
HAL Id: hal-00848469
https://hal.science/hal-00848469v1

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Need of a Methodological Approach for the
Assessment of Software Architectures within ISO26262

Valentina Bonfiglio, Leonardo Montecchi, Francesco Rossi, Andrea Bondavalli

To cite this version:
Valentina Bonfiglio, Leonardo Montecchi, Francesco Rossi, Andrea Bondavalli. On the Need of a
Methodological Approach for the Assessment of Software Architectures within ISO26262. SAFE-
COMP 2013 - Workshop CARS (2nd Workshop on Critical Automotive applications : Robustness &
Safety) of the 32nd International Conference on Computer Safety, Reliability and Security, Sep 2013,
Toulouse, France. pp.NA. �hal-00848469�

https://hal.science/hal-00848469v1
https://hal.archives-ouvertes.fr

CARS 2013

© Springer-Verlag Berlin Heidelberg 2011

On the Need of a Methodological Approach for the

Assessment of Software Architectures within ISO26262

Valentina Bonfiglio
1
, Leonardo Montecchi

1
, Francesco Rossi

2
, Andrea Bondavalli

1

1
Dipartimento di Matematica e Informatica, University of Firenze

Viale Morgagni 65, I-50134, Firenze, Italy

{valentina.bonfiglio,lmontecchi,bondavalli}@unifi.it

2
ResilTech s.r.l.

Piazza Iotti 25, I-56025, Pontedera, Italy

francesco.rossi@resiltech.com

Abstract. Safety analysis is becoming more and more important in a wide

class of systems. In the automotive field, the recent ISO26262 foresees safety

analysis to be performed at different levels: system, software and hardware. The

assessment of architecture with respect to safety is typically better understood at

system and HW levels, while an equivalent analysis at SW level has not such an

established background. In literature, approaches exist to handle specific activi-

ties related to the safety assessment of software, but they are typically not so

well integrated within a more general assessment and certification process. Re-

cent safety standards put more and more emphasis on software-level safety

analysis, therefore calling for a precise methodology for the assessment of

software architectures. While ISO26262 requirements prescribe safety analysis

of the software architecture, clear guidelines on how it should be performed are

not provided, thus leaving an important gap for its industrial adoption. In this

paper we provide our view on how such analysis should be performed, through

the identification of well defined and repeatable activities, thus providing our

contribution to a timely problem of great relevance in the automotive domain.

1 Introduction

Safety analysis supports the production of convincing evidence that the operation of

the system is safe, i.e., even in presence of failures, catastrophic consequences on the

user(s) and the environment are avoided [1]. To this purpose, the system architecture

is typically analyzed using systematic techniques like Failure Modes and Effects

Analysis (FMEA) [2] to identify possible violations of safety requirements.

The importance of rigorous methodologies to perform safety analysis is increasing,

since the complexity of modern safety-critical systems and their dependence on elec-

tronic components are growing. As a consequence, software is becoming more and

more important in the design of safety-critical systems, as more and more safety re-

quirements are assigned to it. Indeed, safety standards are starting to put more empha-

sis on software-level safety analysis. Indeed, the recent standard ISO26262 [3] for the

functional safety of road vehicles foresees safety analysis to be performed at different

levels: system, hardware, and software. In the future, a similar shift may occur in

other domains as well. It is worth to specify that within the standard, the term “safety

analysis” identifies a precise activity: the study of faults, their correspondent effects

and the possible mitigations to be introduced.

While in performing safety analysis it is common practice to consider both hard-

ware and software, the assessment of architecture with respect to safety is typically

better understood at system and hardware levels, while an equivalent analysis at soft-

ware level has not such an established background. Safety analysis of software intro-

duces significant challenges with respect to the hardware counterpart: for example,

failure modes and related statistics aren’t typically available as datasheets. Moreover,

even small changes to the software architecture or to its components can produce

significant effects on the propagation or mitigation of failures.

