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Abstract

We consider relaxation of almost sure constraint in dynamic stochastic optimization problems and their convergence. We show an
epiconvergence result relying on the Kudo convergence of σ-algebras and continuity of the objective and constraint operators. We
present classical constraints and objective functions with conditions ensuring their continuity. We are motivated by a Lagrangian
decomposition algorithm, known as Dual Approximate Dynamic Programming, that relies on relaxation, and can also be understood
as a decision rule approach in the dual.
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1. Introduction10

Stochastic optimization problems often consist in minimiz-11

ing a cost over a set of random variables belonging to an infinite12

dimensional space. Consequently, there is a need for approxi-13

mation. We are interested in the approximation of almost sure14

constraints, say θ(u) = 0 almost surely (a.s.), by a conditional15

expectation constraint like E
[
θ(u)

∣∣∣ Fn
]

= 0 a.s.16

Consider the following problem,

min
u∈U

J(u) , (1a)

s.t. θ(u) = 0 a.s. , (1b)

where the set of controls U is a set of random variables over17

a probability space (Ω,F ,P), and J(u) :=
∫

Ω
j(u(ω))dP(ω). If18

Ω is not finite, U may be of infinite dimension. Moreover the19

constraint (1b) is a functional constraint that can roughly be20

seen as an infinite number of constraints. For tractability pur-21

poses, we consider approximations of this problem. In order to22

give theoretical results for the approximations of Problem (1)23

the right notion of convergence is epi-convergence. Indeed, un-24

der some additional technical conditions, the epi-convergence25

ensures the convergence of both the optimal value and the opti-26

mal solutions.27

One way of approximating Problem (1) consists in approxi-28

mating the probability P. Roughly speaking the Sample Aver-29

age Approximation procedure consists in drawing a set of sce-30

narios under the true probability P. We then solve Problem (1)31

under the empirical probability on the set of drawn scenarios. In32

this literature (see Dupacová and Wets (1988), King and Wets33

(1991)) the authors are interested in problems where the con-34

trols are deterministic. However other epi-convergence results35
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have been shown for more general spaces of controls, includ-36

ing spaces of random variables or random processes (see Zer-37

vos (1999) and references therein, as well as Pennanen (2005);38

Pennanen and Koivu (2005); Pennanen (2009)). More gener-39

ally, the idea of discretizing or quantizing the set Ω, for exam-40

ple by use of finite scenario tree has been largely studied in the41

field of Stochastic Programming (see Shapiro et al. (2009) for a42

thorough presentation).43

Instead of approximating the probability space we propose44

a way to approximate constraints, especially almost sure con-45

straints. The main idea is to replace a constraint by its condi-46

tional expectation with respect to (w.r.t.) a σ-algebra B. This47

is in some sense an aggregation of constraints. This approxi-48

mation appears when considering Lagrangian duality schemes49

with dual linear decision rules for dynamic stochastic optimiza-50

tion problem (Carpentier et al. (2018); Pacaud et al. (2018); Ra-51

makrishnan and Luedtke (2018)).52

More precisely, we relax the almost sure constraint (1b) by
replacing it by its conditional expectation, i.e.

E
[
θ(u)

∣∣∣ B] = 0 . (2)

If λ is an integrable optimal multiplier for Constraint (1b),53

then λB = E
[
λ

∣∣∣ B] is an optimal multiplier for Constraint54

(2). This leads to look for B-measurable multiplier, which may55

authorize decomposition-coordination methods where the sub-56

problems are easily solvable. More precisely if we replace an57

almost sure constraint by its conditional expectation with re-58

spect to (w.r.t.) a σ-algebra B, then if there exists an optimal59

Lagrange multiplier, then there is an optimal Lagrange multi-60

plier measurable w.r.t. the σ-algebra B. Consequently if B is61

well chosen then a decomposition-coordination approach can62

be used to solve the approximated problem. In this case, the63

approximation can be seen as a decision rule approach in the64

dual, where we choose to restrict the multiplier in the class of65

B-measurable random variables. Works using a decision rule66

approach on the dual problem are found in Kuhn et al. (2011).67
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The paper is organized as follows. §2 presents the general68

