
HAL Id: hal-00848458
https://hal.science/hal-00848458

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Don’t Judge Software by Its (Code) Coverage
Rolf Johansson, Hans Eriksson, Hans Svensson, Kenneth Östberg, Thomas

Arts, Alex Gerdes, Martin Skoglund

To cite this version:
Rolf Johansson, Hans Eriksson, Hans Svensson, Kenneth Östberg, Thomas Arts, et al.. Don’t Judge
Software by Its (Code) Coverage. SAFECOMP 2013 - Workshop CARS (2nd Workshop on Critical
Automotive applications : Robustness & Safety) of the 32nd International Conference on Computer
Safety, Reliability and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848458�

https://hal.science/hal-00848458
https://hal.archives-ouvertes.fr

CARS 2013
© Springer-Verlag Berlin Heidelberg 2011

Don’t Judge Software by Its (Code) Coverage

Rolf Johansson1, Henrik Eriksson1, Hans Svensson2, Kenneth Östberg1, Thomas Arts2,
Alex Gerdes2, and Martin Skoglund1

1 SP - Technical Research Institute of Sweden, Dep. of Electronics, SE-501 15 Borås, Sweden,
{rolf.johansson, henrik.eriksson, kenneth.ostberg,

martin.skoglund}@sp.se
2 Quviq AB, SE-412 88 Gothenburg, Sweden,

{hans.svensson, thomas.arts, alex.gerdes}@quviq.com

Abstract. This position paper argues that using code coverage metrics to
evaluate the completeness of test cases as prescribed by e.g. ISO26262, is insuf-
ficient in a safety context. On the other hand it is impossible to execute test cas-
es that achieve 100% completeness with respect to all possible input data com-
binations testing all requirements. We propose that existing requirements on
code coverage shall be extended with requirements on 100% coverage of the
safety requirements. As an example, the paper illustrates how this can be done
for the AUTOSAR end-to-end protection library.

Keywords: Coverage metrics, Safety arguing, Automotive, ISO 26262,
AUTOSAR

1 Introduction

Measuring code coverage is an explicit task in most safety standards for embedded
systems, e.g. IEC 61508-3 [1], ISO 26262-6 [2], or DO 178B [3]. Coverage metrics
are frequently used as stopping criteria for the testing activity, and to evaluate the
adequacy of the test data. If the coverage is insufficient, additional test cases can be
added if expected to be beneficial. On unit level, statement coverage is usually con-
sidered to be sufficient for low integrity software, whereas MC/DC is required for
high integrity. IEC 61508-3 explicitly requires 100% code coverage regardless of
metric. If 100% cannot be achieved, due to e.g. defensive code, an appropriate expla-
nation shall be given. ISO 26262-6 and DO 178B are not as explicit as IEC 61508-3,
but a motivation is needed when 100% is not reached.

 In the context of the AcSäPt research project, we address the question: if 100%
code coverage is reached, what is its evidential value in a safety argumentation? It is
not hard to find examples where 100% coverage according to some of the common
metrics leaves conditions untested and/or severe bugs unspotted in the code. When a
specific code coverage metric is targeted, it can be used to guide automatic test case
generation. However, it has been shown that such automatically generated test cases
were less effective in finding faults than random ones, and shrinking large test suites

while maintaining code coverage (MC/DC in this case) significantly reduced their
fault-finding capability [4]. These are examples of some of the pitfalls which could
come with overconfidence in code coverage metrics. Despite these possible shortcom-
ings, the largest potential problem is that there is no explicit relation between the
functional requirements and the code coverage metrics. 100% code coverage can be
achieved while the required functionality still is missing in the code. This is a fact
which has been observed by Vanoverberghe et al. [5]. It is evident that besides cover-
ing code, it is more important and necessary to cover the specification too.

Of the three aforementioned safety standards, DO 178B is the only standard which
explicitly talks about requirement coverage, but no coverage metric is given. The
other two standards only mention requirements-based testing as a technique to
achieve the same goal. According to DO 178B, requirement coverage is sufficient if:
test cases exist for each requirement, and the test cases satisfy the criteria of normal
and robustness testing. To normal range test cases belong: equivalence classes and
boundary values of valid inputs, normal operation state transitions, and multiple itera-
tions of time-related functionality. To robustness test cases belong: equivalence clas-
ses of invalid inputs, system initialization during abnormal conditions, provoking “not
allowed state transitions”, overflow, etc.

Besides coverage measurements on the requirements of the written specification as
indicated by DO 178B, conventional coverage metrics can be used if the specification
is modelled in a semi-formal way. If the specification is modelled using state-
transition diagrams, state or transition coverage could be used. The specification
could be an abstract model or a detailed, complete, model from which code could be
generated.

