
HAL Id: hal-00848489
https://hal.science/hal-00848489v1

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Confidence in Timing
Daniel Kästner, Markus Pister, Gernot Gebbard, Marc Schlickling, Christian

Ferdinand

To cite this version:
Daniel Kästner, Markus Pister, Gernot Gebbard, Marc Schlickling, Christian Ferdinand. Confidence in
Timing. SAFECOMP 2013 - Workshop SASSUR (Next Generation of System Assurance Approaches
for Safety-Critical Systems) of the 32nd International Conference on Computer Safety, Reliability and
Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848489�

https://hal.science/hal-00848489v1
https://hal.archives-ouvertes.fr


Confidence in Timing

Daniel Kästner, Markus Pister, Gernot Gebhard, Marc Schlickling,
Christian Ferdinand

AbsInt GmbH, Science Park 1, 66123 Saarbrücken, Germany

Abstract All contemporary safety standards require to demonstrate the
absence of functional and non-functional safety hazards. In real-time sys-
tems this includes demonstrating the absence of critical timing hazards.
To meet this verification objective it is necessary to show the correctness
of the timing behavior with adequate confidence. Adequate confidence
means that the evidence provided can be trusted beyond reasonable
doubt. There are two main sources of doubt: the logic doubt associ-
ated with the validity of the reasoning and the epistemic doubt associ-
ated with uncertainty about the underlying assumptions. A fundamental
timing property is the per-task worst-case execution (WCET). It is an
ingredient for determining all higher-level timing concepts like worst-case
response times, and system-wide end-to-end times. This article gives an
overview of the challenges in ensuring timeliness of real-time software
focusing on the worst-case execution time problem. It describes the prin-
ciples of abstract interpretation-based WCET analysis and summarizes
the confidence argument for applying it in the certification process of
safety-critical software, addressing both logic and epistemic doubt.

1 Introduction

Safety standards like DO-178B/DO-178C, ISO-26262, IEC-61508, or CENELEC
EN-50128 require to demonstrate the functional safety of the software. Func-
tional correctness has to be demonstrated with respect to the specified require-
ments and the absence of critical non-functional hazards – including timing
hazards in real-time systems – has to be shown. This substantiation has to be
done with adequate confidence. Adequate confidence means that the evidence
provided can be trusted beyond reasonable doubt. There are two main sources
of doubt: the logic doubt associated with the validity of the reasoning and the
epistemic doubt associated with uncertainty about the underlying assumptions
[14].
Demonstrating timing correctness requires to show that all real-time tasks

meet their deadlines, or that deadline violations do not compromise the safety
of the system. To demonstrate deadline adherence the worst-case response times
(WCRT) of the real-time tasks in the system have to be determined. The WCRT
of a task is based on its worst-case execution time (WCET) and takes additional
overhead caused, e.g., by task preemptions and task blocking into account.
Due to the characteristics of modern hardware and software architectures de-

termining the WCET of a task has become a challenge. Speculative hardware



features, timing anomalies and domino effects reduce the significance of individ-
ual timing measurements and as full test coverage cannot be achieved, no safe
test end criterion is available. Also, runtime measurements typically are invasive,
or require a special hardware setup. In consequence, with measurement-based
techniques to determine the WCET logic and epistemic doubts usually remain.
The logic doubt can be eliminated by using formal methods for timing anal-

ysis. The theory of abstract interpretation provides a formal methodology for
semantics-based static analysis of dynamic program properties. Applied to worst-
case execution time analysis it allows provably sound overapproximations of
the WCET to be determined even for complex architectures exhibiting timing
anomalies and domino effects. Systematic timing faults caused by the interplay
between software and hardware can be detected and eliminated. With the sound-
ness of the analysis methodology established, it remains to show the correctness
of the underlying hardware model, the correctness of the analyzer implementa-
tion, and to investigate the underlying assumptions about the physical world.
Confidence in the microprocessor model has to be built on empirical evidence. We
propose the following strategy: The analytically determined WCET bounds for
representative programs or code snippets are compared with measurement data:
measured times must always be below the analytically computed WCET bound.
Furthermore automatic trace validation allows a cycle-accurate validation of the
model down to the level of individual pipeline events and bus signals, based on
the automatic processing of trace files created on the real hardware. Implemen-
tations of abstract interpretation based program analyzers can be automatically
generated from the mathematical analysis specification, hence enabling high im-
plementation quality. Qualification Support Kits enable tool users to demon-
strate the correct functioning of the tool in their operational environment in an
automatic way. Part of the tool qualification also is a detailed summary of all
underlying assumptions of model, implementation, interfaces, and operational
conditions. Qualification Software Life Cycle reports document the soundness
of the tool development and validation processes. All these measures together
enable the epistemic doubt to be eliminated.

