
HAL Id: hal-00848493
https://hal.science/hal-00848493

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Composability and Mixed Criticality for Triple
Modular Redundant Architectures

Stefan Resch, Andreas Steininger, Christoph Scherrer

To cite this version:
Stefan Resch, Andreas Steininger, Christoph Scherrer. Software Composability and Mixed Criticality
for Triple Modular Redundant Architectures. SAFECOMP 2013 - Workshop SASSUR (Next Genera-
tion of System Assurance Approaches for Safety-Critical Systems) of the 32nd International Conference
on Computer Safety, Reliability and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848493�

https://hal.science/hal-00848493
https://hal.archives-ouvertes.fr


Software Composability and Mixed Criticality

for Triple Modular Redundant Architectures

Stefan Resch1⋆⋆, Andreas Steininger2, and Christoph Scherrer1⋆⋆

1 Thales Austria GmbH,
Handelskai 92, A-1200 Vienna

{stefan.resch, christoph.scherrer}@thalesgroup.com
2 Vienna University of Technology, Embedded Computing Systems Group E182-2,

Treitlstr. 3, A-1040 Vienna,
steininger@ecs.tuwien.ac.at

Abstract. Composability and mixed criticality are concepts that promise
an ease of development and certification for safety critical systems in all
industrial domains. In this paper we define the necessary requirements,
highlight issues and classify fault containment, when extending already
existing triple modular redundant architectures with these concepts. We
evaluate the needed adaptations and extensions of triplication mecha-
nisms with respect to the required safety properties. Finally, we suggest
novel architectures for serving triplicated modular redundant applica-
tions and compare them to the previously presented solutions.

1 Introduction

Failure of a safety critical system can result in harm to humans and the environ-
ment. To ensure that the resulting threat is acceptably low, the system has to be
certified according to the applicable industrial standards. These standards define
processes to classify systems in levels of criticality with respect to the potential
damage they could cause when failing. SIL, ASIL and DAL are examples of clas-
sification schemes in standards of the railway, automotive and avionics domain.
These levels define different processes and methods to be followed during a sys-
tem’s lifetime to keep its probability of failure acceptably low. These methods
are then applied to the whole system and the whole system is certified. Should
parts of the system change, substantial effort is necessary for re-certification, as
the corresponding certification process has to be repeated for the whole system
to demonstrate that safety is still guaranteed.

Composability aims to overcome this limitation of certification. Its key prin-
ciple is to decompose the system into failure containment regions that provide
sub-services independent from each other, even if – and specifically in case –

⋆⋆ Part of this research was funded by the ARTEMIS Joint Undertaking (nSafeCer,
Grant Agreement number 295373), and the Austrian partners’ national funding
agency Austrian Research Promotion Agency (FFG) on behalf of the Austrian Fed-
eral Ministry of Transport, Innovation and Technology (BMVIT).



2 Stefan Resch, Andreas Steininger and Christoph Scherrer

one of these should fail. In conjunction with an appropriate reasoning that the
overall system service is represented by the composition of these sub-services, it
becomes possible to (somewhat) move the certification focus to the failure con-
tainment regions. Of course, provisions have to be taken to establish this failure
containment. On this foundation different criticality levels can be assigned to
different sub-services (”mixed criticality system”), and upon changing a sub-
service, re-certification can be limited to the latter, rather than having to stick
to a monolithic system-level view. Naturally this is most beneficial when using
easily changeable sub-services in physical dependency, like software-implemented
sub-services executing on the same hardware. Later on we will show that com-
posability can also improve the hardware utilization for the whole system.

Triple modular redundancy (TMR) is a wide spread approach in the industry
to build fault-tolerant systems using three fault containment regions3. Depending
on the specific TMR architecture, the applicable fault hypothesis can range
from random transient hardware faults to systematic design faults. TMR covers
techniques from triplicating gates within an integrated circuit, to triplication of
sensors and displays, where the human decides in the process. In this paper we
will concentrate on TMR methods for triplicating software and investigate how
the concepts of composability and TMR can be beneficially combined.

After a brief survey of related work in the next section, Section 3 will be
concerned with the concepts and requirements of composability, and Section 4
will add the fault tolerance aspect to the discussion. On this foundation we
will systematically review contemporary TMR approaches in Section 5. Finally
we present new types of TMR architectures that take full advantage of the
composability concepts in Section 6 before concluding the paper with Section 7.