form of the problem considered and its approximation. §369

shows, after a few recalls on convergence notions of random70

variables, functions and σ-algebras, conditions on the sequence71

of approximate problems guaranteeing its convergence toward72

the initial problem. The main assumptions are the Kudo’s con-73

vergence of σ-algebra, and the continuity - as operators - of the74

constraint function Θ and objective function J. §4 gives some75

examples of continuous objective and constraint functions that76

represent usual stochastic optimization problems. Finally §577

quickly presents a Lagrangian decomposition algorithm using78

this type of relaxation. The results presented here show consis-79

tency of this method : if we refine the approximation, the so-80

lution obtained converges toward solution of the original prob-81

lem.82

Notation83

Bold letters are used for random variables. IA(x) = 0 if x ∈ A,84

and IA(x) = +∞ otherwise. We denote by Ja, bK the set of all85

integers between a and b. θ is used for the constraint function86

mapping Euclidean space U into V, whereas Θ is used for the87

constraint operator generally mapping a set of functions on U88

into function a set of function on V.89

2. Problem Statement90

We consider a probability space (Ω,F ,P) and a topologi-91

cal space of controls U. Let V be the spaces of random vari-92

ables with value in a Banach V with finite moment of order93

p ∈ [1,∞), denotedV = Lp(Ω,F ,P;V).94

We consider now a stochastic optimization problem95

min
u∈U

J(u) , (3a)

s.t. Θ(u) ∈ C , (3b)

with J mappingU into R∪{+∞}, and Θ mappingU intoV. We96

assume that C ⊂ V is a subset of V, and that V is a separable97

Banach space with separable dual.98

To give an example of cost operator, assume that U ⊂99

L1(Ω,F ,P;U
)
, where U is a Banach space. The usual choice100

for the objective function is the expected cost J(u) := E
[
j(u)

]
,101

for a suitable cost function j : U → R. Other choices could102

be risk measures (see Artzner et al. (1999) for example) like103

Average-Value-at-Risk, worst-case or robust approaches. The104

constraint operator Θ cover various cases, for example105

• almost sure constraint: Θ
(
u
)
(ω) := θ

(
u(ω)

)
, where θ maps106

U into V and θ
(
u
)
∈ C is realized almost surely, where C107

is a closed convex set;108

• measurability constraint: Θ
(
u
)

:= E
[
u

∣∣∣ B] − u, with C =109

{0}, expresses that u is measurable with respect to the σ-110

algebra B, that is, E
[
u

∣∣∣ B] = u;111

• risk constraint: Θ
(
u
)

:= ρ(u) − a, where ρ is a conditional112

risk measure, and C is the cone of negative random vari-113

ables.114

We introduce a stability assumption of the set C that will be115

made throughout this paper.116

Definition 1. We consider a sequence (Fn)n∈N of sub-fields of117

F . The set C is said to be stable w.r.t.
(
Fn

)
n∈N, if there exists118

a set-valued mapping S from Ω to V which is closed-convex119

valued and measurable with respect to F and all (Fn)n∈N.120

In particular if C is stable, we have for all n ∈ N and all v ∈ C,121

E[v | Fn] ∈ C.122

We now consider the following relaxation of Problem (3)123

min
u∈U

J(u) , (4a)

s.t. E
[
Θ(u)

∣∣∣ Fn
]
∈ C , (4b)

where C is assumed to be stable w.r.t the sequence
(
Fn

)
n∈N.124

We denote the set of admissible controls of Problem (3)

Uad :=
{
u ∈ U

∣∣∣ Θ(u) ∈ −C
}
, (5)

and the corresponding set of admissible controls of Problem (4)

Uad
n :=

{
u ∈ U

∣∣∣ E[
Θ(u)

∣∣∣ Fn
]
∈ −C

}
. (6)

Problems (3) and (4) can also be written as

min
u∈U

J(u) + IUad (u)︸           ︷︷           ︸
:=J̃(u)

, (7)

and
min
u∈U

J(u) + IUad
n

(u)︸           ︷︷           ︸
:=J̃n(u)

. (8)

Since Fn ⊂ F , and C is stable w.r.t (Fn)n∈N, we have Uad ⊂125

Uad
n : Problem (4) is a relaxation of the original Problem (3) .126

Replacing an almost sure constraint by a conditional expec-
tation constraint is similar to an aggregation of constraints. For
example consider a finite set Ω = {ωi}i∈J1,NK, with a probabil-
ity P such that, for all i ∈ J1,NK, we have P(ωi) = pi > 0.
Consider a partition B = {Bl}l∈J1,|B|K of Ω, and the σ-algebra FB
generated by the partition B. Assume that C = {0}, then the re-
laxation presented consists in replacing the constraint θ(u) = 0
almost surely, which is equivalent to N constraints θ(u(ωi)) = 0
for i ∈ J1,NK, by the collection of |B| ≤ N (where |B| is the
number of sets in the partition B) constraints∑

i∈Bl

piθ(u(ωi)) = 0 ∀l ∈ J1, |B|K .