2 Timing Predictability

Ensuring timing predictability is an active area of research which involves many
different fields, ranging from predictable hardware design, determining the worst-
case execution time (WCET), WCET-aware compilation, programming language
support for real-time properties, to system-level scheduling and analysis. An
overview of current research in all related fields can be found in [1].
In general, a system is predictable if it is possible to predict its future behavior

from the information about its current state. We consider predictability under
the assumption that the hardware works without unexpected errors. Hardware
faults like soft errors or transient faults have to be addressed by specific error
handling mechanisms to ensure overall system safety.
In [1] the program input and the hardware state in which execution begins are

identified as the primary sources of uncertainty in execution time. Hardware-



related timing predictability can be expressed as the maximal variance in exe-
cution time due to different hardware states for an arbitrary but fixed input.
Analogously, software-related timing predictability corresponds to the maximal
variance in execution time due to different inputs for an arbitrary but fixed
hardware state. A basic assumption is uninterrupted program execution without
interferences. In a concurrent system, interferences due to concurrent execution
additionally have to be taken into account.

To ensure the correct timing behavior it is necessary to demonstrate the dead-
line adherence of each task. To this end, the worst-case execution time of each
task has to be determined, i.e. the concept of software-related predictability as
defined above can be reduced to the predictability of the worst-case execution
path.

At the microprocessor level for non-pipelined architectures one can simply add
up the execution times of individual instructions to obtain a bound on the exe-
cution time of a basic block. Modern embedded processors try to maximize the
instruction-level parallelism by sophisticated performance enhancing features.
Pipelines increase performance by overlapping the executions of consecutive in-
structions. Hence, for timing analysis it is not sufficient any more to consider
individual instructions in isolation. Instead, they have to be analyzed collectively
– together with their mutual interactions – to obtain tight timing bounds.

Another important aspect is the predictability of the cache replacement policy.
The Least-Recently-Used (LRU) replacement policy has the best predictabil-
ity properties. Employing other policies, like Pseudo-LRU (PLRU), or First-In-
First-Out (FIFO), or Random, yields less precise WCET bounds because fewer
memory accesses can be precisely classified [13] and causes higher execution
time variability. Furthermore, the timing analysis efficiency degrades because the
analysis has to explore more possibilities. Other commonly used performance-
enhancing features are static/dynamic branch prediction, speculative execution,
out-of-order execution, branch history tables, or branch target instruction caches.
In general, the challenges in determining worst-case execution time bounds orig-
inate from the complexity of the particular execution pipeline and the connected
hardware devices. A detailed discussion of the predictability of microprocessor
features, including multi-core processing, and their effect on timing analysis and
measurements is given in [20].

Many of these hardware features can cause timing anomalies [13] which render
WCET analysis and measurement more difficult. Intuitively, a timing anomaly
is a situation where the local worst-case does not contribute to the global worst-
case. For instance, a cache miss – the local worst-case – may result in a globally
shorter execution time than a cache hit because of hardware scheduling effects.
In consequence, for timing analysis it is not safe to assume that the memory
access causes a cache miss; instead both states have to be taken into account.

An especially difficult class of timing anomalies are domino effects [9]: A system
exhibits a domino effect if there are two hardware states a, b s.t. the difference
in execution time (of the same program starting in a, b respectively) cannot be
bounded by a program-independent constant factor, but may grow arbitrarily



high. E.g., given a program loop, the executions never converge to the same
hardware state and the difference in execution time increases in each iteration.
For timing analysis the consequence is that loops have to be analyzed very
precisely and the number of machine states to track can grow high. For timing
measurements this means that the difference between measured and true worst-
case execution time caused by an incomplete hardware state coverage can grow
arbitrarily high.
An architecture without timing anomalies and domino effects is called fully

timing compositional [20]. On such architectures timing analysis can safely fol-
low local worst-case paths only. Timing measurements for code snippets are
compositional. One example for this class is the ARM7 reference architecture.
However, most contemporary architectures exhibit timing anomalies (e.g., Tri-
Core TC1797), or domino effects (e.g., PowerPC 755).