In the rest of the paper, it is assumed that the specification is correct, i.e. complete
and consistent [6]. Complete refers to both internal and external completeness. Inter-
nal means that there is no information left unstated, and that the information does not
contain any undefined entities. External means that the information needed for prob-
lem definition is found in the specification. When there are no contradictions in the
specification, it is consistent.

2 How (not) to Ensure High Safety Integrity

In order to argue that a piece of software fulfils its safety requirements, it is neces-
sary to show that it cannot fail in any unsafe way. This is a smaller task to show, than
that the software component is completely correct.

The underlying question is what we really mean with a certain safety requirement
allocated to a component. Johansson et al. [7] pointed out the importance of explicit
fault and failure models for giving semantics to any safety requirement.

If the software fails in a safe way, it may be considered having bad quality, but still
be safe. In that sense, it is easier to argue for safety than for quality. Depending on
what is defined as unsafe for a particular software component, the difference may be
small or large. Yet, the software component can unsafely fail in very many different
ways. This implies that in order to show absence of all possible unsafe failures, a

complete testing of all possible input data sequences may become unachievable in
practice due to the enormous length of such a test sequence. Still we need to show
such completeness in order to argue for safety. How can this paradox be solved?

The solution to the paradox is to make reasonable assumptions about the imple-
mentations to test. For example, it is reasonable to assume that when adding a CRC
checksum, the generator does not alter the data to be protected. Hence, all possible
input data sequences do not need to be tested, but only so many different sequences
that all reasonable failures can be detected. What is to be considered as reasonable can
also be mentioned as the considered fault model. In the next section, reasonable fault
models for the AUTOSAR end-to-end protection library are elaborated.

As stated in the introduction, the problem with traditional code coverage metrics is
that they do not address the problem of completeness with respect to all relevant spec-
ification requirements. The coverage is measuring how complete the test is with re-
spect to how well the implementation (code) is exercised, not with respect to how
completely the requirements are checked. On the other hand, the problem with
achieving true completeness with respect to all requirements is that it implies a too
long test sequence. The situation is depicted in Fig. 1 where the different cases are
categorized in two dimensions.

!"#$%"%&'('!)& *#%+!,!+('!)&

*#
%
+!
,!
+(
'!
)
&

!"
#
$%
"
%
&
'(
'!
)
&

-%*'.+)"#$%'%&%**."%(*/0%1.!&

2)1%.+)3%0(4%

5&)'.*/,,!+!%&'.,)0.

(04/!&4.*(,%'67

8(,%.(&1.(+9!%3(:$%.

+)"#$%'%&%**

;;;

<%0,%+'.

+)"#$%'%&%**

5!&.4%&%0($.&)'.

(+9!%3(:$%7

8
%
'.
)
,.
.,
(
/
$'
*.
')
.+
)
&
*!
1
%
0.
+)
&
,!
&
%
1
.:
6

Fig. 1. Fault confinement entities versus completeness measurement entities

The first dimension is whether completeness (coverage metrics) is measuring how

well the implementation is covered, or how well the specification is covered. The
second dimension is whether the set of faults to check is confined by the specification
or by the (assumed) implementation. Note that the implementations to test still may
be black boxes. A fault model is what we assume as possible faults in the implemen-
tation, and we do not need to know how a certain implementation looks like. More
information about an implementation means more specific fault models.

As depicted in Fig. 1, we argue that the solution to the paradox of combining
achievable test length and test completeness with respect to safety arguing is to com-
bine the coverage metric of completeness with respect to the specification, with the
fault model to consider as confined by the assumed implementation. In this way we
can both argue for completeness and for achievable test length. We may reach 100%
coverage with respect to the specification, if only we can argue that the considered
fault model is reasonable.

3 Example – AUTOSAR End-to-end protection library

As argued in the previous section, it is essential in a safety context to measure cov-
erage with respect to the specification. In this example, this measuring is enabled by
modelling the specification. It is possible to instantiate the method with other tools,
but we have chosen to use QuickCheck [8]. In QuickCheck, models are done with
Erlang as modelling language, and there we can measure everything within the model
and the generated tests, and these tests all fall the in category of normal tests, no ro-
bustness testing is done.

We have made some initial studies on the AUTOSAR end-to-end (E2E) communi-
cation protection library [8], which is a library to protect safety-related data commu-
nication. Using the protection library, errors can be detected and handled at runtime.
The API of the library is simple; before sending, data is protected by calling the func-
tion protect. The function check is used to check received data for errors. Con-

figuration parameters are: message length, data id, and various message structure
parameters. During communication, the sender keeps a (4-bit) counter that is incre-
mented after each message send. The receiver likewise keeps a current state such that
it knows what to expect in the next message. The E2E library will in some applica-
tions get ASILD integrity safety requirements [2].

3.1 Modelling protect

If we ignore the problem of modelling the CRC computation that is used by pro-
tect, it is straightforward to write a model for protect. The model consists of

approximately 40 lines of Erlang code. The property compares the result of calling the
C implementation with the result of calling the model.