3. Epiconvergence Result127

In this section we show the epiconvergence of the sequence128

of approximated cost functions (J̃n)n∈N towards J. We start with129

some useful recalls.130

3.1. Preliminaries131

Assume that p ∈ [1,+∞) and denote q ∈ (1,+∞] such that132

1/q + 1/p = 1. Recall that V is a separable Banach space133

with separable dual V∗. We denote Lp = Lp(Ω,F ,P;V) and134

Lq = Lq(Ω,F ,P;V∗).135
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Convergence of random variables136

A sequence (Xn)n∈N of Lp is said to converges137

strongly toward X ∈ Lp, and denoted Xn →Lp X if138

limn→∞ E
[
‖Xn − X‖pV

]
= 0. A sequence (Xn)n∈N of Lp is said139

to weakly converge toward X ∈ Lp, and denoted Xn ⇀Lp X if140

for all X′ ∈ Lq, we have limn→∞ E
[
〈Xn − X, X′〉V,V∗

]
= 0. For141

more details we refer the reader to Rudin (1991).142

Epiconvergence of functions143

Let E be a topological space and consider a sequence (An)n∈N144

of subsets of E. Then the inner limit of (An)n∈N, denoted limnAn,145

is the set of accumulation points of any sequence (xn)n∈N such146

that xn ∈ An, and the outer limit of (An)n∈N denoted limnAn,147

is the set of accumulation points of any sub-sequence (xnk )k∈N148

of a sequence (xn)n∈N such that xn ∈ An. We say that (An)n∈N149

converges toward A in the Painlevé-Kuratowski sense if A =150

limnAn = limnAn.151

A sequence (Jn)n∈N of functions taking value into R ∪ {+∞}152

is said to epi-converge toward a function J if the sequence of153

epigraphs of Jn converges toward the epigraph of J, in the154

Painlevé-Kuratowski sense. For more details and properties155

of epi-convergence, see Rockafellar-Wets Rockafellar and Wets156

(1998) in finite dimension, and Attouch Attouch (1984) for in-157

finite dimension.158

Convergences of σ-algebras159

Let F be a σ-algebra and (Fn)n∈N a sequence of sub-fields of160

F (not necessarily finite nor a filtration). It is said that the se-161

quence (Fn)n∈N Kudo-converges toward the σ-algebra F∞, and162

denoted Fn → F∞, if for each set F ∈ F ,
(
E
[
1F

∣∣∣ Fn
])

n∈N
163

converges in probability toward E
[
1F

∣∣∣ F∞]
.164

It is shown by Kudo (1974) that Fn → F∞ if and only if for165

each integrable random variable x, E
[
x

∣∣∣ Fn
]

converges in L1
166

toward E
[
x

∣∣∣ F∞]
. Piccinini (1998) extends this result to the167

convergence in Lp (where p < +∞) in the strong or weak sense168

with the following lemma.169

Lemma 1. Let
(
Ω,F ,P

)
be a probability space and

(
Fn

)
n∈N be170

a sequence of sub-σ-algebras of F . The following statements171

are equivalent:172

1. Fn → F∞,173

2. ∀X ∈ Lp, E
[
X

∣∣∣ Fn
]
→Lp E

[
X

∣∣∣ F∞]
,174

3. ∀X ∈ Lp, E
[
X

∣∣∣ Fn
]
⇀Lp E

[
X

∣∣∣ F∞]
.175

We have the following useful proposition where both the ran-176

dom variable and the σ-algebra are parametrized by n.177

Proposition 2. Assume that Fn → F∞, and Xn →Lp X178

(resp. Xn ⇀Lp X) then E
[
Xn

∣∣∣ Fn
]
→Lp E

[
X

∣∣∣ F∞]
(resp.179

E
[
Xn

∣∣∣ Fn
]
⇀Lp E

[
X

∣∣∣ F∞]
).180

Proof. The weak-limit case is detailed in Piccinini (1998). We
show the strong convergence case. If Xn →Lp X, then

||E
[
Xn

∣∣∣ Fn
]
− E

[
X

∣∣∣ F ]
||Lp ≤ ||E

[
Xn

∣∣∣ Fn
]
− E

[
X

∣∣∣ Fn
]
||Lp

+ ||E
[
X

∣∣∣ Fn
]
− E

[
X

∣∣∣ F ]
||Lp

As the conditional expectation is a contraction and by Lemma181

1 we have the result.182

We end with a few properties on the Kudo-convergence of σ-183

algebras (for more details we refer to Kudo (1974) and Cotter184

(1986)):185

1. the topology associated with the Kudo-convergence is186

metrizable;187

2. the set of σ-fields generated by the partitions of Ω is dense188

in the set of all σ-algebras;189

3. if a sequence of random variables (xn)n∈N converges in190

probability toward x and for all n ∈ N we have σ(xn) ⊂191

σ(x), then we have the Kudo-convergence of
(
σ(xn)