3 Measuring Time

Testing and measuring is an integral part of the cognitive scientific process.
However, measuring the execution time of software faces some particular chal-
lenges. In general, timing measurements can be done at different levels, and with
different purposes. This section gives an overview.
A general limitation of testing methods is their incompleteness: exhaustive

testing usually is not possible. According to DO-178B/DO-178C for verification
testing alone is not enough since testing cannot show the absence of errors.
Identifying safe end-of-test criteria for “nonfunctional” program properties like
worst-case execution time is an unsolved problem. End-to-end measurements
aim at directly measuring the worst-case execution time of a given task. How-
ever, the worst-case path is unknown and hence cannot be explicitly stimulated.
Exhaustive testing first requires to stimulate all potential execution paths. Ad-
ditionally, on all but fully timing-compositional architectures different possible
microprocessor states have to be taken into account. The same code snippet can
have very different execution times depending on the initial hardware state of the
processor at the beginning of the measurement. The worst-case hardware state
for executing a code sequence usually is not known. Therefore for exhaustive
testing all potential execution paths through the software have to be stimulated
for all possible hardware states. The resulting search space is gigantic and cannot
be exhaustively covered with acceptable effort.
Structural coverage criteria like MC/DC coverage are not applicable as they do

not capture the execution paths traversed and there is no indication whether the
worst-case path has been observed. It is also not possible to define a reliability
metrics for timing measurements based on the time spent for measurements.
There is no indication how often a specific execution path has been exercised
during the observation period. In consequence for software-based systems no
statistical failure rates are available which are comparable to those used for
hardware components with typical requirements between 10−5 and 10−9 failures
per hour of operation.
In hybrid approaches the execution times of smaller code sequences are mea-

sured and composed to determine critical paths. With timing measurements



at the basic block level there is only one path to measure, but it is often not
possible to stimulate it for all potential initial hardware states with acceptable
effort. The necessary tracing effort is high. Measuring larger subpaths reduces
the tracing effort but incurs the danger of missing valid execution paths. Due
to timing anomalies and domino effects combining measured times for different
code blocks is not safe, and it is hard to determine a valid safety margin. On the
other hand, combining measurements from different contexts also might lead to
significant overestimations of the execution time.

Another problem dimension is how to obtain the measurement data. The sim-
plest approach is invasive by adding instrumentation code to collect a time
stamp or read the CPU cycle counter. The instrumentation code interferes with
the timing behavior of the software under test and in general, it is not possible
to separate the effect of the instrumentation code from the effect of the original
code. Assessing the effect of instrumentation is a prerequisite for using invasive
test methods in a safety case. As this is not possible in general, one solution
is to consider the instrumentation code to be part of the production software.
However this induces further problems, e.g., creating the instrumentation is sub-
ject to the same criticality level as developing the application software, and the
available processor time is reduced. Mixed hardware/software instrumentation
techniques enable a more lightweight instrumentation. Non-intrusive measure-
ments are supported by logic analyzers or hardware tracing mechanisms, e.g.,
the IEEE-ISTO 5001-2003 (NEXUS) standard and the ETM tracing mechanism.

In consequence, with measurement-based testing, in general, it is not possible
to derive safe bounds on the worst-case execution time. Still, they provide valu-
able feedback for assessing the timing behavior in soft real-time systems. They
play an important role for debugging, and for determining and optimizing the
average-case execution time. Testing techniques are required to address transient
hardware faults, or incorrect interrupt handling. Measurement-based testing also
is instrumental in validating the correctness of hardware models used for static
WCET analysis (cf. Sec. 5).

4 Static WCET Analysis

A comprehensive survey of methods and tools for determining the worst-case
execution time is given in [19]. The most successful formal method for WCET
computation is Abstract Interpretation-based static program analysis. Static
program analyzers compute information about the software under analysis with-
out actually executing it. Semantics-based static analyzers use an explicit (or
implicit) program semantics that is a formal (or informal) model of the program
executions in all possible or a set of possible execution environments. Most in-
teresting program properties – including the WCET – are undecidable in the
concrete semantics. The theory of abstract interpretation [2] provides a formal
methodology for semantics-based static analysis of dynamic program proper-
ties where the concrete semantics is mapped to a simpler abstract model, the
so-called abstract semantics. The static analysis is computed with respect to
that abstract semantics, enabling a trade-off between efficiency and precision.



