N

N
N

HAL

open science

Towards Dynamic Updates In AUTOSAR
Hélene Martorell, Jean-Charles Fabre, Matthieu Roy, Régis Valentin

» To cite this version:

Hélene Martorell, Jean-Charles Fabre, Matthieu Roy, Régis Valentin. Towards Dynamic Updates In
AUTOSAR. SAFECOMP 2013 - Workshop CARS (2nd Workshop on Critical Automotive applica-
tions: Robustness & Safety) of the 32nd International Conference on Computer Safety, Reliability
and Security, Sep 2013, Toulouse, France. pp.NA. hal-00848361

HAL Id: hal-00848361
https://hal.science/hal-00848361
Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00848361
https://hal.archives-ouvertes.fr

Towards Dynamic Updates In AUTOSAR

Hélene Martorell:?:3, Jean-Charles Fabre?3, Matthieu Roy?#, and Régis
Valentin®

! RENAULT Technocentre, Guyancourt, France
{helene.martorell, regis.valentin}@renault.com,
2 CNRS, LAAS, F-31400,Toulouse, France
{martorell, fabre, roy}@laas.fr
3 Univ. de Toulouse, INP, LAAS, F-31400 Toulouse, France
4 Univ. de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. Vehicles are nowadays increasingly software-intensive.Current
practice shows that the whole software system is tested, validated and
then uploaded in ECUs in a monolithic fashion, before a vehicle is put
in operation. Yet, adding specific features or updates without restarting
the full validation and upload procedure could yield to significant gains.
Unfortunately, the AUTOSAR (AUTomotive Open System ARchitec-
ture) standard does not include native support for software updates. In
this paper, we define a set of new concepts in order to support dynamic
software updates for automotive systems, and present mechanisms that
implement these concepts within AUTOSAR.

1 Introduction

When developing an automotive application, validation, testing and upload are
performed comprehensively: the code is uploaded at once in the ECU (Electronic
Control Unit) and when set up in the vehicle the code cannot be easily modified.
Indeed, the whole compilation chain has to be restarted, therefore modifications
are expensive and techniques to perform them are not standardized.

For this reason, we aim at allowing partial updates of automotive software
in ECUs. This technique could enable either an upgrade of current functional-
ities, or addition of new ones. This would result in a gain of time and money.
Indeed, all along the lifetime of the vehicle partial update make sense. Firstly
on the assembly line only core functionalities could be loaded in the ECU, other
functions being considered as options the client could load. Secondly, during the
lifetime of the vehicles, the car manufacturer could insure the software is up-to-
date without calling vehicles back to the garage. Finally, logistics and required
material are reduced with this approach.

Nowadays, AUTOSAR [4] (Automotive Open System Architecture) is the
standard for automotive software systems. It is a component-based layered ar-
chitecture that aims at ensuring compatibility between software coming from
different suppliers. Enabling dynamic software updates in this context is a ma-
jor challenge since the architecture is frozen before compilation, and does not

enable any further update by design. Thus, we seek at defining a high level model
of AUTOSAR to specify adaptation areas that will enable to fit in as many dif-
ferent functions as possible. These carefully chosen adaptation areas will then
correspond to placeholders, or containers, added in the application and which
can later be filled in with new functionalities or be used for updates.

The paper is organized as follows: Section 2 summarizes shortly AUTOSAR
concepts necessary to our methodology. We then present the overall approach
itself in Section 3, provide details of our design for adaptation and a case study
in Section 4. Finally, we compare our approach with related works in Section 5
and conclude.

2 Context

This section sums up briefly the different concepts within AUTOSAR required
to define our methodology. We assume the reader has some familiarity with
AUTOSAR.

AUTOSAR is a layered architecture, divided into four levels. The bottom
layer corresponds to the hardware layer. Above this, stands the basic software
layer that contains low-level services and the operating system. This layer does
not only contain standard elements, but also a number of ECU-specific com-
ponents. Between the basic software layer and the application software compo-
nents, the Run Time Environment (RTE) acts as an ad-hoc middleware. The
RTE handles communication between software components and between soft-
ware components and the basic software. Finally, the applicative layer contains
specific components, which are unaware of lower layers, and that implement
functions. Thus most of the components may be reused more easily on different
targets (with the exception of sensor and actuator components).

From the different AUTOSAR concepts, we only concentrate in the remainder
of this work on:

— RTE (Run-Time Environment): glue code that handles the communications
inside the ECU

— SWC (Software Components): Application functions made of runnables

— Runnables: pieces of code actually implementing functionalities

— Communication: Implicit —read at the beginning, written at the end of
an execution instance—, or Explicit —read when needed, written when
produced— data that pass through the RTE

— OS task: Each runnable needs to be mapped into a task of the OS (AU-
TOSAR OS) for executing.