)
n∈N192

toward σ(X).193

3.2. Main result194

Denote τ the topology of U, and recall that V = Lp, with195

p ∈ [1,∞).196

Theorem 3. LetV be endowed with the strong or weak topol-197

ogy. Assume that C is closed and stable w.r.t (Fn)n∈N. If the198

two mappings Θ and J are continuous, and if (Fn)n∈N Kudo-199

converges toward F , then (J̃n)n∈N (defined in (7)) epi-converges200

toward J̃ (defined in (8)).201

Note that (Fn)n∈N is not assumed to be a filtration and that Fn202

is not assumed to be finite.203

Proof. To prove the epi-convergence of (J̃n)n∈N toward J̃ it is204

sufficient to show that Uad
n (defined in (6)) converges toward205

Uad (defined in (5)) in the Painlevé-Kuratowski sense. In-206

deed it implies the epi-convergence of (IUad
n

)n∈N toward IUad ,207

and adding a continuous function preserves the epi-convergence208

(Attouch (Attouch, 1984, Th 2.15) ).209

By stability of C w.r.t. (Fn)n∈N we have that, for all n ∈ N,210

Uad ⊂ Uad
n and thus Uad ⊂ lim infn U

ad
n (for any x ∈ Uad

211

take the constant sequence equal to x).212

We now show that Uad ⊃ lim supn U
ad
n . Let u be an el-

ement of lim supn U
ad
n . By definition of outer-limit of sets,

there exists a sequence (unk )k∈N that τ-converges to u, such that
for all k ∈ N, E

(
Θ(unk )|Fnk

)
∈ C. As Θ is continuous, we have

Θ(unk ) → Θ(u) strongly (resp. weakly) in Lp. Since Fnk → F ,
by Corollary 2,

E
(
Θ(unk )|Fnk

)
→Lp E

(
Θ(u)|F

)
= Θ(U) .

Thus Θ(u) is the limit of a sequence in C. By closedness of C,213

we have that Θ(u) ∈ −C and thus u ∈ Uad.214

The practical consequences for the convergence of the ap-215

proximation (4) toward the original Problem 3 is given in the216

following Corollary.217

Corollary 4. Assume that Fn → F , and that J and Θ are
continuous. Then the sequence of Problems (4) approximates
Problem (3) in the following sense. If (un)n∈N is a sequence of
controls such that for all n ∈ N,

J̃n(un) < inf
u∈U

J̃n(u) + εn, where lim
n
εn = 0 ,
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then, for every converging sub-sequence (unk )k∈N, we have

J̃
(

lim
k

unk

)
= min

u∈U
J̃(u) = lim

k
J̃nk

(
unk

)
.

Moreover if
(
Fn

)
n∈N is a filtration, then the convergences218

are monotonous in the sense that the optimal value is non-219

decreasing in n.220

Proof. The convergence result is a direct application of Attouch221

(Attouch, 1984, Th. 1.10, p. 27). Monotonicity is given by the222

fact that, if (Fn)n∈N is a filtration, then for n > m then Uad
n ⊂223

Uad
m .224

3.3. Dynamic Problem225

We cast Problem (3) into the following dynamic problem226

min
u∈U

J(u) ,

s.t. Θt(ut) ∈ Ct ∀t ∈ J1,TK ,
ut � Ft ,

where ut � Ft stands for “ut is Ft-measurable”. Here u is227

a stochastic process of control (ut)t∈J1,TK defined on (Ω,F ,P)228

with value in a space U. We have T constraints operators Θt229

taking values in Lp(Ω,Ft,P;Vt), where (Ft)t∈J1,TK is a sequence230

of σ-algebra. Note that (Ft)t∈J1,TK is not necessarily a filtration.231

Then, for each t ∈ J1,TK we define a sequence of approximat-232

ing σ-algebra (Fn,t)n∈N. For all t ∈ J1,TK, Ct is a closed convex233

cone stable w.r.t
(
Fn,t

)
n∈N. The interaction between the different234

time-step is integrated into the objective function J (usually a235

sum over time).236

Finally, we consider the sequence of approximated problem237

min J(u) ,

s.t. E
[
Θ(ut)

∣∣∣ Fn,t
]
∈ Ct ∀t ∈ J1,TK .