A static analyzer is called sound if the computed results hold for any possi-
ble program execution. Applied to WCET analysis, soundness means that the
WCET bounds will never be exceeded by any possible program execution. Ab-
stract interpretation supports formal soundness proofs for the specified program
analysis.
Like model checking and theorem proving, abstract interpretation is recognized

as a formal method by the DO-178C and other safety standards (cf. DO-333,
Formal Methods Supplement to DO-178C). It is based on a mathematically
rigorous concept and provides the highest possible confidence in the correctness
of the results (cf. IEC-61508, Ed. 2.0, Table C.18).
Over the last few years, a more or less standard architecture for timing analysis

tools has emerged [4,7] which is composed of three major building blocks:
– control flow reconstruction and static analyses for control and data flow,
– micro-architectural analysis, computing upper bounds on execution times of

basic blocks,
– path analysis, computing the longest execution paths through the whole pro-

gram.
The core of the analysis is the micro-architectural analysis where basic block
timings are determined using an abstract processor model (timing model) to
analyze how instructions pass through the pipeline taking cache-hit or cache-
miss information into account.
In the following sections we will focus on the commercially available tool aiT

which implements the architecture described above. The tool has been success-
fully employed in the avionics [7,17] and automotive [11] industries to determine
precise bounds on execution times of safety-critical software. It is available for a
variety of microprocessors ranging from simple 16-bit processors like ARM7 to
complex superscalar processors with timing anomalies and domino effects like
Freescale MPC755, or MPC7448.

5 Providing Confidence

In general confidence about a system property is based on providing evidence
that the conditions of the physical world have been appropriately taken into
account and that the reasoning about the correctness of the system reaction
is sound. A fundamental system property is the per-task worst-case execution
(WCET) from which worst-case response times and end-to-end times can be
derived. The corresponding correctness requirement is to show that all hard
real-time tasks definitely meet their deadline. In general it is possible to provide
for mechanisms that detect timing violations and initiate mitigating actions,
e.g., based on deadline monitoring or runtime monitoring. Possible reactions to
detections of timing violations include activation of redundant system elements,
mode switches to degraded mode operation, or entering the safe state. Whereas
this is acceptable to address hardware faults like soft errors or transient faults
it is problematic for software errors as this incurs the danger of unacceptable
degradation of availability and can affect system safety. The vast majority of
software errors are systematic errors and in general no statistical failure rates



for software are available. Therefore it is preferable to demonstrate stringent
deadline adherence under the assumption of error-free hardware behavior and
use fault mitigation for hardware errors which are amenable to statistical failure
rates.
The worst-case execution time is influenced by the semantics of the software

under analysis, the properties of the microprocessor used, and finally the system-
level properties and its connection to the physical world. To establish confidence
in reasoning about worst-case execution time it has to be shown that all these
factors have been correctly taken into account and that the means to derive the
worst-case execution time from them are technically correct and complete.
The input to static WCET analyzers is fully linked binary machine code. Bi-

nary machine code is a programming language that provides a formal description
of the behavior of the programs on the underlying hardware architecture. Using
abstract interpretation a formal abstract semantics is defined as the basis of
the static program analysis to be performed that focuses on the worst-case tim-
ing behavior. This abstract timing semantics is based on a formal model of the
microprocessor used. By design, Abstract Interpretation based static analyzers
provide full control and data coverage. As detailed above abstract interpretation
supports formal correctness proofs: it can be proven that an analysis will termi-
nate and that it computes an overapproximation of the concrete semantics, i.e.,
that the analysis results are sound : the true worst-case execution time will never
be underestimated. There is a variety of scientific publications about the theory
of Abstract Interpretation, e.g., [2]. The properties of aiT WCET Analyzer are
discussed in [17,6,8], soundness and correctness proofs have been published, e.g.,
in [5,18,3].
In consequence, abstract interpretation as a formal verification method en-

ables the analysis design to be proven correct. This eliminates the logic doubt:
based on formal specifications of the input program, i.e. the binary executable
and the microprocessor, the specified analysis will compute sound results. It re-
mains to be shown that the microprocessor model correctly models the physical
hardware, that the implementation of the static analyzer correctly realizes the
mathematical specification, and that the properties of the surrounding physical
world are correctly taken into account. In the following we will address each of
these topics in turn.