2 Related Work

Concepts for mixed criticality and composability are already used in the in-
dustry. The avionics domain has adopted the concept of integrated modular
avionics (IMA) for the integration of different safety critical components on one
hardware/software platform. Its foundation is the ARINC report 651-1 [1]. The
ARINC 653 standards define an application software standard interface for inte-
grating software functions of mixed criticality on a common platform [2]. These
standards are supported by industrial products for IMA, e.g. VxWorks 653. AU-
TOSAR is an approach to define a platform standard for the automotive domain.
This includes a common interface for electronic control units and for allowing
software reuse by providing a runtime environment for applications [3]. With
the ISO 26262 standard the concept of SEooC (Safety Element out of Context)
can be applied to certify a safety element in isolation, using assumptions of the
operational context. The final evaluation is performed when the safety element is
used in a specific system, and it includes verifying the correlation of the assumed
context to the specific context within the system [4]. For the railway domain the

3 Notice the difference between fault containment and failure containment; detailed
definitions of these terms will be given later on.



Software Composability and Mixed Criticality for TMR Architectures 3

CENELEC EN standards [5] provide generic safety cases for incremental certi-
fication, which should be suitable to construct a safety case for composability.

In [6] a time-triggered System-on-Chip architecture is presented that aims
to achieve composability by hardware means. Another hardware implemented
solution for composability, using different scheduling strategies for each resource,
is presented in [7], and the technique of virtualization has been applied to it in [8].

Apart from industrial standards, the concept of software partitioning is dis-
cussed in [9] with the introduction of a separation kernel that further evolved to
the MILS separation kernel [10]. Separation kernels of this type are usually based
on microkernels, which also use partitioning [11]. Another prominent separation
approach is the use of hypervisors, also called virtual machine monitors [12].
As discussed in [13], the precise border between microkernels and hypervisors is
not that clear. A comprehensive state of the art in embedded virtualization can
be found in [14]. Using virtualization for implementing a primary-backup fault
tolerant system has been suggested in [15]. Different methods for virtualization
and the concept of hardware virtualization support are presented in [16].

The general concept for software-implemented fault tolerance was introduced
by Wensley in [17]. An overview of methods for achieving fault tolerance with
replication is given in [18], covering triple modular redundant architectures with
hardware lock-step, as well as software-only solutions on COTS hardware.

3 The Concept of Software Composability

Safety is a system property, therefore a single system component can only ful-
fill a safety property within the context of the whole system application [19].
The intention of composability is to allow building safe and certified systems by
careful integration of components, some of which provide safe and (pre)certified
functions. As an immediate advantage this facilitates the reuse of certified com-
ponents. We call such a component function-set (FS), to emphasize that func-
tions are provided by one or more entities, especially in a TMR architecture (see
later). These FSs are then deployed within an integration environment (IE) to
build the whole system. Here the possibility of sharing the same IE for different
systems, thus saving cost, space and energy, represents another advantage.

A FS provides a (sub-)service within the application context and is assigned
a criticality level according to the criticality of that service. Clearly, the proper
provision of this service can only be guaranteed on the condition that the IE ex-
hibits all properties that have been assumed in the design of the FS. While this is
relatively trivial to establish in the traditional federated architectures (i.e. using
a separate IE per FS), it becomes an issue in integrated approaches, since the
properties of the IE, as perceived by a single FS, are (dynamically) influenced
by the other FSs during their execution. Therefore, to enable composability, ev-
ery FS must be associated with an appropriate function-set contract, specifying
its requirements to the IE for correct execution. We refer to the deterministic



4 Stefan Resch, Andreas Steininger and Christoph Scherrer

Integration

Environment

FS1

+
+

+

FS2

FS3
Env. Contract

(A) (B)

FS Contracts

Composition Contract

(C)

Fig. 1. Mixed criticality and composability certification strategy.

availability of resources from the IE as predictability4. This first constituent of
composability becomes crucial when FSs or elements of the IE are to be changed.
Notice that in the interest of a simple FS contract static guarantees (i.e. high
predictability) are beneficial, while more fine-grained, even dynamic, require-
ments usually facilitate a better resource utilization. In addition, the former is
easier to enforce by technical means (see later).