Furthermore we denote

Uad
t :=

{
ut ∈ Ut

∣∣∣ Θ(ut) ∈ −Ct
}
,

and
Uad

n,t :=
{
ut ∈ Ut

∣∣∣ E[
Θ(ut)

∣∣∣ Fn,t
]
∈ −Ct

}
.

We define the set of admissible controls for the original prob-
lem

Uad = Uad
0 × · · · × U

ad
T ,

and accordingly for the relaxed problem

Uad
n = Uad

n,0 × · · · × U
ad
n,T .

In order to show the convergence of the approximation pro-
posed here, we consider the functions

J̃(u) = J(u) + χUad (u) , and J̃n(u) = J(u) + χUad
n

(u) ,

and show the epi-convergence of J̃n to J̃.238

Theorem 5. LetU be endowed with a product topology τ, and239

V = Lp(Ω,F ,P;V
)

be endowed with the strong or weak topol-240

ogy (p being in [1,∞)). If Θ and J are continuous, and if for241

all t ∈ J1,TK, (Ft,n)n∈N Kudo-converges to Ft, then
(
J̃n

)
n∈N epi-242

converges to J̃.243

Proof. The proof is deduced from the one of Theorem 3. By244

following the same steps we obtain the Painlevé-Kuratowski245

convergence of Uad
n,t to Uad

t , and thus the convergence of their246

Cartesian products.247

4. Examples of Continuous Operators248

The continuity of J and Θ as operators required in Theorem249

3 is an abstract assumption. This section presents conditions250

for some classical constraint and objective functions to be rep-251

resentable by continuous operators. Before presenting those re-252

sults we prove a technical lemma that allows us to prove conver-253

gence for the topology of convergence in probability by consid-254

ering sequences of random variables converging almost surely.255

4.1. A technical Lemma256

Lemma 6. Let Θ : E → F, where (E, τP) is a space of ran-257

dom variables endowed with the topology of convergence in258

probability, and (F, τ) is a topological space. Assume that Θ259

is such that if (un)n∈N converges almost surely toward u, then260

Θ(un) →τ Θ(u). Then Θ is a continuous operator from (E, τP)261

into (F, τ).262

Proof. Recall that if (xn)n∈N is a sequence in a topological263

space, such that from any sub-sequence
(
xnk

)
k∈N we can extract264

a sub-sub-sequence
(
xσ(nk)

)
k∈N converging to x∗, then (xn)n∈N265

converges to x∗. Indeed suppose that (xn)n∈N does not converges266

toward x∗. Then there exist an open set O containing x∗ and a267

sub-sequence
(
xnk

)
k∈N such that for all k ∈ N, xnk < O, and no268

sub-sub-sequence can converges to x∗, hence a contradiction.269

Let (un)n∈N be a sequence converging in probability to u.270

We consider the sequence
(
Θ(un)

)
n∈N in F. We choose a sub-271

sequence
(
Θ
(
unk

))
k∈N. By assumption

(
un

)
n∈N converges in272

probability toward u, thus we have unk →P u. Consequently273

there exist a sub-sub-sequence uσ(nk) converging almost surely274

to u, and consequently Θ
(
uσ(nk)

)
→ Θ

(
u
)
. Therefore Θ is se-275

quentially continuous, and as the topology of convergence in276

probability is metrizable, Θ is continuous.277

Remark 1. This Lemma does not imply the equivalence be-278

tween convergence almost sure and convergence in probability279

as one cannot endowU with the “topology of almost sure con-280

vergence” as almost sure convergence is not generally induced281

by a topology.282

However note that (un)n∈N converges in probability toward u283

iff from any sub-sequence of (un)n∈N we can extract a further284

sub-sequence converging almost surely to u (see (Durrett and285

Durrett, 2010, Th 2.3.2)).286
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4.2. Objective function287

Let U be a space of random variables on (Ω,F ,P), with288

value in a Banach space U.289

The most classical objective function is given as J(u) :=290

E
[
j(u)