3 Overall Approach

Dynamic updates are not supported in AUTOSAR specifications: everything
must be defined before the RTE is generated. Therefore, the degree of freedom
necessary for allowing dynamic updates must be studied and integrated into

the architecture upstream. The update should not require to reload the whole
application, but enable to modify some functions or add new ones in a methodical
way.

AUTOSAR corresponds to a Top-down approach, and in order to comply
with the requirements of the standard, dynamic update mechanisms have to
be modelled and integrated. In this work, we only focus at the moment on the
application layer. This means that this approach will only allow the addition or
upgrade of high level functionalities.

It is important to take into account the key elements at design and devel-
opment levels of an application to determine adaptation spaces. Focus is on
updates for the application software, i.e., SWC that are above the RTE. Thus,
this means that either a SWC or a runnable can be updated. However, a Soft-
ware Component is a group of runnables that has no real existence in the final
implementation. Therefore, a desirable granularity for update is the runnable.
Notice that this also allow for updating a full software component by updating
all of its runnables at once.

Fig. 1 shows part of a V-shaped development cycle for a standard application,
and describes, on three different steps of the left-part of the V-cycle, the different
AUTOSAR concepts we focus on. The general conception level corresponds to
designing the whole application with its tasks (for mapping the runnables), data
and runnables (which are then grouped into SWCs). Then we focus on each
runnable and its specific characteristic and finally the application needs to run
in an ECU where implementation specifications will matter.

In a nutshell, a set of possible values on the different axis presented on the
radars in Fig. 1 defines the edges of adaptation areas that will fulfil corresponding
and desirable properties. Based on these adaptation areas, containers are imple-
mentations of such areas and allow for storing and executing any new runnable
whose characteristics are contained in the adaptation area.

The next part details the design of an application for adaptation. Indeed,
existing automotive applications need to be prepared off-line in order to accept
dynamic updates.

4 Design for adaptation and example

To begin with a pre-wired approach was developed: mechanisms and degrees
of freedom added in the application are studied and integrated beforehand. The
level of granularity chosen is a runnable (the radar presented in the red rectangle
on Fig. 1). On this radar, values can be allocated on each axis in order to define
an adaptation area. Then based on this area a container can be added upstream
in the application: it corresponds to a placeholder that presents the correct
properties w.r.t. a given adaptation area.

In order to determine the most relevant adaptation areas, the most frequent
runnables in automotive systems were studied. We analysed a few automotive
applications used by Renault. On average 70% of tasks are periodic and 71% of

Conmmunication a
with SWC from |+ % N
a different %%,42
application. 9 % i <
> &f Ipleentation
Communication = characteristics
between rumables | Intemal Connec- Tasks [+charac-
of differet SWC | tions teristics]
(RTE-based) -
o wha
Inter-runnable Q’” e %
Vaides | & %,
(rumables from | & Qg\ ®
thesameSWC) | <
2%
The periodicty %(“T%(‘\%g)
of a runnable de- 6\/%%25
termines the task -
type it shoud be Q“} Data & Ac- A subset of Apph_cfmm
allocated. cess Mode [In- application-leve View
data. Access mode
P/ Outpt is linked to the
(RTE & IRV)]
nable category.
N
f ~ | 1A Implidt data
& 3;3’ 1B : Byplidt deta \
2: Wait point
Run-time consunption als
Trigoers Memory consumption

Tasks [+ characteristics]

Fig. 1. Development cycle with corresponding potential adaptation spaces

all runnables are mapped in these tasks. The other tasks typically either execute
only once on start-up or are event-triggered.

Communication-wise, considering the huge amount of possible data in an
automotive application, the runnable will reuse existing channels in the RTE in
order to communicate with its environment. Indeed, when the RTE is generated,
an API that defines all the necessary communication is created. Therefore, the
runnable can reuse this API for fulfilling its communication needs.

In this context, to increase modularity, the addition of an extra level of
indirection between the runnable and the caller is necessary. This can be realized
by slightly modifying the AUTOSAR process: an extra step in the tool-chain [9]
has to be added to automatically modify the calls to runnables for adding an
extra level of indirection. In the AUTOSAR process, the different SWC can be
delivered either as source code or object code. The extra step in the process
should be able to handle this specificity.

To support our tests, we used an operating system compliant with AU-
TOSAR OS specifications: Trampoline [1]. It is an open source OSEK/VDX
OS implementation which enables testing on different embedded targets as well

as on POSIX. This latter feature is the one we used to start with in order to
experiment with our methodology.

In order to test our approach we extracted from an ECU similar to BCM
(Body Control Module) a simple application that we modified. This application
is used for controlling the blinkers in a car. It reads from the sensors (turn switch
sensor and warn light sensor), proceeds the received data and sends a signal to
the actuators in order to trigger the flashing of the light bulbs.