The second constituent of composability, namely non-interference concerns
undesired effects that the execution of a FS may have on the IE and consequently
on other FSs, specifically in case of failure. Again one could, in principle, conduct
a fine-grained, application specific analysis on malign and non-malign cases to
allow for the largest freedom. In practice, however, the most rigorous approach
has proven most effective – a strict failure containment5. Herein, each FS forms
an individual failure containment region, whose failure remains local and has no
effect on any of the others. This task has to be fulfilled by the IE which needs
to provide technical provisions to separate the FSs from each other.

Ultimately, the composition approach allows to split the certification of a
system into three parts, as illustrated in Figure 1:

(A) The safety critical FS is certified with respect to its FS contract, which
specifies all the FS’s requirements.

(B) An IE, e.g. hardware boards and middleware, is certified with its provided
properties and requirements, stated in an integration environment contract.

(C) The FS- and IE contracts are specified using generic properties, like network
bandwidth, to enable reusing of FSs in different IEs. A concrete system
is then certified by matching the IE contract with the FS contracts in a
composition contract.

Please note that for each safety critical FS step (A) is performed separately, as
well as step (B) for each specific integration environment. Furthermore, for each
new or altered system step (C) is done. This method needs more initial effort
than certifying one system as a whole, still it is more efficient when building
several slightly different systems, or altering existing ones. Additionally, a good
utilization of the hardware resources within the IE is expected.

The use of a common IE introduces unwanted dependencies between FSs.
This is why composability requires specific attention and, ultimately, specific pro-
visions for partitioning. The general idea is to implement a composability layer

4 Unlike [20] we define predictability with respect to available resources for FSs and
not as predictability of execution times and resource demand.

5 Like the “Gold Standard for Partitioning” in [21].



Software Composability and Mixed Criticality for TMR Architectures 5

F
ai

lu
re

 C
o

n
ta

in
m

en
t 

R
eg

io
n

s

Fault Containment Module

Function-Set 1

Function-Set 2

Function-Set 3

Fig. 2. Function-sets in failure containment regions and fault containment modules.

that provides failure containment regions (partitions) within the IE, indepen-
dent of the specific hardware setup. A partitioning concept for fail-operational
systems is presented in [21]. Here the correct and timely execution of all safety-
critical FSs is mandatory, and the system must remain operational even under
(the hypothesized) faults.

Safety critical systems with a safe state, in contrast, can handle the case
where no results or outputs are provided by a safety-critical FS. The important
property here is that no incorrect outputs are produced. This is normally en-
sured by fault-tolerance measures like a TMR architecture, and the remaining,
but very important, requirement on the partitioning layer is not to undermine
the error detection and/or masking capabilities of these measures, e.g., by intro-
ducing common-mode failures. Beyond that, the failure containment regions do
not require as strong separation as in the fail-operational case, especially wrt.
scheduling and timing. For example, it may be tolerable to guarantee resource
access with some probability. In the remainder of this paper we will use the
term composability layer rather than partitioning layer to emphasize that it is
not necessarily required to achieve full partitioning in all cases.

4 Combining Composability and TMR

The primary goal of TMR is to keep the system operational in case of a single
random hardware failure. The principle is to mask the output of one failed mod-
ule by the outputs of the remaining two modules. Consequently, the architecture
is separated into three fault containment modules, and it is essential that only
one fails at a time. There are three threats to this principle: (1) In case of near-

coincident faults two (or all) modules fail due to faults of independent origin,
which in theory is ruled out by the single-fault assumption, and in practice, the
very low fault rates make this extremely improbable. (2) In case of common cause

failures, we again encounter failures of two (or all) modules, this time, however,
these originate in the same single fault. That is why fault containment between
the modules is so important. (3) In case of spare exhaustion, one replica did not
recover from a previous fault and therefore, there are too few modules available
to mask the current fault with the remaining replicas. This makes recovery of a
failed module essential.



6 Stefan Resch, Andreas Steininger and Christoph Scherrer

Concurrent in newtonian time

ye
s no

Time TMRClock cycle synchronous

ye
s no

Hardware

lock-step TMR

Progress synchronous

ye
s no

Software

lock-step TMR

Software

incremental TMR

partially

Time redundant

TMR

Fig. 3. TMR Classification for Software Triplication.

