides the needed

guidelines throughout the development process of automotive systems in order to

achieve the required level of functional safety. ISO 26262 in its software (part 6), sys-

tem (part 4) and hardware (part 5) product development guidelines recommends the

use of fault injection as a means for testing automotive systems. On the software level,

fault injection is essential for unit and integration testing given that the goal is an

Automotive Software Integrity Levels (ASIL) C or D. The standard suggests to inject

arbitrary faults to test the implemented safety mechanisms by corrupting val-

ues/variables, software or hardware. However, there is a lack of details concerning the

required fault injection approach according to ISO 26262.

An AUTOSAR system (see Fig. 1) has a layered architecture involving heterogene-

ous components. Our fault injection approach (reflected in the framework design) aims

to assess the safety and error-handling mechanisms distributed across all the layers of a

given AUTOSAR system. The approach is motivated by a number of facts and limita-

tions discussed onwards. Essentially, while commercially available AUTOSAR basic

software implementations are certified and ISO 26262 complaint, third-party hardware

and application software might have not gone through the same rigorous and extensive

non-simulation-based validation activities. Also, AUTOSAR was built without taking

explicitly fault injection needs into account, which resulted in the lack of required ac-

cessibility to either hardware or software interfaces in order to support the injection of

faults. The later challenge is increased by the inability to alter proprietary certified

AUTOSAR implementations to allow for fault injection. Moreover, given the distrib-

uted nature of error handling mechanisms in AUTOSAR, it is essential to test the sys-

tem as a whole including the application software.

Fig. 1. AUTOSAR system architecture.

The proposed framework design does not assume the ability to modify AUTOSAR’s

basic software but rather benefits from the Complex Device Driver cross-layer (given

its privileges) and memory partitioning to support the implementation of a minimally

intrusive fault injection framework. The potential of the approach at assessing an

AUTOSAR system at different layers is discussed by means of examples.

The remainder of this paper is organized as follows. Section ‎2 presents relevant

background information while Section ‎3 describes AUTOSAR’s safety mechanisms as

well as the error model and the error handling in place. The design of our fault injec-

tion framework and the example scenarios are presented in Section ‎4. Section ‎5 pro-

vides a brief discussion and the possibility of future work, while Section ‎6 concludes

the work.

2 Background and Related Work

This Section describes some essential concepts concerning AUTOSAR, fault injection,

ISO 26262 and also presents related work.

2.1 AUTOSAR

AUTOSAR brings in the realization of an application-specific approach for automotive

software development as opposed to an ECU-specific one. AUTOSAR provides a

means for developing applications that are platform independent as long as they abide

by a specified process and the interfaces provided. This helps in alleviating the burden

of managing the complexity of the diverse network of electronics in vehicles without

compromising quality and in a cost-efficient manner. It also provides for better main-

tainability through easing the exchange and update of software. The AUTOSAR archi-

tecture (see Fig. 1) mainly encompasses an application layer (comprising Software

Components (SWC), a Run-Time Environment (RTE) and the Basic Software (BSW).

Indeed, the underlying ECU is composed of a set of microcontrollers (µCs). The BSW

comprises three main layers and a cross-layer; the services layer, the ECU abstraction

layer, the microcontroller abstraction layer and the Complex Device Drivers (CDD)

cross-layer. Furthermore, the CDD cross-layer provides a means to implement non-

standardized functionalities with direct access to both the RTE and to the µCs. For

example, in situations where complex or new sensors (or any unsupported hardware)

are added, their specific drivers can be implemented in the CDD cross-layer benefiting

from the fact that it mainly serves as a loosely coupled container. Indeed, the latter’s

software must abide by AUTOSAR’s port and interface specifications.

2.2 Fault Injection

Fault injection is a widely adopted technique in the area of dependability evaluation

that includes deliberate introduction of faults in a system with the aim of assessing its

behaviour and evaluating the effectiveness of its fault-tolerance mechanisms [‎5]. The

importance of fault injection is well recognised in the critical systems industry as such

a technique allows for validating error-handling by triggering code paths that might be

hard to test under regular operations. More important, fault injection is currently rec-

ommended by many international standards (e.g., ISO-26262, IEC-61508 and NASA-

STD-8719.13B) to support the system validation and certification process and to de-

velop robust software.