5.1 Confidence in Model

Modern processors and peripheral components like memory controllers are auto-
matically synthesized from formal design specifications, mostly in VHDL or Ver-
ilog. If a VHDL/Verilog model is available an abstract timing model can be semi-
automatically derived from the design specification as described in [12,15,16].
The model derivation process ensures the correctness of the timing model as
both the synthesized hardware and the corresponding timing model have been
created from the same formal specification.
Unfortunately, processor manufacturers often do not provide access to their

formal hardware designs for confidentiality reasons. Then the timing model has
to be constructed manually by human experts based on the available system



documentation. As such documentation might contain errors and/or does not
describe all details of the instruction flow through the processor pipeline, a sub-
sequent model validation is necessary to demonstrate correctness.

A first step to get confidence in the timing model is to compare analytically
computedWCET bounds for representative programs or code snippets with mea-
sured times. No analytically computed WCET bound must ever underestimate
any measured execution time, i.e., the bounds must always be greater than or
equal to the measured execution time. However, this only gives a coarse-grained
view on the quality of the timing model because local underestimations might be
shadowed by overestimations in other code parts so that potential errors might
remain undetected. Therefore, additional validation activities are necessary.

Applying the timing model to a program not only yields a WCET bound but
also results in a prediction of all possible execution paths through the program
including all possible microprocessor states during the execution. In consequence
the model can also be validated by comparing the prediction with the observable
events of the corresponding concrete execution of the program on the hardware,
provided that the observed events are captured by the model. Depending on the
underlying hardware and measurement setup, events can be traced at different
levels of granularity: performance counter values, active bus signals, instructions
executed, and routines (C functions) executed.

Some processors feature so-called performance monitoring facilities to moni-
tor and count predefined events such as processor clock ticks, cache misses, dis-
patched instructions, or mispredicted branches. Performance monitoring coun-
ters provide very fine-grained insights in the processor core for a certain amount
of clock ticks. Each of the performance counter registers can be configured to
count several events. To understand the insights of a processor core, the traced
time period must be chosen very carefully, and measurements need to be re-
peated several times to allow for tracing different events.

On many architectures it is possible to trace the communication of the pro-
cessor with its “outer world”, i.e., to monitor the change of signal values on
the system bus. The resulting bus trace provides insights on the requests gen-
erated by the processor core and thus allows to draw conclusion on the branch
prediction behavior and other advance pipeline features.

Performance monitoring and bus traces complement each other: performance
monitoring provides insight in the internal behavior of the processor core, and
bus traces allow the interaction of the core with its peripherals to be observed.

A less fine-grained method for investigating the behavior of an embedded ar-
chitecture is to evaluate instruction traces as, e.g., provided by NEXUS traces.
Every instruction emits an event at the beginning of its execution, and one event
at the exit of its execution. The ordering of event occurrences provides insights
on the executed program paths and furthermore allows to investigate pipelined
execution capabilities of the underlying architecture.

Coarse-grained measurement methods evaluate the execution behavior at the
level of routine execution (i.e. at the C function level). Different execution con-
texts can be distinguished by reference to the call history. However, it is not



possible to gain precise information about the control flow inside routines. Such
measurement methods do not allow to infer detailed information about the pro-
cessor behavior.
The aiT timing model can be extended to predict any of the above mentioned

event types. The analysis does not predict a single trace of events. Instead the
result is a prediction graph that – due to the underlying abstract interpretation
principles – describes a sound overapproximation of all possible traces of events
that are observed in reality. Hence, any measured event trace has to be part of
this prediction graph. Therefore validating measured traces of events against the
statically obtained prediction graph provides evidence of timing model correct-
ness. This trace validation process can be fully automated and thus allows for
an industry-strength timing model validation.
Our trace validation methodology comprises the following steps. First the exe-

cution behavior is measured on the real hardware1. Second the prediction graph
is obtained from aiT. Finally, a graph search determines whether the measured
trace of events is contained in the prediction graph. The trace validation is suc-
cessful if there exists a path that comprises the events in exactly the same order
in which they have been observed.
The entire validation process can be fully automated. In this fashion aiT has

been successfully validated even for very large amounts of measurement data.
The available measurement typically comprise several millions of trace lines.
Table 1 shows an excerpt of the trace validation data that was used to validate
aiT for several architectures.