While ISO26262 requirements prescribe safety analysis of the software architec-

ture to be performed, clear guidelines on how such analysis should be performed are

not provided, thus leaving an important gap for its industrial adoption. Several com-

panies in the automotive industry are adapting to ISO26262 requirements on safety

analysis; however, public information on how they accomplish such task, and the

current progress of this activity are typically not publicly available. The aim of this

paper is to clarify how such analysis should be performed in order to fulfill the re-

quirements of ISO26262, through the definition of a workflow composed of well

defined and repeatable activities.

The paper is organized as follows. Related work is discussed in Chapter 2, focus-

ing on safety analysis of software architectures, as well as previous publications on

the ISO26262 standard. Chapter 3 describes our workflow for the safety analysis at

software level, and how it relates with the requirements of the ISO26262 standard.

Finally, concluding remarks are reported in Chapter 4.

2 Related Work

In literature, the topic of safety analysis of software architectures has been addressed

in different ways. Most work focuses on methods and tools to support the application

of FMEA at software level (SW-FMEA). A well-known approach is based on failure

propagation and transformation annotations. The design specification of the software

architecture is annotated with information about the failure behavior of the architec-

tural components. Different notations supporting such approach exist; and one notable

example is Fault Propagation and Transformation Calculus (FPTC) [9]. Using such an

approach, the failure behavior of the entire system can be automatically calculated

starting from the failure behavior of its components and the design of the software

architecture. Further details and comparison of such approaches can be found in [8].

Some approaches focus on detailed software FMEA, i.e., they take into account a

code-level representation of software components and perform a qualitative analysis

of software, based on tracing the dependencies across variables through a body of

source code. Other works, e.g. [6], focus on improving the manipulation of data in-

volved in the safety analysis process.

One of the most comprehensive methods for safety analysis of system and software

architectures is the Hierarchically Performed Hazard Origin and Propagation Studies

(HiP-HOPS) methodology [7]. HiP-HOPS modifies and integrates classical safety

analysis techniques, guiding the analysis from the functional level through low levels

of its hardware and software implementation, and provides support for the automation

of certain tasks (e.g., the construction of fault-trees).

In this paper we focus on a set of requirements dictated by the ISO26262 standard

to define a systematic methodology that is able to fulfill them during the assessment

process. Our objective in this paper is not to introduce novel analysis methods, but

rather to precisely define the set of needed activities, together with their inputs and

outputs, and organize them in a structured workflow. In this perspective, our proposal

is complementary to other works mentioned above, which can be used to carry out

specific activities within the workflow.

A number of recent publications have targeted the ISO26262 standard, including

introductions to the standard itself [11], experience reports [12], support tools [12].

Other publications focus on specific aspects of system development and assessment

according to ISO26262. The work in [5] introduces a set of best practices for model

review of software models with the aim of ensuring safety-related objectives and

adherence to ISO26262, using a combination of automated and manual reviews. As

mentioned above, the work in [4] addresses the formalization of requirements, target-

ing the EAST-ADL language within the ISO26262 context. A more comprehensive

survey on recent publications related to ISO26262 can be found in [10].

Despite the relatively large number of publications on the new automotive stand-

ard, a proven workflow to properly support the safety evaluation of software architec-

tures according to ISO26262 requirements is still missing from industrial practice. In

this paper we provide our contribution in filling this gap.

3 Assessment of Software Architectures according to ISO26262

The system lifecycle described in the ISO26262 standard foresees safety analysis

to be performed at different levels: system, SW and HW. The importance of carrying

out a safety analysis at the SW level is highlighted in Part 6 of the standard, “Product

development at the software level”. In particular, within the SW lifecycle, the activity

of software safety analysis can be contextualized within the “Software architectural

design” phase, described in Clause 7 of Part 6 [3]. In this section, the specific clauses

of each part of ISO 26262 are illustrated in the reference phase model for the SW

development.

According to requirement 7.4.13 (Part 6), safety analysis of the software architec-

ture has the aim to identify or confirm the software components on which are instanti-

ated requirements or that otherwise have an impact on them, and to support the speci-

fication of safety mechanisms and the verification of their efficiency. In this regard

the standard suggests some mechanisms for error detection and error handling that

should be defined at the software architectural level.