A variety of fault injection approaches were proposed over the years. Early work in

the area of fault injection aimed at emulating hardware problems by injecting physical

faults (e.g., by means of radiation, shorting connections on circuit boards and interact-

ing with the hardware device at pin-level) in the system [‎6]. These techniques became

more and more unfeasible because of the growing hardware complexity, despite the

specialized hardware developed to support their usage. For these reasons, Software-

Implemented Fault Injection (SWIFI) has gained popularity.

SWIFI approaches, which are closer to the one proposed by our work, allow for

emulating the effects of hardware faults through software. Emulation can be accom-

plished, for instance, by modifying the content of memory locations and registers with

a corrupted value; corruption can affect both the program code and the program state.

The adopted fault model often consists of bit-flip and stuck-at operators as they are

accepted to be representative of hardware faults. SWIFI overcomes the limitations of

physical fault injection and ensures a controlled framework to perform experiments.

These features make SWIFI suitable within the critical industry domain [‎7]. Examples

of SWIFI tools are Xception [‎8] and NFTAPE [‎9].

2.3 ISO 26262

The growth concerning safety-critical applications in the automotive market is a key

concern to system engineers as they tackle safety challenges. The automotive industry

will continue to improve on vehicle safety systems, for example, basic airbag-

deployment systems, steering and braking systems, powertrain and body controller

application, and Advanced Driver Assistance Systems (ADAS) with accident predic-

tion and avoidance capabilities. These safety functions are increasingly implemented in

electronics and this is where the ISO 26262 standard comes in to ensure the safety of

these electronic systems by providing guidelines to help prevent severe failures and

control them in case of their occurrence. ISO 26262 highly recommends fault injection

for achieving ASIL C and D solutions.

2.4 Related Work

Currently, an increasing number of AUTOSAR BSW implementations, development

tools and diagnostic environments are being adopted. Commercially, there are a num-

ber of companies that provide rather comprehensive AUTOSAR implementations,

notably; Elektrobit and Vector. The latter provides MICROSAR and MICROSAR Safe

that are both BSW implementations (AUTOSAR v4.0) while the latter is meant to

comply with ISO 26262 up to ASIL D. Vector also provides CANoe which is a soft-

ware tool that can be used for the development, testing and analysis of individual

ECUs and networked ones with a special support for development in an AUTOSAR

environment, i.e., CANoe AUTOSAR Monitoring and Debugging (CANoe.AMD).

Another Vector tool is DaVinci; a SWCs developer and tester that also has an RTE

configurator. Moreover, Elektrobit provides a set of comprehensive solutions (EB

Tresos) to allow for developing AUTOSAR v4.0 compliant ECU software (up to ASIL

D) in addition to supporting debugging and tracing. Elektrobit’s Tresos AutoCore pro-

vides a BSW with an operating system that supports single and multicore processing.

Other AUTOSAR commercial solution providers include Kpit Cummins, Mecel &

Mentor Graphics, Bosch (CUBAS & iSolar IDE), etc. On the open source front, Arctic

provides development tools and a BSW implementation under GNU GPL.

Concerning work related to fault injection particularly for AUTOSAR, only a lim-

ited number exist. In [‎2] a SWIFI framework for AUTOSAR is presented. They exploit

the CANoe simulation environment to introduce errors through the so called suppres-

sion and manipulation hooks. These hooks are inserted in selected AUTOSAR API

implementations to either return a specific error code (suppression) or corrupt certain

data structures (manipulation). However, similar to other simulation-based approaches

and as acknowledged, the approach is restricted by the simulation environment acces-

sibility issue where the injection has to abide by the level of abstraction provided by

the CANoe let alone the probe effects of the simulation itself. Moreover, in [‎10], fault

injection can be seen as a profound choice for assessing the coverage of the proposed

fault-tolerance scheme, i.e., “defence software” within an automotive embedded soft-

ware context. Notably, in [‎11] an instrumentation framework for assessing the depend-

ability of AUTOSAR systems at the software component level is presented. The

framework supports instrumentation at source code, header files and object code levels.

Promising results were presented in the evaluation in terms of overhead in source lines

of code and execution time for a typical anti-lock braking system as well as in a fault

injection experiment. Some limitations were also discussed besides what was described

as conceivable workarounds. However, the fault injection experiment constituted bit

flipping with no relation to any AUTOSAR fault model.