Architecture Application Type Binary Size Event Types Trace Lines

M68020 Avionic 14MB bus 4 232 000
MPC5xx Avionic 3MB instr 3 879 000
MPC755 Avionic 120MB bus 9 468 000

Table 1. Excerpt of industrial trace data used for aiT tool validation.

5.2 Confidence in Implementation Quality

The concise mathematical specification of program analyses provided by the the-
ory of abstract interpretation allows implementations of program analyzers to be
automatically generated. The Program Analyzer Generator PAG automatically
generates implementations of static program analyzers from a formal specifica-
tion of an abstract interpretation problem [10]. In order to generate an analyzer
using PAG, two specifications have to be written: one for the definition of the
data structures, including the abstract domain, and one containing the analysis
parameters, definition of the abstract transfer functions and, optionally, some
support functions. The generative approach reduces the risk of implementation
errors and frees the PAG user from having to implement the domain function-
ality, the traversal of the control flow graph, and suitable fixpoint algorithms.
Minimizing manual coding eliminates a major source of errors.
PAG is freely available for teaching and research2 and has been used in nu-

merous research and teaching projects. Furthermore it has been used to generate

1 It is also possible to use a behavioral VHDL model to observe the hardware behavior.
2 http://www.program-analysis.com/



more than 40 commercial static analyzers at AbsInt, including aiT WCET An-
alyzers and static stack usage analyzers for various microcontrollers.

5.3 Tool Qualification & Qualification Software Life Cycle Reports

To provide high confidence in the correct functioning of a tool it is necessary
to demonstrate that the tool works correctly in the operational context of its
users. This is a common requirement of most current safety standards. The cor-
rect functioning of a tool might be affected by the OS version, system libraries
installed, software patch levels, etc. Moreover, depending on the user’s devel-
opment process structure and tool landscape the probability for detecting tool
errors may vary. Therefore taking into account the operational context of tool
usage is essential for tool qualification.

From the perspective of a tool user, qualifying a software tool causes consid-
erable effort. The functional requirements of the tool have to be specified, a test
plan has to be developed, tests have to be executed and documented. Moreover
the qualification effort has to be repeated for each development project to be
certified. This makes it very desirable to do automatize the tool qualification pro-
cess. Such an automatic tool qualification can be done by dedicated Qualification
Support Kits (QSKs) as shipped as a part of a software tool.

In the following we give an overview of a QSK for aiT whose structure is
representative for general qualification support kits. It is centered around an
automatic validation suite and essentially consists of two parts, a report package
and a test package.

The report part consists of two different documents: the Tool Operational Re-
quirements (TOR) and the Verification Test Plan (VTP). The TOR lists the
tool functions and technical features which are stated as low-level requirements
to the tool behavior under normal operating conditions. Additionally, the TOR
describes the tool operational context and conditions in which the tool com-
putes valid results. Hence this part specifically focuses on the epistemic doubt.
It summarizes all basic assumptions about the physical world that have to be
satisfied for correct tool operation. This includes: unsupported microprocessor
options or configurations, system parameters (e.g., scheduling strategy, occur-
rence of DMA, dynamic RAM refreshes, or exceptions), etc. The VTP defines
the test cases demonstrating the correct functioning of all specified requirements
from the TOR. Test case definitions include the overall test setup as well as a
detailed structural and functional description of each test case. The test part
contains an extensible set of test cases with a scripting system to automatically
execute them and generate reports about the results.

Depending on the safety standard and the criticality level of the application
providing additional confidence about the tool software development processes
may be required. The AbsInt Qualification Support Life Cycle Data (QSLCD)
reports contain documents which detail the tool development processes, e.g.,
the software development plan, the quality plan, quality assurance records, the
software verification plan and software verification results.



