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The

 
SOLEDGE

 
suite

 
of

 
codes

 
has

 
been

 
specially

 
designed

 
to

 
model

 
the

 
transition

 
region

 
from

 
the

 
hot

 
core

 
plasma

 
to

 
the

 
first

 wall

 
of

 
tokamak,

 
through

 
the

 
Last

 
Closed

 
Flux

 
Surface

 
(LCFS).

 
It

 
is

 
designed

 
to

 
model

 
electrostatic

 
fluid

 
turbulence

 
for

 
an

 isothermal

 
plasma

 
or

 
for

 
a

 
plasma

 
with

 
temperature

 
variations.

 
Dedicated

 
discretization

 
algorithms

 
have

 
been

 
implemented

 to

 
handle

 
equations

 
for

 
ion

 
density,

 
electron/ion

 
temperatures

 
and

 
parallel

 
momentum,

 
both

 
for

 
the

 
realistic

 
cross-section

 
of

 
a

 diverted

 
tokamak

 
and

 
for

 
a

 
three-dimensional

 
cylindrical

 
annulus.

 
The

 
efficient

 
penalization

 
method

 
introduced

 
in

 
Ref.

 
[5]

 has

 
been

 
implemented,

 
allowing

 
straightforward

 
handling

 
of

 
solid

 
obstacles

 
by

 
treating

 
them

 
as

 
sink

 
regions

 
corresponding

 to

 
strong

 
plasma

 
recombination

 
in

 
the

 
solid

 
state

 
material.

 
The

 
SOLEDGE

 
capability

 
is

 
exemplified

 
here

 
by

 
simulating

 
two

 equilibria:

 
(i)

 
a

 
3D

 
cylindrical

 
annulus

 
and

 
(ii)

 
the

 
cross-section

 
of

 
a

 
diverted

 
tokamak.

 
In

 
the

 
annulus,

 
the

 
analysis

 
of

 
the

 impact

 
of

 
a

 
secondary

 
discrete

 
limiter

 
shows

 
that

 
the

 
toroidal

 
symmetry

 
usually

 
assumed

 
for

 
density

 
and

 
Mach

 
profiles

 
is

 broken.

 
The

 
density

 
exhibits

 
significant

 
variations

 
in

 
the

 
toroidal

 
direction

 
that

 
extend

 
over

 
a

 
large

 
region

 
of

 
the

 
scrape-off

 layer

 
where

 
magnetic

 
field

 
lines

 
are

 
connected

 
to

 
a

 
secondary

 
limiter.

 
In

 
the

 
diverted

 
geometry,

 
computations

 
show

 
a

 transition

 
from

 
subsonic

 
to

 
supersonic

 
flow

 
in

 
the

 
vicinity

 
of

 
the

 
X-point

 
that

 
is

 
related

 
to

 
the

 
location

 
of

 
particle

 
sources

 
and

 sinks

 
between

 
the

 
edge

 
connected

 
region

 
and

 
the

 
divertor

 
region.

1 Introduction

Tokamak performance is strongly dependent on the flows in the edge plasma,the transition region across the

separatrix from the hot core plasma to the first wall. Transport properties in this region are a fundamental player

in edge physics and affect both core plasma confinement and plasma wall interactions. The difficulty in simulating

the plasma boundary region is mainly due to the transition from closed to open magnetic flux surfaces and the

the presence of X-points or limiters involving sheath physics in the Scrape-Off-Layer (SOL). Thus, simulations

at the edge are challenging and require specific algorithms. With the recent development of the family of three-

dimensional nonlinear codes SOLEDGE, simulations at the edge have just begun both in circular [8] and diverted

geometries. The codes solve the fluid equations within the drift approximation. Five equations can be derived

for plasma density, parallel momentum, electron and ion temperatures and electrostatic potential. The validation

of the codes and the models have begun in transport regimes using anomalous diffusion. Results have been

benchmarked with analytical predictions and experimental measurements in Tore Supra [2, 7].

The volume penalization proposed in Ref. [5] for a reduced model of transport equations for the ion density

and the particle flux in the direction parallel to the magnetic field is attractive for representing plasma facing

components. Solid obstacles are treated as a region of the plasma governed by a very strong particle sink cor-

responding to strong plasma recombination at the solid state material. The plasma-limiter interaction is then no

longer treated by imposing Bohm conditions on the obstacle surface but by adding penalization terms to conser-

vation equations, characterized by a mask function over the obstacle in which density and parallel momentum

are penalized toward zero. Consequently, Cartesian grids can be used in the now obstacle-free domain, and
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modification of the obstacle location and geometry becomes straightforward Although the main plasma facing

components, such as divertor plates or limiters, exhibit near-invariance in the toroidal direction in relatively stan-

dard geometries, one also finds a large variety of secondary limiters that affect the transport properties and flow

structure in the SOL. Thus, the code capability is first exemplified by showing the impact of a discrete 3D limiter

on density and parallel momentum, for an isothermal plasma in a circular geometry (Sec. 3). Such results can

help to interpret probe flow measurements made in a series of experiments dedicated to the determination of a

quantitative characterization of the radial flux that enters the SOL [2]. The knowledge of Mach number maps

is of interest in the investigation of divertor plasma physics because this parameter can be used to determine the

location of the ionization front at the subsonic-supersonic transition [4]. In Sec. 4, a plasma equilibrium in a

diverted tokamak that shows a transition from subsonic to supersonic flow in the vicinity of X-point is simulated

and analyzed.