3 Safety Mechanisms in AUTOSAR

AUTOSAR includes a variety of mechanisms aiming to mitigate the severity of run-

time errors and to achieve safety requirements. Some safety mechanisms, e.g., watch-

dogs, redundancy and memory partitioning, are directly supported by the BSW to

achieve ISO 26262 compliancy; nevertheless, other mechanisms such as error handling

support (described in Section ‎3.2), can be implemented either at the BSW or at the

SWC layer. Consequently, evaluating the behaviour of AUTOSAR systems as a whole

is crucial. The main concepts related to the error model and to the error handling

mechanisms introduced by AUTOSAR are briefly described in the following.

3.1 Error Model

An error is the part of the total system state that may lead to its subsequent failure, i.e.,

a deviation from the correct system service [‎12]. Errors are caused by faults (e.g.,

hardware problems, bugs in the source code of the program or misconfigurations) that

are activated during system operations. AUTOSAR makes extensive use of error mod-

els to support the specification of its error handling mechanisms. Error models aim to

cover the different ways errors manifest as a consequence of fault activations.

AUTOSAR standard errors include errors that are mostly handled by the BSW. Only

two categories of standard errors are currently provided by AUTOSAR, i.e., communi-

cation-related errors (including Controller Area Network (CAN)-related errors) and

Non-Volatile Random Access Memory (NVRAM)-related errors. Examples of CAN-

related errors are bus off and transmission buffer full, while examples of NVRAM-

related errors are Cyclic Redundancy Check (CRC) error and internal flash write job

error. AUTOSAR encompasses five error categories:

 Data: erroneous value of a function parameter, variable or message;

 Program flow: the flow of the program is different than the expected one (e.g., miss-

ing or wrong instructions are executed by the software);

 Access: a component tries to access a resource (e.g., a memory partition) without

the proper access rights;

 Timing: an operation (e.g., packet transmissions or required functions) is delivered

early, late or it is completely omitted;

 Asymmetric: Byzantine behaviour; no assumptions can be made about the erroneous

component.

For example, a bug in the source code of the program (e.g., a faulty instruction such as

a wrong condition within an “if statement”) might result into a data error or a program

flow error. Also, other type of errors is the development errors; meaning that they are

supposed to have been handled before deployment, e.g., NULL pointer calls.

3.2 Error Handling

Error handling is concerned with the treatment of errors occurring during the system

operation, i.e., in terms of detection, isolation, and recovery. According to the

AUTOSAR specification, error handling can be implemented either at the BSW or at

the SWC layer; furthermore, SWCs could be expected to handle some error notifica-

tions coming from the BSW. AUTOSAR provides a detailed specification (including

information flow) of error handling mechanisms addressing standard errors. Not all of

the standard errors are fully handled within the BSW. For example, the COM TX dead-

line monitoring, which represents a communication error, is detected at the BSW;

however, an SWC is expected to recover from the error (e.g., by re-transmitting the

signal).

AUTOSAR error handling exploits a variety of techniques (e.g., plausibility checks,

agreement, checksums/codes, execution sequence monitoring and reset) that represent

well-established and consolidated means to develop dependable software. Each

mechanism addresses one (or more) error categories(s) and can partially or fully ac-

complish error treatment tasks. For example, checksums, which involve calculating

extra information for a given data, target the mentioned data errors and allows for de-

tecting and, under certain hypothesis, for restoring the original value of the corrupted

data. Similarly, execution sequence monitoring focuses on control paths taken by the

program and it is able to detect program flow errors; however, the treatment of the

error should involve other mechanisms, e.g., reset, to accomplish recovery.

4 CDD-Based Fault Injection Framework

The CDD-based approach for fault injection stems from a number of motives. Fault

injection is highly recommended by ISO 26262 for testing at different development

stages. While the deployment of a fault injection approach normally requires specific

support and often changing the code or interface parameters at varying levels, ISO

26262 certified AUTOSAR implementations are proprietary. For these reason, assess-

ing an AUTOSAR system, including third-party applications developed on top of it,

becomes even more challenging. The challenge increases given the fact that error han-

dling is distributed over different AUTOSAR layers.