Composability is an orthogonal concept that aims, as already outlined in
Section 3, at achieving better resource utilization and ease of the certification
process upon integration. These benefits equally apply for TMR architectures.
As illustrated in Figure 2 the IE may comprise replicated modules, and we have
two orthogonal containment regions in a composable TMR architecture:

– The replicated hardware modules form fault containment regions required
to prevent common cause failure of the TMR architecture. With a properly
working TMR, the safe execution of a FS can be ensured even in case of a
random fault in its IE.

– Within these modules, each FS forms a failure containment region. This es-
tablishes the non-interference required for composability. With non-interference,
the safe TMR execution of a FS in presence of other FSs is guaranteed.

In this scheme a FS comprises three entities, each representing a computing
channel. FS 1 and FS 2 are examples for this. Assume the fault containment
modules are independent hardware boards, then the failure of one is observable
as fault of one entity for FS 1 and 2. In contrast, if FS 2 fails due to a software
error, the failure containment regions provide protection for FS 1 and FS 3.

Note that in our example FS 3 comprises one computing channel only, as it is
not safety-critical. This already indicates that having three computing channels
per FS only illustrates the fundamental principle of this architecture, and many
variations are possible. For the fault tolerance scheme, e.g., simplex or duplex
architecture could be chosen instead of TMR as well, as is appropriate for the
needs of the specific FS. More generally, there is a lot of freedom in aligning
the failure containment regions of the FSs with the modules’ fault containment
regions. Exploring this solution space will be the topic of the next sections.

5 Contemporary TMR Architectures

TMR methods for replicating software can be classified as shown in Figure 3.
They differ in properties of fault containment, concurrency, synchrony and re-
source utilization. In the following we discuss these properties, as well as recovery



Software Composability and Mixed Criticality for TMR Architectures 7

and how the composability concept can be introduced in these currently available
TMR architectures.

5.1 Time redundant TMR

For Time redundant TMR, software instructions are triplicated at compile time
and voting instructions are added automatically. The triplicated instructions
use different memory, which is also assigned during compilation. The fault con-
tainment “modules” in this architecture are instruction sequences together with
their memory. This method does not require special hardware and can be used
in a COTS processor. As Time redundant TMR uses only one processor, it can
only mask transient hardware faults, e.g. SEUs. In this architecture “recovery”
is performed by simply masking the erroneous output value and using the voted
one as input for the next instruction triple. This creates a significant overhead
for voting. Naturally, repairing and replacement cannot be performed during the
operational phase of the system.

Note that here the potential conflict between fault tolerance and compos-
ability becomes apparent: Separation of memory and CPU can be ensured by a
composable scheduler and a MMU, respectively. In this setting, however, both,
the scheduler, as well as the MMU represent single points of failure from the
fault-tolerance point of view. While the scheduler (as well as potential further
software-based composability services) can, just like the FSs, be protected by
time redundant execution as well, the MMU remains problematic.

In general, the performance impact can be deducted from the scheduling
scheme. With a static cyclic scheduler, the reaction time can be derived from
the maximum time between scheduled slices of the safety critical FS entities and
the slice width. However, this can vary for specific FSs and also depends on the
shared I/O devices. Mixed criticality can achieve good hardware utilization in
this architecture, as only safety critical FSs are triplicated (at compile time),
while non-critical FSs can use CPU and memory at native speed.

The patented Time TMR [22] architecture has the same properties as Time
redundant TMR. The only difference is that some of the instructions are exe-
cuted on different CPU components and by this it might be possible to mask a
permanent hardware failure in a specific part of the CPU. This also reduces the
overall execution time in comparison to Time redundant TMR.

5.2 Hardware lock-step TMR

Hardware lock-step architectures are widely used in the industry [23]. This “clas-
sical” architecture tolerates both transient and permanent hardware faults. It
comprises triplicated CPUs and memory with hardware voters in between. The
CPUs operate with the same clock (which is why the CPUs are often located to-
gether on one hardware board) and memory operations are voted and corrected
on error, thus voting is performed purely by the hardware. As for recovery, the
state of one CPU can be recovered from the other two by halting the execution of



8 Stefan Resch, Andreas Steininger and Christoph Scherrer

the triple and reconstructing the state of the erroneous CPU from the other two.
A current industrial example is the D602 board from MEN Mikro Elektronik.