Part 6 explicitly states that safety analysis should be performed at the software ar-

chitectural level (requirement 7.4.13), and references Part 9 for further guidance on

this topic. Part 9 of the standard, “Automotive Safety Integrity Level (ASIL)-oriented

and safety-oriented analyses”, however, defines the requirements and recommenda-

tions at a generic level and does not provide specific recommendations regarding

software.

Summarizing, while the standard explicitly requires that safety analysis is performed

on the software architecture, no details on how it can be performed from a practical

point of view are provided, favoring ambiguity on activities to be performed from a

practical point of view. From an industrial perspective, a well-defined and repeatable

methodology is paramount, since it allows reducing efforts and costs in the assess-

ment and certification process. The idea of the methodology, that we are developing,

is summarized as a flow of activities in Fig. 1.

!"#$%&'(")&*+*,

-./$)+(0,

!1, 2-3'

2"+)45$, -+%+0"%+.(

!466.5%, "7%+8+%+$*

!-, 6$5#.59"(7$,

"(")&*+*

!1, -./$), :$#+(+%+.(,

"(/, ;$#+($9$(%

!<';<

3=:

Fig. 1. Our workflow for safety analysis of software architectures according to ISO26262.

Mandatory inputs of the analysis are the software safety requirements, and the

software architecture information. Accordingly, the first activity in the workflow,

Safety Analysis Modeling, receives as input the safety requirements of software, and

produces as output a set of properties that should be represented in the model. This

also defines the fault models to be considered for software components and it covers

requirement 8.4.6 in Part 9, which requires to define fault models consistent with the

appropriate design phase, and part of requirement 8.4.9, which prescribes a systematic

identification of faults and requires the evaluation of the consequences of each identi-

fied fault to determine its potential to violate safety requirements. Requirement 8.4.9

in Part 9 requires that both the software component itself and the interaction with

others are considered. Depending if the software manufacturer provides some kind of

model or not, the model may need to be created, or enriched; therefore an additional

activity of SW Model Definition and Refinement is needed.

The next activity consists in performing an architectural-level SW FMEA. Its ob-

jective is to evaluate the impact of software faults, estimating the ability of the soft-

ware to provide protection from the effects of software failures. The results of the SW

FMEA describe the possible effects of software faults on the system, and indicate if

safety goals or safety requirements assigned to software are complied with, as re-

quired by requirements 8.4.2 and 8.4.9 in Part 9. If SW failures are still present, a

Failure Mitigation activity is required in order to derive mechanisms that are able to

prevent, mitigate, or reduce the effect of the potential safety requirement violation.

This activity meets several requirements present in Part 6 and Part 9 of the ISO26262

standard. On one hand, the specification of safety mechanisms is one of the main

objectives of safety analysis, according to requirements 7.4.13, 7.4.14 and 7.4.15 in

Part 9. On the other hand, requirement 8.4.3 in Part 9 explicitly states that, if a safety

goal or safety requirement is not satisfied, the result of the analysis should be used to

derive prevention, detection, or mitigation measures. Also, it may be necessary to

determine additional safety-related test cases (requirement 8.4.7, Part 9) in order to

provide evidence of correct behavior.

After the introduction of mitigation mechanisms, a support activity, Safety Mech-

anism performance analysis, is started. This provides us evidence of the perfor-

mance of SMs that are currently defined and if necessary, proposes to evaluate alter-

native solutions as expected from requirement 7.4.13 in Part 6 and requirement 8.4.9

in Part 9. This activity is intended mainly to drive the specification of SMs, i.e., if a

SM is not effective it is possible to remove it. Of course, validation of implemented

SW is done at later stage. If changes are made to the architecture or safety mechanism

are added, the entire workflow must be repeated from the beginning.

In order to satisfy other requirements related to safety analysis, additional support

activities are identified. The HA&RA Support activity is related to requirements

7.4.16 in Part 6 and 8.4.5 in Part 9, and its output provides a feedback to other phases

of the safety lifecycle (not shown in the figure). The Interference Analysis activity,

which is related to requirement 7.4.13 in Part 6, consists in verifying that failures of

lower integrity modules do not have impact on higher integrity modules.