2 Fluid modeling

The geometrical domain can be a circular annulus or the cross-section of a diverted tokamak. It spans the Last

Closed Flux Surface (LCFS) and extends up to the tokamak wall, requiring boundary conditions for open field

lines. Consider the curvilinear coordinates (ψ, θ, ϕ) based on the poloidal magnetic flux ψ, the poloidal angle

θ and the toroidal angle ϕ. The magnetic field �B is assumed to be steady in time. The constant ψ surfaces are

tangential to �B, a sum of two non-zero components Bθ and Bφ. The quasi-neutral plasma is modeled as an

isothermal compressible fluid for which the density field N , the momentum field Γ projected along the magnetic

field direction, and the associated Mach number M=Γ/N satisfy the system of dimensionless conservation laws

for both geometries:

∂tN +∇‖Γ−D∇2

⊥N = 0, (1)

∂tΓ +∇‖

(
Γ2

N
+N

)

− ν∇2

⊥Γ = 0, (2)

where D and ν correspond to effective particle and momentum diffusivities, respectively. The operator ∇‖ is

the projection of the gradient along the magnetic field defined as ( �B · ∇)/| �B|, and ∇⊥ is its projection in the

perpendicular plane defines as (∇ −∇‖). In the diverted geometry, the equations are written assuming toroidal

symmetry in a curvilinear system of coordinates (ψ, θ, ϕ) where the metric coefficients are computed from the

magnetic equilibrium provided by a Grad-Shafranov solver.

Boundary conditions-No-flux boundary conditions are imposed for both density and momentum on the tokamak

wall of the domain, ∂nN = ∂nΓ = 0, n being the normal to the wall. On the inner boundary (at the core), a finite

negative density gradient is imposed to ensure a steady fueling of plasma and to compensate for losses on the

sides of the limiter, ∂nN = −Q. The parallel momentum is fixed at the core by imposing a parallel velocity, here

chosen to be M = 0. At the divertor plates, the density flux is free and Bohm boundary conditions are enforced

according to standard sheath theory (the Mach number M satisfies |M| = 1 with plasma flow directed towards

the limiter) , so that both density and momentum are absorbed by the limiter.

Numerics-The tokamak cross-section is discretized using a second-order finite-difference scheme on a Cartesian

grid. Time advance is performed using a second order implicit-explicit scheme, where the parallel direction is

treated with a second-order ENO reconstruction scheme, adequate for the high Mach numbers encountered while

reasonably accurate and, in particular, less dissipative than equivalent order TVD schemes. Global second order

accuracy in time and space is thus achieved. A domain decomposition technique is used to map the diverted

cross-section into a set of Cartesian subdomains as illustrated on Fig. 1. The domain decomposition is per-

formed in order to allow only one neighbor per side of each subdomain, each subdomain being associated to a

processor using the OpenMP library. The explicit treatment of the boundary conditions at the interfaces ensures

C1-continuity of the solution between the domain.
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Fig. 1 Domain decomposition of the diverted cross-section and mapping onto a Cartesian domain. The SOL region is

decomposed in regions 1, 2 and 3. Regions 4 and 6 correspond to the private region and region 5 to the edge. One notices that

areas 4 and 6 are connected but have no direct connection with area 5. Area 5 is periodic in the parallel direction.

3 Impact of a secondary limiter on a (N,Γ)-equilibrium in a circular annulus

The technique introduced in Isoardi et al. [5] is extended here to model 3D obstacles in a circular annulus. Con-

trary to the case of the axisymmetric limiter, the plasma impacts the limiter on poloidally as well as toroidally

facing sides. Limiters are introduced in the previous system of Equations (1) and (2) through two terms (dis-

cretized implicitly in time) which bring density and momentum close to zero inside the limiter.

∂tN +∇‖Γ +
χ

η
(N −NΩ)

︸ ︷︷ ︸

Density penalization

−D∇2

⊥N = 0, (3)

∂tΓ +∇‖

(
Γ2

N
+N

)

+
χ

η
(Γ−NMΩ)

︸ ︷︷ ︸

Momentum penalization

−ν∇2

⊥Γ = 0 (4)

(a) (b)

Fig. 2 Cylindrical annular configuration of aspect ratio ǫ = 3 (Tore Supra) with one main toroidally symmetric limiter and

a secondary limiter modeled by penalization. (a) Map of the mask function χ, with white regions (χ = 1) showing the

localization of solid obstacles). The horizontal and vertical axis show the poloidal and the toroidal angle respectively. (b)

Mesh distribution on the torus and on the limiters.