The inherent triplication of the lock-step architecture is advantage and draw-
back in the composability context at the same time. Safety critical FSs, as well as
non-critical FSs are all automatically triplicated and recovered, which degrades
resource utilization. Fulfilling the composability requirements from Section 3 for
each fault containment unit locally is already sufficient for composability of the
triplicated modular redundant system, since the triplication mechanism is not
influenced by the composability layer – rather the composability layer is tripli-
cated. Like for Time redundant TMR, the performance impact is closely related
to the composable scheduling and I/O sharing strategy.

5.3 Software-based TMR

The two software-based TMR methods discussed here, Software incremental
TMR and Software lock-step TMR, share most of their properties. Both tolerate
transient and permanent hardware faults, and possibly some quasi-random soft-
ware faults as described in [24]. In both architectures a middleware software is
running on different hardware boards, which provides voting and synchronization
to applications built on top. A FS in this architecture consists of all three entities
of the application and TMR middleware. These applications must follow design
constraints provided by the middleware to guarantee replica-deterministic execu-
tion. Contrary to Hardware lock-step TMR it is possible to use COTS hardware
boards in this architecture, and maintenance actions can be performed online
during system operation. The difference is that during the synchronization phase
in Software lock-step TMR, replica-deterministic applications cannot make any
progress and must have processed all their input data and generated the respec-
tive output before synchronization; whereas Software incremental TMR has no
such constraints and therefore less stringent requirements on execution times.

Synchronization can be performed event-based or periodically. Periodic syn-
chronization has a minimum and maximum period in which any of the mod-
ules can initiate the synchronization phase. The event-based synchronization is
triggered when I/O is available and has to be voted. Even in the event-based
case a minimum period (to avoid overload) and a maximum period (to check
for liveness) are required, which finally comes down to periodic synchronization.
Periodic synchronization can, in turn, be interpreted as event-based synchroniza-
tion with periodic events. In any case, synchronization is achieved by exchanging
messages between the middleware instances. Thus, message transmission time
and synchronization event latency, the time it takes from the occurrence of an
event to its processing in the middleware, are the key performance values.

In both architectures recovery has to be performed by the middleware with-
out interruption of the active replica. For this purpose the middleware has to
know which replicated data needs to be recovered and has to have enough com-
munication resources in addition to the regular synchronization requirements.

Figure 4 shows the introduction of the composability layer to software-based
TMR below the triplication middleware, the TMR layer. While this enforces the



Software Composability and Mixed Criticality for TMR Architectures 9

TMR

Layer

TMR

Layer

Hardware

Composability Layer

App App´ App´´

TMR

Layer

TMR

Layer

Hardware

Composability Layer

App App´ App´´
TMR

Layer

TMR

Layer

Hardware

Composability Layer

App App´ App´´

In
te

rc
o
n
n
e

c
t

In
te

rc
o
n
n
e

c
t

Application

Hardware

TMR Layer

Application

Hardware

TMR Layer

Application

Hardware

TMR Layer

Fig. 4. Software-based TMR without (left) and with (right) composability layer.

desired separation of the TMR instances, the execution of the latter now re-
lies directly on the composability layer, more specifically its scheduling and the
provided communication resources. This has a significant effect on the TMR syn-
chronization process, resulting in an increased maximum synchronization event
latency as well as message transmission time and jitter of both. Low latency and
short message transmission time may be achieved with small scheduling periods
for safety critical FSs, which increases the overhead for scheduling as more con-
text switches are needed. Message transmission times also get longer due to other
TMR middleware using the same communication paths and interfaces in parallel.
Bandwidth guarantees can limit the influence on these paths, however message
transmission times are increased in any case. These effects cause the duration of
the synchronization phase to increase and also have a larger jitter, which in turn
means that applications can have shorter computation time within the same pe-
riod. Thus, more computational reserve has to be given for a Software lock-step
TMR to guarantee completion in between synchronization phases. This is not as
strict for Software incremental TMR, but the timeouts on application level may
need to be reconsidered. Also the communication resources for recovery have to
be available, which is not as latency sensitive as synchronization.

Fail-safe systems might also be able to tolerate configurations with less com-
putational reserve, where resource shortage can only result in loss of availability
and not safety. However, composability and mixed-criticality can achieve good
resource utilization, as non-critical FSs are not replicated. Furthermore, if an
error is detected, it might be sufficient to only reboot the affected partition and
not the whole hardware board.