4 Concluding Remarks

The importance of safety analysis of software architectures is continuously growing,

since more and more functionalities of safety-critical systems are being implemented

by electronic devices. In particular, the recent ISO26262 standard comprises several

requirements on the safety analysis of software; however it does not provide clear

guidelines on how such requirements should be fulfilled. Defining a precise workflow

for the assessment of software architectures is therefore of great industrial relevance.

In this paper we emphasized the need of a structured workflow, and we have proposed

a high-level view of the activities that are needed to perform a rigorous safety analysis

in accordance with ISO26262 requirements. We believe that this work provides useful

insights to the automotive domain, and contributes to the solution of a timely problem

of great industrial relevance. We are currently working on the practical development

of this workflow, aiming at its automation and integration into a tool to support the

safety analysis in the automotive domain.

Acknowledgment

This work has been partially supported by the TENACE PRIN Project

(n.20103P34XC) funded by the Italian Ministry of Education, University and Re-

search, and by the MS-VIVA and RACME-MAAS projects, funded by the Tuscany

Region within the framework POR CReO FESR.

References

1. Avi!ienis, A., Laprie, J.-C., Randel, B, Landwehr, C.: Basic Concepts and Taxonomy of

Dependable and Secure Computing, IEEE Transactions on Dependable and Secure Com-

puting, 1, 11-33 (2004).

2. Palady P.: Failure modes and effects analysis. PT Publications, West Palm Beach, FL,

(ISBN: 0-94545-617-4) (1995).

3. ISO: International Standard 26262 Road vehicles -- Functional safety (2011).

4. Bergenhem, C., Johansson, R., Lönn, H: A Novel Modelling Pattern for Establishing Fail-

ure Models and Assisting Architectural Exploration in an Automotive Context. In: Com-

puter Safety, Reliability, and Security, LNCS, vol. 7612, pp 247-257 (2012).

5. Stürmer, I., Salecker, E., Pohlheim, H.: Reviewing Software Models in Compliance with

ISO 26262. In: Computer Safety, Reliability, and Security, LNCS, vol. 7612, pp 258-267,

(2012).

6. Bicchierai, I., Bucci, G., Nocentini, C., Vicario, E.: An Ontological Approach to Systema-

tization of SW-FMEA. In: Computer Safety, Reliability, and Security, LNCS, vol. 7612,

pp 173-184 (2012).

7. Papadopoulos, Y., McDermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of the be-

haviour of complex programmable electronic systems in conditions of failure. Reliability

Engineering & System Safety, vol. 71, Issue 3, Pages 229-247 (2001).

8. Grunske, L.; Han, J.: “A Comparative Study into Architecture-Based Safety Evaluation

Methodologies Using AADL's Error Annex and Failure Propagation Models”. In 11th

High Assurance Systems Engineering Symposium (HASE 2008). pp. 283-292 (2008).

9. Wallace, M.. “Modular architectural representation and analysis of fault propagation and

transformation. Electr. Notes Theor. Comput. Sci., 141(3):53–71 (2005).

10. Izosimov, V., Ingelsson, U., Wallin, A.: Requirement decomposition and testability in de-

velopment of safety-critical automotive components. In: Computer Safety, Reliability, and

Security. LNCS vol. 7612, pp 74-86 (2012).

11. Dittel, T., Aryus, H.-J.: How to “survive” a safety case according to ISO 26262. In: Com-

puter Safety, Reliability, and Security, LNCS vol. 6351, Springer, pp. 97-111 (2010).

12. Schubotz, H.: Experience with ISO WD 26262 in Automotive Safety Projects, SAE Tech

Paper (2008).

13. Makartetskiy, D, Pozza, D., Sisto, R.: An Overview of software-based support tools for

ISO26262. In: Intl. Workshop Innovation Inf. Tech. – Theory and Practice (2010).