6 Conclusion

All current safety standards consider the correct timing behavior as a part of the
functional safety of real-time systems. A fundamental timing property is the per-
task worst-case execution (WCET) from which all higher-level timing concepts
like worst-case response times, and system-wide end-to-end times are derived.
Determining the WCET from measurement-based testing techniques is subject
to logic and epistemic doubts. Speculative hardware features, timing anomalies
and domino effects reduce the significance of individual timing measurements and
as full test coverage cannot be achieved, no safe test end criterion is available.
Also, runtime measurements typically are invasive, or require a special hardware
setup.
The theory of abstract interpretation provides a formal methodology for

semantics-based static analysis of dynamic program properties. Applied to worst-
case execution time analysis it allows provably sound overapproximations of
the WCET to be determined even for complex architectures exhibiting timing
anomalies and domino effects. The analysis is based on a formal model of the
underlying microprocessor. With the soundness of the analysis methodology es-
tablished, it remains to show the correctness of the underlying hardware model,
the correctness of the analyzer implementation, and to investigate the underlying
assumptions about the physical world. We have developed a strategy to address
all these issues based on a combination of formal proofs, careful documentation
and automatic trace-based measurements. The goal of these measurements is to
provide empirical evidence on the physical hardware that modeling and imple-
mentation is correct. With all these measures together both the logic and the
epistemic doubts can be addressed.

Acknowledgement

The work presented in this paper has been supported by the European FP7
project T-CREST, and the EU ARTEMIS Joint Undertaking under grant agree-
ment no. 269335 with the German BMBF (MBAT project).

References

1. P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Mar-
wedel, J. Reineke, C. Rochange, M. Sebastian, R. von Hanxleden, R. Wilhelm,
and W. Yi. Building timing predictable embedded systems. ACM Transactions on
Embedded Computing Systems, 2013. Accepted.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL
’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252, New York, NY, USA, 1977. ACM Press.

3. C. Cullmann. Cache Persistence Analysis for Embedded Real-Time Systems. PhD
thesis, Universität des Saarlandes, 2013. To be published.

4. A. Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time Anal-
ysis. Phd thesis, Uppsala University, 2003.

5. C. Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis,
Saarland University, 1997.



6. C. Ferdinand and R. Heckmann. Worst-case execution time – a tool provider’s
perspective. In Proceedings of the International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), pages 340–345, Orlando, USA, May
2008. IEEE Computer Society.

7. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-
life processor. In Proceedings of EMSOFT 2001, First Workshop on Embedded
Software, volume 2211 of LNCS, pages 469–485. Springer, 2001.

8. D. Kästner and C. Ferdinand. Efficient Verification of Non-Functional Safety Prop-
erties by Abstract Interpretation: Timing, Stack Consumption, and Absence of
Runtime Errors. In Proceedings of the 29th International System Safety Confer-
ence ISSC2011, Las Vegas, 2011.

9. T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled mi-
croprocessors. In Real-Time Systems Symposium (RTSS), December 1999.

10. F. Martin. PAG – an efficient Program Analyzer Generator. International Journal
on Software Tools for Technology Transfer, 2(1), 1998.

11. NASA Engineering and Safety Center. Technical Support to the National Highway
Traffic Safety Administration (NHTSA) on the Reported Toyota Motor Corpora-
tion (TMC) Unintended Acceleration (UA) Investigation, 2011.

12. M. Pister. Timing Model Derivation – Pipeline Analyzer Generation from Hard-
ware Description Languages. PhD thesis, Saarland University, October 2012.

13. J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker. A Definition and Classification of Timing Anomalies. In F. Mueller,
editor, International Workshop on Worst-Case Execution Time Analysis (WCET),
July 2006.

14. J. Rushby. Logic and Epistemology in Assurance Cases. In D. Cofer, J. Hat-
cliff, M. Huhn, and M. Lawford, editors, Software Certification: Methods and Tools
(Dagstuhl Seminar 13051), volume 3, pages 111–148, Dagstuhl, Germany, 2013.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15. M. Schlickling. Timing Model Derivation – Static Analysis of Hardware Description
Languages. PhD thesis, Saarland University, January 2013.

16. M. Schlickling and M. Pister. Semi-automatic derivation of timing models for wcet
analysis. In J. Lee and B. R. Childers, editors, Proceedings of the Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 67–76,
Stockholm, Sweden, April 2010. Association for Computing Machinery (ACM).

17. J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios, and R. Heckmann. Com-
puting the worst case execution time of an avionics program by abstract interpre-
tation. In Proceedings of the 5th Intl Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 21–24, 2005.

18. S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. PhD thesis, Universität des Saarlandes, 2004.

19. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on Embed-
ded Computing Systems, 7(3):1–53, 2008.

20. R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand.
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Transactions on CAD of Integrated Circuits and Sys-
tems, 28(7):966–978, July 2009.