Consequently, a minimally intrusive, (i.e., not requiring heavy access/change to

AUTOSAR’s BSW) and generic approach for assessing AUTOSAR systems using

fault injection is needed. To this objective, we exploit the CDD cross-layer (which

comes with the architecture to handle unsupported microcontrollers) and the memory

partitioning feature. The key idea behind our approach is to trigger faults from the very

base layer, i.e., µCs, and to monitor the AUTOSAR system’s behaviour with the aim of

evaluating its safety as a whole. More important, running the fault injection monitoring

and control logic in a separated memory partition will ensure the lack of interference

with the solution under testing.

In Fig. 2, the modules of the fault injection framework which represents our ap-

proach and highlights relationships with the AUTOSAR architecture are presented.

The fault injection SWCs will mainly constitute a controller and a monitoring service

as in a regular fault injection framework; injection is performed at the CDD level. The

components are detailed in the following.

Fault injection modules, i.e., the entities of the framework that will introduce faults

into the system, are implemented within the CDD cross-layer as it can interface se-

lected µCs directly. Furthermore, a CDD has the privilege to communicate with SWCs

through the RTE, which makes it a suitable candidate for placing the fault injection

logic. Each Fault Injection (FI) module is specialized in emulating certain errors, e.g.,

communication-related, WatchDog Timer (WDT) or NVRAM-related: emulation is

achieved by corrupting the status, behaviour or content of the µCs through the CDD. It

must be observed that µCs are not our test target and that the corruption aims to acti-

vate the error handling and safety mechanisms at the BSW and/or at the SWCs that

rely on the integrity of such µCs. For this reason, it is sufficient to have the needed µC

for a specific fault-triggering scenario being accessible and adjustable.

Fig. 2. CDD-Based Fault Injection

The framework consists of other entities, i.e., the target workload and the fault injec-

tion monitoring component. The target workload is implemented by one or more

SWCs that use the BSW in a way that can exercise error-prone activities such as mem-

ory access or communication. The monitoring SWC is responsible for gathering infor-

mation concerning the system status. Typically, it will require polling, through the

RTE, components that are responsible for receiving error reports or possibly those

performing mitigation. For example, monitoring may involve the Diagnostic Event

Manager (DEM), which is responsible for most of the housekeeping, CAN interface,

workload SWC, NV memory manager.

The fault injection controller coordinates the described entities and is responsible for

iterating through the fault injection experiments composing a campaign. It is worth

noting that we exploit AUTOSAR memory partitioning to isolate the fault injection

software from the system targeted by the injection. More in details, controlling and

monitoring software components run on a separate partition from that of the workload.

This ensures that the fault injection software will be isolated from any potential mem-

ory errors that could occur at the workload partition. The controller is able to acti-

vate/deactivate a given injection module at the CDD and run the workload through the

RTE.

The fault injection management host is responsible for loading the target workload

and more importantly receiving the results produced by the monitoring component

during each experiment for subsequent analysis. Also, it is responsible for defining the

fault injection campaigns to be passed on and carried out by the fault injection control-

ler.

4.1 Example Scenarios

A pair of example scenarios is discussed here to demonstrate the potential use of the

CDD-based fault injection framework in AUTOSAR systems. The fault injection man-

agement host is not presented in the scenarios but it should be assumed implicitly

there. The examples show that injection experiments conducted at the very base layer

of the system allow for triggering the error handling mechanisms implemented across

the different layers. The first example is concerning a communication-related error

while the second is about an NVRAM-related error. In both cases, the role of the com-

ponents of the fault injection framework is discussed.

Fig. 3. Injection in the communication module.

Communication Error. The error targeted by the example is the CAN Bus Off error,

which is raised when there is a CAN communication channel loss. In order to test for

the CAN Bus Off error, a scenario is presented (see Fig. 3) where a target workload is

trying to send a message to a remote ECU that eventually requires accessing the CAN

bus. Following the target workload request, the CAN Bus Off error is triggered as the

CAN µC is forced to be offline by the CDD fault injection module. The latter was in-

structed through the RTE to make the CAN bus inaccessible as part of the fault injec-

tion logic. The information path of this error is presented in Fig. 4. It can be observed

that, despite injection is conducted at the hardware level, the error handling process is

spread over different components at different levels. Each component has a specific

role in the detection and recovery processes. In this case, the CAN driver is responsible

for polling its dedicated µC to check the status of the CAN bus readiness, i.e., the

communication channel aliveness. The CAN driver is able to discover the CAN Bus

Off error as the µC updates its register where the driver then tries to cancel all pending

messages and informs the CAN interface about the error using a dedicated API. The