For the update, we first created an empty container, and an update runnable
that makes it possible to have a twice as fast blinker. Hence, filling up this
container is easily seeable. Moreover, this application contains a variety of tasks
and runnables which can provide support for different kinds of adaptation areas.

The first tests we carried out were on a POSIX target, that enables to show
the feasibility of the approach, but does not provide realistic timing and memory
consumption measurements. We started with simple tests for verifying our ap-
proach: runnable update, container creation, uploading and execution of the new
runnable in the container. Using a tool we developed for automatically adding
indirections and gdb for testing and debugging purposes we were able, on the
POSIX target, to interrupt the regular execution of the program for verifying
the proper behavior of updates that were introduced in the applications.

The second step for the tests was to upload the application in an actual
automotive ECU and carry out simple tests which produce visual outputs on
the blinkers. This enable for some performance measurements. We focus here on
memory and run-time impact. Memory wise, an update manager and charger
must be added: this represents an increase of around 15% in the original memory
footprint. At run-time, the only time overhead corresponds to a dereference
operation of a pointer which can be considered as negligible.

Note that in this paper the concern about safety for the update of critical
functionalities is not addressed. However, an analysis of the undesired events
that could be caused by the updates need to be performed and appropriate
safety mechanisms added.

5 Related Work

MclIllroy was the first to describe component based architectures in 1969[2] and
ever since component-oriented software have been extensively developed in var-
ious fields. Indeed, it provides with more adaptable software that will enable
cheaper maintenance, better ability to cope with complexity, and increases the
quality and evolution of the software [3].

For partial update of component-based software, there are two major ap-
proaches: routine-based update and component-based update.

Routine-based update corresponds to a finer granularity as it typically up-
dates individual functions or objects. For example Ksplice [5] or Ginseng[6] use a
system of patches for hot updates without reboot, and replaces entire functions.
This can be assimilated to the update of a runnable, but their approach does
not focus on embedded systems.

Component-based update also corresponds to our work : updating several
runnables corresponds to updating a SWC. Previous work in this domain are
for example Li et al. in [7]. They present an OSGI-based automotive specifica-
tion: a component-based platform that enables to download, install and uninstall
bundle(service application). Another component-based approach for embedded
systems is described in [8]. Although both these approaches focus on embedded
systems they are not compliant with the AUTOSAR specifications.

6 Conclusion

We presented here the model we built for designing adaptation areas and their
associated containers, which are implementation counterparts of adaptation ar-
eas. Details of the design for adaptation and applying the concepts on a specific
example were also treated in the last sections of this paper. In this work, we
use a “pre-wired” approach, that is to say we define a priori, when conceiving
the application, some adaptation containers that can afterwards be filled in with
new runnables. These containers must have specific features that will have match
future runnables.

We focused on concepts that are necessary for dynamic update and a model
for empty containers for allowing posterior dynamic updates. The adaptation
engine that will perform the actual update is beyond the scope of this paper.

It is also important to highlight that dynamic updates have to be carefully
monitored for safety purposes: the update should not prevent the system from
working properly. One of the future directions we investigate is to add safety
mechanisms to ensure dependability of dynamic updates [10].

References

1. J.- L. Béchennec, M. Briday, S. Faucou and Y. Trinquet, Trampoline - An Open-
Source Implementation of the OSEK/VDX RTOS Specification, ETFA 2006

2. M.D. Mcllroy. Mass produced software components. In P. Naur and B. Randell, edi-
tors, Software Engineering, pages 138-150. NATO Science Committee, Januar 1969.

3. Crnkovic, Ivica, Component-based software engineering new challenges in software
development, Software Focus, vol 2, John Wiley and Sons, Ltd., 2001

4. AUTOSAR, http://www.autosar.org/

5. J. Arnold and M. Frans Kaashoek. 2009. Ksplice: automatic rebootless kernel updates,
4th ACM European conference on Computer systems (EuroSys ’09), New York, USA

6. I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical Dynamic Software Updating
for C., PLDI, June 2006.

7. Y. Li, F. Wang, F. He, Z. Li, OSGi-based service gateway architecture for intelligent
automobiles, Intelligent Vehicles Symposium, 2005.

8. M. Wahler, S. Richter, and M. Oriol. 2009. Dynamic software updates for real-time
systems. HotSWUp 2009. ACM, New York, NY, USA

9. S. Voget. 2010. AUTOSAR and the automotive tool chain. DATE 2010. European
Design and Automation Association

10. T. Piper, S. Winter, P. Manns, N. Suri, Instrumenting AUTOSAR for dependability
assessment: A guidance framework, DSN 2012