]
, where j : U → R is a measurable, bounded cost func-291

tion. This objective function expresses a risk-neutral attitude;292

indeed a random cost with high variance or a deterministic cost293

with the same expectation are considered equivalent. Recently294

in order to capture risk-averse attitudes, coherent risk measures295

(as defined in Artzner et al. (1999)), or more generally convex296

risk measures (as defined in Föllmer and Schied (2002)), have297

been prominent in the literature.298

Following Ruszczyński and Shapiro (2006b), we call convex299

risk measure an operator ρ : X → R ∪ {+∞} verifying300

• Convexity: for all λ ∈ [0, 1] and all X,Y ∈ X, we have

ρ
(
λX + (1 − λ)Y

)
≤ λρ

(
X
)

+ (1 − λ)ρ
(
Y
)

;

• Monotonicity: for all X,Y ∈ X such that X ≤ Y we have301

ρ(X) ≤ ρ(Y);302

• Translation equivariance: for all constant c ∈ R and all303

X ∈ X, we have ρ(X + c) = ρ(X) + c ,304

where X is a linear space of measurable functions. We focus on305

the case where X = L∞(Ω,F ,P;R).306

Proposition 7. Let U be a set of random variables endowed307

with the topology of convergence in probability, and J(u) :=308

ρ
(
j(u)

)
, where j : U → R is continuous and bounded, and309

ρ a proper lower semi-continuous convex risk measure. Then,310

J : U → R is continuous.311

Proof. Note that as j is bounded, j(u) ∈ X for any u ∈ U.
Then we know that (Ruszczyński and Shapiro (2006b)) there is
a convex set of probabilities P such that

ρ(x) = sup
Q∈P

EQ
(
x
)
− g(Q) ,

where g is convex and weak*-lowersemicontinuous on the312

space of finite signed measures on (Ω,F ). Moreover any prob-313

ability in P is absolutely continuous w.r.t P.314

Consider a sequence (un)n∈N of elements ofU converging in
probability toward u ∈ U. Note that as j is bounded, we have
ρ
(
j(u)

)
< ∞ by monotonicity of ρ. By definition of ρ, for all

ε > 0 there is a probability Pε ∈ P such that

EPε
(
j(u)

)
− g(Pε) ≥ ρ

(
j(u)

)
− ε .

As Pε is absolutely continuous w.r.t P, the convergence in prob-
ability under P of (un)n∈N implies the convergence of probabil-
ity under Pε and in turn the convergence in law under Pε. By
definition of convergence in law we have that

lim
n

EPε
(
j(un)

)
− g(Pε) = EPε

(
j(u)

)
− g(Pε) .

Let η be a positive real, and set ε = η/2, and N ∈ N such that
for all n ≥ N,

|EPε
(
j(un)

)
− EPε

(
j(u)

)
| ≤

η

2
. (11)

Then, recalling that

ρ
(

j
(
u
))
≥ EP η

2

(
j(u)

)
− g(P η

2
) ≥ ρ

(
j
(
u
))
−
η

2
, (12)

we have that for all n ≥ N,

ρ
(
j(un)

)
= sup

Q∈P
EQ

(
j(un)

)
− g(Q)

≥ EP η
2

(
j(un)

)
− g

(
P η

2

)
≥ EP η

2

(
j(u)

)
− g

(
P η

2

)
by (11),

≥ ρ
(

j(u)
)
− η by (12),

and thus315

ρ
(

j
(
u
))

+
η

2
≥ ρ

(
j
(
un

))
≥ ρ

(
j
(
u
))
− η .

Thus limn ρ
(
j(un)

)
= ρ

(
j(u)

)
. Hence the continuity of J.316

The assumptions of this Proposition can be relaxed in differ-317

ent ways.318

In a first place, if the convex risk measure ρ is simply the319

expectation then we can simply endowU with the topology of320

convergence in law. In this case the continuity assumption on j321

can also be relaxed. Indeed if
(
un

)
n∈N converges in law toward322

u, and if the set K of points where j is continuous is such that323

P(u ∈ K) = 1, then E
[
j(un)

]
converges toward E

[
j(u)

]
.324

Otherwise assume that U is a set of random variables en-325

dowed with the topology of convergence in probability and that326

j continuous. Moreover, if we can ensure that j(u) is dominated327

by some integrable (for all probability of P) random variable,328

then J : U → R is continuous. Indeed we consider a sequence329 (
un

)
n∈N almost surely converging to u. We modify the proof330

of Proposition 7 by using a dominated convergence theorem to331

show that limn EPε
(
j(un)

)
= EPε

(
j(u)