CAN interface hence changes its mode to “stopped” and reports the error to the CAN

state manager using a similar dedicated API. The CAN state manager starts the recov-

ery and counts the error events. If the error is confirmed, the DEM, the BSW state

manger and the communication manager are notified. The recovery includes resetting

the CAN µC and enabling/disabling the transmit path. If the error is successfully miti-

gated, its event is removed from the DEM and the CAN state manager informs the

involved elements. Indeed, the relevant SWCs are always updated through the commu-

nication manager using the RTE about the detection and the recovery of the error at

hand. As reported in Fig. 3, the fault injection monitoring SWC polls the DEM through

the RTE in order to register a successful or a fail error handling for that case. Indeed,

the fault injection control is responsible for the process order and ensures such an order

through communication with the target workload SWC, the monitoring SWC and the

CDD, all through the RTE. Moreover, the fault injection monitoring SWC considers

that the error is successfully handled if its relevant event is no more present at the

DEM.

Fig. 4. CAN Bus Off Error: Information path.

NVRAM Error. The error targeted here is related to memory and specifically the CRC

of memory blocks. In order to test for the CRC error, an instance of the fault injection

framework is presented in Fig. 5 where a target workload is trying to read a specific

memory block. Similar to the scenario in the first example, the fault injection controller

organizes the process order. To allow for a CRC error to be triggered, the controller

requests that the specific memory block planned to be read by the target workload to

have its CRC bits corrupted. This is done through a request to the dedicated fault injec-

tion CDD module, i.e., the CDD-FI-NVRAM-Module which in its turn reflects that on

the requested block’s CRC. The latter can be corrupted, for instance, by bit flipping all

its bits using the xor operation with a stream of one bits.

Fig. 5. Injection in the NVRAM module.

Fig. 6. CRC: Information path.

The information path of this error is presented in Fig. 6. The NVRAM manager veri-

fies whether there is a CRC mismatch after a read operation on a given RAM block. If

a mismatch exists, the DEM is informed of an integrity error and the recovery process

is initiated. The recovery includes operations like a read retry, reading redundant block

and/or reading from Read-Only Memory (ROM) block. The recovery requests nor-

mally propagate from the NVRAM manager through the lower memory-related layers,

i.e., the memory hardware abstraction and the memory drivers. If the recovery entails a

loss or redundancy, the NVRAM also reports that to the DEM. The application layer

shall poll this type of error and is able to be notified through the RTE. Again, error

handling involves different layers of the AUTOSAR system. As the NVRAM manager

detects the mismatch, the fault injection monitoring keeps polling the DEM to check

the existence of an integrity error and/or loss of redundancy errors.

5 Discussion and Future Work

This work is meant to highlight the potential of using the CDD cross-layer and memory

partitioning as a means for minimally intrusive fault injection in AUTOSAR. To our

knowledge, this is a new approach that can exploit the privileges given to CDDs in

terms of accessing the RTE and µCs directly. This allows for testing the safety mecha-

nisms and error handling in a given AUTOSAR system as a whole and without the

need to change the BSW’s code. This is a clear advantage when dealing with systems

like AUTOSAR where error handling is well-spread among different components in

the BSW and sometimes in the SWCs. Also, the issue of accessibility in proprietary

commercial solutions can be circumvented if a fault injection technique is presented in

this manner. One concern that can be raised is the extent to which µCs can be altered if

they are already certified to be protected. The answer to such a concern is that the

framework is not meant to test µCs but rather use them as fault-triggering points and

indeed any type of µCs can be used as long as they satisfy the planned alteration re-

quirements set by the fault injection CDD. The approach carries a promising idea that

we intend to provide a prototype for in the near future.

6 Conclusion

This paper presented a framework design that provides a minimally intrusive and ge-

neric approach for assessing AUTOSAR systems by means of fault injection. It high-

lighted the need for such an approach given the increasing safety requirements in the

automotive industry and the need to abide by strict standards like ISO 26262 where

fault injection is highly recommended for testing at different levels. In order to under-

stand the safety issues in AUTOSAR, the architecture was described including the

error model, safety and error handling mechanisms as well as the relation to ISO

26262. The CDD-based fault injection framework was detailed including a pair of

examples concerning AUTOSAR’s communication-related and memory-related errors.