The input of protect has three parts: the configuration, the counter, and the data

to be sent. An immediate observation is that the parameter value space is huge. De-
pending on the configuration, the data is up to 30 bytes long. Thus, it is not feasible to
test all combinations of input parameters. Is there a way to reduce the value space?
An important property of the protect function is that it should not change the data

to be sent. It should only append a CRC checksum. Thus, not expecting the data to
change, we simply generate random data bytes while we are studying the other pa-
rameters, and checking that the data does not change during the function invocation.

The configuration cannot change much. Basically, we can choose data length, data
id, and the counter ranges from 0 to 15. Using a similar argument as for the data, we

simply select a data id at random. For the data length and counter value, we fully
explore all combinations.

3.2 Modelling check

Just like for protect, we assume that the CRC checksum functionality is already

modelled and verified. During reception, the checksum (thereby implicitly verifying
the data id, etc.) and sequence number are checked. In some configurations it is al-
lowed to lose a message or two in the sequence checking, therefore a state is needed
in the QuickCheck model. This makes the model a bit more complicated, but in total
the model is less than 100 lines of Erlang code.

The check function takes three arguments: the configuration, the current receive-

state, and the data to be checked. The configuration and the data are the same as in the
protect function. The receive-state structure is typical for C; it contains both in

and out parameters: four in parameters and two out-parameters. The input consists of
two 4-bit values and two Boolean values; giving a fairly small set of possible input
parameter combinations. Combined with the data size in the configuration, we have
no more than 26800 different combinations. Further, there is another 4-bit counter,
and another Boolean parameter: the message sequence number (part of the data), and
whether data has been corrupted or not.

In total there are 860160 different input combinations, and this number is small
enough to test all combinations, since it only takes a few minutes to test all of them..

3.3 Justifying fault model

The argumentation for the assumed fault model (that actual data and data id does
not change) build upon several different observations. The first observation is that we
presuppose that the CRC checksum has already passed functional tests, which in itself
requires a thorough validation effort. The second observation is that, and this argu-
ment should be supported by more precise fault models, the data is just read in the
protect/check functions, and not changed. The same holds for the data id, it is

only used in the CRC computation. Therefore, the risk should be low that the data
and/or the data id are used incorrectly. In addition, in the end we are going to use
860160 random arrays of data (and 860160 randomly selected data ids), i.e. we are
going validate these assumptions by testing a reasonable number of different combi-
nations.

4 Conclusions

In this paper we address the challenge of arguing for software safety. Although
code coverage measures are often prescribed by safety standards, it has been observed
in literature and practice that this is an insufficient measure for safety integrity assur-
ance. Code coverage is mainly a technique to spot uncovered areas of the code. In a

safety argumentation we propose to go beyond code coverage by using state coverage
of a specification model. Input data is part of the state.

Our method is to first define both a fault model and an abstract functional model of
the system. We then argue that 100% state coverage of the abstract functional model
is sufficient for safety with regard to the defined fault model. The abstract functional
model is used to automatically generate random tests cases from, which are used to
test the software. Each test case covers part of the state of the abstract model. A suffi-
cient test suite covers 100% of the abstract model. If all tests pass, we conclude that
the implementation fulfils our safety requirements.

An example from the AUTOSAR domain indicates that our approach is feasible
and effective.

Acknowledgements

We acknowledge VINNOVA for its support of the AcSäPt project (2012-00943).

5 References

[1] IEC, "Functional safety of electrical/electronic/programmable electronic
safety-related systems - Part 3: Software req.," IEC 61508-3:2010, 2010.

[2] ISO, "Road vehicles — Functional safety — Part 6: Product development at
the software level," ISO 26262-6:2011, 2011.

[3] RCTA, "Software Considerations in Airborne Systems and Equipment
Certification," DO-178B, 1992.

[4] M. Staats, et. al., "On the Danger of Coverage Directed Test Case
Generation," in Proc of FASE 2012, 2012, pp. 409-424.

[5] D. Vanoverberghe, et. al., "State Coverage: Software Validation Metrics
beyond Code Coverage," in Proc of SAFSEM 2012, 2012, pp. 542-553.

[6] D. Zowghi and V. Gervasi, "The Three C's of Requirements: Consistency,
Completeness, and Correctness," in Proc. of Int. Workshop on Requirements

Engineering: Foundations for Software Quality, 2002, pp. 155-164.

[7] Rolf Johansson et al., "A Road-Map for Enabling System Analysis of
AUTOSAR Based Systems," in Proc of the 1st Workshop on Critical

Automotive applications: Robustness & Safety, 2010.

[8] Thomas Arts, et al., "Testing Telecoms Software with Quviq QuickCheck,"
in Proc of the ACM SIGPLAN Workshop on Erlang, 2006.

[9] AUTOSAR, "Specification of SW-C End-to-End communication protection
library," 2012.