)
, and end with Lemma 6.332

4.3. Constraint operator333

We present some usual constraints and how they can be rep-334

resented by an operator Θ that is continuous and take values335

intoV.336

4.3.1. Almost sure constraint337

From Lemma 6, we obtain a first important example of con-338

tinuous constraints, which can also be obtained and extended339

from results on Nemytskij operators (see, e.g. Appell and340

Zabrejko (1990)).341

Proposition 8. Suppose that U is the set of random variables342

on
(
Ω,F ,P

)
, with value in U, endowed with the topology of343

convergence in probability. Assume that θ : U → V is continu-344

ous and bounded. Then the operator Θ
(
u
)
(ω) := θ

(
u(ω)

)
maps345

U intoV and is continuous.346

Proof. The function θ being continuous, is also Borel measur-
able.Thus for all u ∈ U, for all Borel set V ⊂ V, we have(

Θ(u)
)−1(V) = {ω ∈ Ω | u(ω) ∈ θ−1(V)} ∈ B ,
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thus Θ(u) is F -measurable. Boundedness of θ ensure the exis-347

tence of moment of all order of Θ(u). Thus Θ is well defined.348

Suppose that
(
un

)
n∈N converges to u almost surely. Then

by boundedness of θ, we have that
( ∥∥∥θ(un

)
− θ

(
u
)∥∥∥p

V

)
n∈N

is
bounded, and thus by dominated convergence theorem we have
that

lim
n→∞

θ
(
un

)
= θ

(
u
)

in Lp(Ω,F ,P;V) ,

which is exactly
lim
n→∞

Θ
(
un

)
= Θ

(
u
)
.

Consequently by Lemma 6 we have the continuity of Θ.349

We note that boundedness of θ is only necessary in order to350

use the dominated convergence theorem. Thus an alternative351

set of assumptions is given in the following proposition.352

Proposition 9. Let B be a sub-field of F . IfU = Lp′(Ω,B,P)
,353

with the topology of convergence in probability, and if θ is γ-354

Hölder, with γ ≤ p′/p then Θ
(
u
)
(ω) := θ

(
u(ω)

)
is well defined355

and continuous as an operator mappingU intoV.356

Proof. By definition a function θ mapping U into V is γ-Hölder
if there exist a constant M > 0 such that for all u, u′ in U we
have ∥∥∥θ(u) − θ(u′)

∥∥∥V ≤ M
∥∥∥u − u′

∥∥∥γU ,

in particular the 1-Hölder continuity is the Lipschitz continuity.357

Following the previous proof we just have to check that
the sequence

( ∥∥∥θ(un
)
− θ

(
u
)∥∥∥p

V

)
n∈N

is dominated by some in-
tegrable variable. The Hölder assumption implies∥∥∥θ(unk

)
− θ

(
u
)∥∥∥p

V ≤ Cp
∥∥∥unk − u

∥∥∥pγ
U .

And as pγ ≤ p′, and un and u are elements of Lp′ (Ω,F ,P),358 ∥∥∥unk − u
∥∥∥pγ
U is integrable.359

4.3.2. Measurability constraint360

When considering a dynamic stochastic optimization prob-361

lem, measurability constraints are used to represent the nonan-362

ticipativity constraints. They can be expressed by stating that a363

random variable and its conditional expectation are equal.364

Proposition 10. We set U = Lp′(Ω,F ,P;U
)
, with p′ ≥ p.365

Assume that366

• either U is equipped with the strong topology, and V is367

equipped with the strong or weak topology,368

• orU andV are equipped with the weak topology.369

If B is a sub-field of F , then Θ
(
u
)

:= E
[
u

∣∣∣ B] − u, is well370

defined and continuous.371

Proof. In a first place note that as p′ ≥ p, and F ′ ⊂ F ,U ⊂ V;372

and if v ∈ V then E
[
v
∣∣∣ B] ∈ V as the conditional expectation373

is a contraction. Thus for all u ∈ U, we have Θ(u) ∈ V.374

Consider a sequence (un)n∈N ofU strongly converging in Lp′

toward u ∈ U. We have

||Θ
(
un

)
− Θ

(
u
)
||p ≤ ||un − u||p + ||E

[
un − u

∣∣∣ B]||p
≤ 2||un − u||p ≤ 2||un − u||p′ → 0 .