6 TMR Architectures Leveraging Composability

6.1 Static TMR-Composable Architecture

In the software-based TMR architecture described above, non-triplicated FSs
can be added, as long as there are enough free resources on one of the hardware
boards. For TMR FSs all three boards need free resources. If only one of them
has insufficient computational resources, a complete new hardware triple must be
added. With composability it is now possible to introduce a new kind of architec-
ture, the static TMR-composable architecture. Replica and their communication



10 Stefan Resch, Andreas Steininger and Christoph Scherrer

can be statically assigned to any hardware board and communication links in-
between and are no longer fixed by a hardware triple. The composability and
triplication mechanism are the same as for software-based TMR and also COTS
hardware boards and network equipment can be used. This method improves
resource utilization and scalability of the whole system. Figure 5 illustrates a
possible scenario, where adding one TMR entity to a system can be achieved by
adding only one hardware board, provided that the communication links have
enough bandwidth. The graphic does not explicitly show the required additional
interconnect. This can either be solved with several direct links, or a redundant
network, e.g. two switches each connected to one of two Ethernet interfaces of a
board. This change of the connections properties has to be accounted for in the
composability model. Furthermore, the impact of the new networking compo-
nents on the availability must be acceptably low in a redundant configuration.
Maintenance can still be performed without system downtime.

Fig. 5. Change of static deployment when adding a new triple and hardware node.

6.2 Dynamic TMR-Composable Architecture

In contrast to all previously presented TMR architectures, the Dynamic TMR-
Composable Architecture has no static mapping of replica to hardware boards.
A FS manager is dynamically deploying safety critical and non-safety critical
FSs in a cluster of redundantly connected hardware boards. This cluster can
be built from COTS hardware boards and network equipment. The FS manager
starts and stops partitions, establishes virtual links inbetween them and can even
implement load balancing. Starting, stopping and interconnecting safety critical
FS entities is a safety critical task, thus the FS manager has to be implemented
as safety critical component within the Dynamic TMR-Composable Architec-
ture itself. This management of safety critical components is actually subject to
certification. It has to be performed with building a valid composition contract
from the component and environment contracts. To automate this process, the
contracts have to be formalized in a machine readable way. For fail-safe systems,
it may be sufficient to implement mechanisms for the individual triples to check
whether their component contracts are fulfilled, otherwise they can trigger a
safety reaction.

The composability layer is the same as for software-based TMR. However, as
the composability policies concerning bandwidth guarantees and scheduling are
dynamically changed by the FS manager, it has to be ensured that such changes
are covered in the composition contract. Resource usage, maintainability and



Software Composability and Mixed Criticality for TMR Architectures 11

availability are improved in comparison to the Static TMR-Composable Archi-
tecture, since replicas can be moved between hardware boards and a suitable
trade-off for the whole system could be found for all those factors.

6.3 Software-based TMR using Separation

Composability provides failure containment regions. These can be exploited as
fault containment modules for a software-based TMR architecture6, resulting in
a fault tolerance similar to Time redundant TMR with overhead and software re-
strictions of software-based TMR. However, it is possible to use COTS hardware
and reuse existing triplication middleware and possibly already implemented for
this middleware. Additionally, fault containment could be improved with the use
of multi-core CPUs.

7 Conclusion

We have taken a closer look at the idea of combining composability with TMR.
Our analysis has shown that these concepts are orthogonal in that composability
requires failure containment regions, while TMR is based on fault containment
module. There are multiple ways of combining these properties. We have aligned
the existing TMR architectures within this solution space and systematically
identified their benefits and needs when augmented with a composability layer.
On top of that, we have proposed novel TMR schemes that specifically leverage
the existence of composability for making more efficient use of the resources.

For software-based TMR, as well as our newly proposed architectures we have
identified the criticality of scheduling and communication for performance. We
do have some measurement results available from a practical industrial system
(not presented in this paper) that allow to quantify this dependence. As part of
future work we plan to extend and generalize these measurements.