Very few work exist on fault injection in AUTOSAR systems, hence this work presents

a novel approach that can help in realising an AUTOSAR system-wide assessment

using minimally intrusive fault injection. We believe that the use of CDDs and memory

partitioning for fault injection (in AUTOSAR systems) is a clear and sound approach

that will prove to be essential in the near future.

Acknowledgements. This work has been supported by the European project CRITICAL Soft-

ware Technology for an Evolutionary Partnership (CRITICAL STEP, www.critical-step.eu),

Marie Curie Industry-Academia Partnerships and Pathways (IAPP) number 230672 in the con-

text of EU’s FP7, and by the project “EMBEDDED Systems” CUP B25B09000100007, POR

Campania FSE 2007/2013.

References

1. U.N. Division for Sustainable Development, “Transport Report,” United Nations, New

York, 2010.

2. P. Lanigan, P. Narasimhan and T. Fuhrman, “Experiences with a CANoe-based fault injec-

tion framework for AUTOSAR,” in Dependable Systems and Networks (DSN), 2010

IEEE/IFIP International Conference on, Chicago, 2010.

3. http://www.insideline.com, “Honda Will Recall 2.5 Million Cars Worldwide To Fix Trans-

mission Software,” Insideline, 8 August 2011.

4. International Organization for Standardization. Product development: software level.

ISO/DIS 26262-6, 2009.

5. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins and D. Pow-

ell, “Fault Injection for Dependability Validation: A Methodology and Some Applications,”

IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 166-182, 1990.

6. U. Gunneflo, J. Karlsson and J. Torin, “Evaluation of error detection schemes using fault in-

jection by heavy-ion radiation,” in International Symposium on Fault Tolerant Computing

(FTCS-19), 1989.

7. A. Pecchia, A. Lanzaro, A. Salkham, M. Cinque and N. Silva, “Leveraging Fault Injection

Techniques in Critical Industrial Applications”. In Innovative Technologies for Dependable

OTS-Based Critical Systems, pp 131-141, Springer, 2013.

8. J. Carreira, H. Madeira and J. Silva, “Xception: a technique for the experimental evaluation

of dependability in modern computers,” IEEE Transactions on Software Engineering, vol.

24, no. 2, pp. 125-136, 1998.

9. D. Stott, B. Floering, D. Burke, Z. Kalbarczpk and R. Iyer, “NFTAPE: a framework for as-

sessing dependability in distributed systems with lightweight fault injectors,” in IEEE Com-

puter Performance and Dependability Symposium, 2000.

10. C. Lu, J.-C. Fabre and M.-O. Killijian, “An approach for improving Fault-Tolerance in

Automotive Modular Embedded Software,” in 17th International Conference on Real-Time

and Network Systems, Paris, 2009.

11. T. Piper, S. Winter, P. Manns, and N. Suri. 2012. Instrumenting AUTOSAR for dependabil-

ity assessment: A guidance framework. In Proceedings of the 2012 42nd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN) (DSN '12). IEEE

Computer Society, Washington, DC, USA, 1-12.

12. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic Concepts and Taxonomy of

Dependable and Secure Computing”. IEEE Transactions on Dependable and Secure Com-

puting, 1:11-33, Jan 2004.

http://www.critical-step.eu/

	Introduction
	Background and Related Work
	AUTOSAR
	Fault Injection
	ISO 26262
	Related Work

	Safety Mechanisms in AUTOSAR
	Error Model
	Error Handling

	CDD-Based Fault Injection Framework
	Example Scenarios
	Communication Error. The error targeted by the example is the CAN Bus Off error, which is raised when there is a CAN communication channel loss. In order to test for the CAN Bus Off error, a scenario is presented (see Fig. 3) where a target workload ...
	NVRAM Error. The error targeted here is related to memory and specifically the CRC of memory blocks. In order to test for the CRC error, an instance of the fault injection framework is presented in Fig. 5 where a target workload is trying to read a sp...

	Discussion and Future Work
	Conclusion
	References