The characteristic function χ carries the information of limiter localization (see Fig. 2(a)). It takes the value

1 inside a limiter and 0 outside. Inside a limiter, the density is fixed to a nearly zero value (here NΩ = 10−7)

to avoid spurious numerical oscillations within the obstacle and the Mach number profile is fixed via MΩ. The
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penalization parameter η is taken as small as possible, here η < 10−7. The safety factor q, which defines

the magnetic field direction, is assumed to have a quadratic profile in minor radius r. Effective particle and

momentum diffusivities D and ν are assumed to be equal and fixed at 10−5.

A secondary discrete limiter centered at θ = 23π/18 and ϕ = π is added to the toroidal one as shown in

Fig. 2. Density and parallel Mach maps in the (θ, ϕ)-plane are shown in Fig. 3(a). It is worthwhile noting that

the Bohm condition (Mach=±1) at the poloidal surface of the 3D limiter is still verified, as previously observed

for axisymmetric limiters [5]. Results show that the non-axisymmetric limiter, though small in size, markedly

breaks the poloidal symmetry with respect to the main limiter. Moreover, strong variations of density are observed

in the toroidal direction, as can be seen in the profile on Fig. 3 (b) which crosses the non-axisymmetric limiter.

At the same poloidal angle (θ = 23π/18), (Nmax/Nmin ≈ 4). The density map shows that the disturbed region,

characterized by a low density, is not restricted around the secondary limiter, but extends to the whole SOL region

connected to the secondary limiter by magnetic field lines.

Fig. 3 Plasma equilibrium in a cylindrical annulus with a main, axisymmetric limiter and a secondary, discrete limiter. Maps

in the (θ, ϕ)-plane of (a) the Mach number and (b) the plasma density. The horizontal and vertical axis show the toroidal and

the poloidal angle, respectively. (c) Toroidal profile of density at θ = 23π/8. D = ν = 10−5.

4 Transition from subsonic to supersonic flow in the vicinity of the X-point

A 2D (N,Γ)-equilibrium is calculated in the cross-section of the diverted geometry of ITER (Figure 4). The

Bohm condition is applied on the divertor plates (no penalization). A map of the parallel Mach number is plotted

in the cross section on Fig. 4 (left). A transition from subsonic to supersonic flow (|M | ≈ 3) is observed in

the SOL in the neighborhood of the X-point. Such behavior can be understood through an analogy with fluid

mechanics, by analyzing the well-known flow of a compressible fluid in a convergent-divergent nozzle. Indeed,

consider a tube in which the parallel flow is constant: in the edge connected region, the parallel momentum

increases due to the flux of particles coming from the core (source), corresponding to a decrease of the tube

corss-section. On the contrary, in the divertor region, the action of the divertor plates as sinks and, combined with

the perpendicular diffusive transport on both sides of the field line, imply a decrease of the parallel momentum

analogous to an increase of the tube cross-section. Following the theoretical analysis presented in Ref. [3], such

a transition can be investigated using a single control parameter A, the ratio of the particle flux multiplied by the

acoustic velocity to the total momentum flux (or total plasma pressure), A = 2Γmics/Π. Indeed, without loss of

generality, Eqs. (1, 2) can be rewritten as steady state equations:

∂s Γ = SN , (5)

1

mi

∂s Π = SΓ. (6)

with new source terms for particles and momentum SN and SΓ, where the direction of interest is aligned along

the plasma flow and is labeled by the curvilinear coordinate s. Combining the above equations, the Mach number

and density are obtained as roots of second-order polynomials and as a functions of a unique control parameter A
that is a nonlinear function of the Mach number, A = 2M/(1+M2), bounded between -1 and 1. By definition of
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A, the transition to a supersonic regime requires dA/dM = 0. In particular, for a continuous transition along the

field line a necessary condition is ∂sA = 0. To be sufficient, the sign of ∂sA must change. In the sheath-limited

regime, the field line is isothermal and if one assumes negligible momentum loss (SΓ ≈ 0), the variation of ∂sA
is given by:

1

A
∂sA =

1

Γ
∂sΓ ⇒ ∂sA =

2mics
Π

∂sΓ. (7)

The transition to the supersonic regime can then only take place in the vicinity of the point where ∂sΓ = 0 (see

Fig. 4(c)). According to Eq. 1, this is the exact transition point in steady state if there is a transition from a

positive to a negative particle source, as occurs where the radial density profile changes convexity.

a) b) c)

Fig. 4 Plasma equilibrium in the cross-section of a diverted tokamak (ITER). (a) and (b) are maps of the parallel Mach

number showing the subsonic-supersonic transition. (c) The the parallel profile of Γ showing the change in the sign of the

derivative corresponding to the location of the transition.

5 Concluding remarks

The SOLEDGE suite of code has been designed to solve a fluid model for boundary plasmas in flexible geome-

tries. The computational domain includes the LCFS and the outer part of the closed flux region, the SOL and the

private flux region. It can be run in transport regimes for anomalous diffusion and, in the near future, for fully

established turbulence.
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