References

1. Committee, A.E.E., et al.: Arinc report 651-1: Design guidance for integrated
modular avionics. Aeronautical radio, Inc., Annapolis, Maryland (1997)

2. Prisaznuk, P.: Arinc 653 role in integrated modular avionics (ima). In: IEEE/AIAA
27th Digital Avionics Systems Conference (DASC 2008)., IEEE (2008) 1–E

3. Bunzel, S.: Autosar–the standardized software architecture. Informatik-Spektrum
34(1) (2011) 79–83

4. Espinoza, H., Ruiz, A., Sabetzadeh, M., Panaroni, P., et al.: Challenges for an
open and evolutionary approach to safety assurance and certification of safety-
critical systems. In: Software Certification (WoSoCER), 2011 First International
Workshop on, IEEE (2011) 1–6

5. CENELEC, E.N.: 50126-railway applications: The specification and demonstration
of reliability, availability, maintainability and safety (rams). European Committee
for Electrotechnical Standardization (1999)

6 assuming the failure containment mechanisms provide sufficient fault containment



12 Stefan Resch, Andreas Steininger and Christoph Scherrer

6. Kopetz, H., El Salloum, C., Huber, B., Obermaisser, R., Paukovits, C.: Com-
posability in the time-triggered system-on-chip architecture. In: SOC Conference,
2008 IEEE International, IEEE (2008) 87–90

7. Hansson, A., Goossens, K., Bekooij, M., Huisken, J.: Compsoc: A template for
composable and predictable multi-processor system on chips. ACM Trans. Des.
Autom. Electron. Syst. 14(1) (January 2009) 2:1–2:24

8. Molnos, A., Milutinovic, A., She, D., Goossens, K.: Composable processor virtu-
alization for embedded systems. In: Proceedings of the Workshop on Computer
Architecture and Operating System Co-Design (CAOS)., Springer (2010)

9. Rushby, J.: Design and verification of secure systems. In: ACM SIGOPS Operating
Systems Review. Volume 15., ACM (1981) 12–21

10. Alves-Foss, J., Oman, P., Taylor, C., Harrison, W.: The mils architecture for high-
assurance embedded systems. International Journal of Embedded Systems 2(3)
(2006) 239–247

11. Tiwari, M., Oberg, J., Li, X., Valamehr, J., Levin, T., Hardekopf, B., Kastner, R.,
Chong, F., Sherwood, T.: Crafting a usable microkernel, processor, and i/o system
with strict and provable information flow security. In: ACM SIGARCH Computer
Architecture News. Volume 39., ACM (2011) 189–200

12. Masmano, M., Ripoll, I., Crespo, A., Metge, J.: Xtratum: a hypervisor for safety
critical embedded systems. In: Proceedings of the 11th Real-Time Linux Workshop.
Dresden. Germany. (2009)

13. Heiser, G., Leslie, B.: The okl4 microvisor: Convergence point of microkernels and
hypervisors. In: Proceedings of the first ACM asia-pacific workshop on Workshop
on systems, ACM (2010) 19–24

14. Gu, Z., Zhao, Q.: A state-of-the-art survey on real-time issues in embedded systems
virtualization. Journal of SW Engineering and Applications 5(4) (2012) 277–290

15. Bressoud, T., Schneider, F.: Hypervisor-based fault tolerance. ACM Transactions
on Computer Systems (TOCS) 14(1) (1996) 80–107

16. Adams, K., Agesen, O.: A comparison of software and hardware techniques for x86
virtualization. In: ACM SIGOPS Operating Systems Review. Volume 40., ACM
(2006) 2–13

17. Wensley, J.: Sift: software implemented fault tolerance. In: Proceedings of the
December 5-7, 1972, fall joint computer conference, part I, ACM (1972) 243–253

18. Poledna, S.: Replica determinism in distributed real-time systems: A brief survey.
Real-Time Systems 6(3) (1994) 289–316

19. Leveson, N.: Safety as a system property. Communications of the ACM 38(11)
(1995) 146–

20. Akesson, B., Molnos, A., Hansson, A., Angelo, J., Goossens, K.: Composability and
predictability for independent application development, verification, and execution.
In: Multiprocessor System-on-Chip. Springer New York (2011) 25–56

21. Rushby, J.: Partitioning in avionics architectures: Requirements, mechanisms, and
assurance. Technical report, DTIC Document (2000)

22. Czajkowski, D., McCartha, M.: Ultra low-power space computer leveraging embed-
ded seu mitigation. In: Proc. IEEE Aerospace Conf. Volume 5. (2003) 2315–2328

23. Witwer, B.: Systems integration of the 777 airplane information management
system (aims): a honeywell perspective. In: Digital Avionics Systems Conference,
1995., 14th DASC, IEEE (1995) 389–393

24. Gerstinger, A.: Runtime diversity against quasirandom faults. In: Systems, 2009.
ICONS ’09. Fourth International Conference on. (March) 145–148