Thus the strong continuity of Θ is proven.375

Now consider (un)n∈N converging weakly in Lp′ toward u ∈
U. We have, for all y ∈ Lq,

E
[
E
[
un

∣∣∣ B] · Y]
= E

[
unE

[
Y

∣∣∣ B]] ,
−→

n
E
[
uE

[
Y

∣∣∣ B]] ,
= E

[
E
[
u

∣∣∣ B]Y]
.

Thus we have the weak convergence of the conditional expec-376

tation and therefore of Θ. Finally, as the strong convergence377

imply the weak convergence we have the continuity from U-378

strong intoV-weak.379

Until now the topology of convergence in probability has380

been largely used. If we endow U with the topology of con-381

vergence in probability in the previous proposition we will ob-382

tain continuity of Θ on a subset of U. Indeed if a set of ran-383

dom variables Uad such that there exist a random variable in384

Lp′(Ω,F ,P)
dominating every random variable in Uad, then385

a sequence converging almost surely will converge for the Lp′
386

norm and we can follow the previous proof to show the conti-387

nuity of Θ onUad.388

4.3.3. Risk constraints389

Risk attitude can be expressed through the objective function390

or through constraints. We have seen that a risk measure can be391

chosen as the objective function, we now show that conditional392

risk measure can used as constraints.393

Let ρ be a conditional risk mapping as defined in394

Ruszczyński and Shapiro (2006a), and more precisely ρ maps395

U intoV whereU = Lp(Ω,F ,P;U
)

andV = Lp(Ω,B,P;V
)
,396

with B ⊂ F , and verifies the following properties397

• Convexity: for all λ ∈ U, λ ∈ [0, 1] and all X,Y ∈ V, we
have

ρ
(
λX + (1 − λ)Y

)
≤ λρ

(
X
)

+ (1 − λ)ρ
(
Y
)

;

• Monotonicity: for all X,Y ∈ V such that X ≤ Y we have398

ρ(X) ≤ ρ(Y);399

• Translation equivariance: for all c ∈ V and all X ∈ U, we400

have ρ(X + c) = ρ(X) + c .401

Proposition 11. Let U be endowed with the topology of con-402

vergence in probability, and V endowed with the strong topol-403

ogy. If ρ is a conditional risk mapping, θ is a continuous404

bounded cost function mapping U into R, and a ∈ V, then405

Θ
(
u
)

:= ρ
(
θ
(
u
))
− a is continuous.406
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Proof. Consider a sequence of random variables
(
un

)
n∈N con-

verging in probability toward u∞. Let π : Lp(Ω,B,P;U) →
Lp(Ω,B,P;U) be a selector of V = Lp(Ω,B,P;U), i.e. for
any x ∈ Lp(Ω,F ,P;U), π(X) ∈ x. For any ω ∈ Ω, any
x ∈ Lp(Ω,F ,P;U) we define

ρω(u) := π(ρ
(
u
)
)(ω) .

Note that for P-almost all ω ∈ Ω, the function Θω(u) :=407

ρω
(
θ(u)

)
, satisfies the conditions of Proposition 7. Thus for408

P-almost all ω ∈ Ω,
(
Θω(un)

)
n∈N converges toward Θω(u∞).409

Thus we have shown that
(
Θ(un)

)
n∈N converges almost surely410

toward Θ
(
u∞

)
. By boundedness of θ and monotonicity of ρ411

we obtain the boundedness of
(
Θ(un)

)
n∈N. Thus almost sure412

convergence and dominated convergence theorem ensure that413 (
Θ(un)

)
n∈N converges in Lp toward Θ

(
u∞

)
, hence the continuity414

of Θ.415

Another widely used risk measure, even if it has some se-416

rious drawbacks, is the Value-at-Risk. If X is a real ran-417

dom variable its value at risk of level α can be defined as418

VaRα(X) := inf{F−1
X (α)} where FX(x) := P(X ≤ x).419

Proposition 12. If θ : U → R is continuous, and if U is such420

that every u ∈ U have a continuous distribution function, then421

Θ(u) := VaRα

(
θ
(
u
))

is continuous if we have endowed U with422

the topology of convergence in law, and a fortiori for the topol-423

ogy of convergence in probability.424

Proof. By definition of convergence in law, if un → u in law,425

then
(
θ
(
un

))
n∈N converges in law toward θ

(
u
)

and we have, for426

all x ∈ R, Fθ(un)(x) → Fθ(u)(x). Thus
(
Θ(un)

)
n∈N converges427

almost surely toward Θ(u), and as Θ(u) is deterministic, Θ is428

continuous.429

Note that in Proposition 12 the constraint function take deter-430

ministic values. Thus considering the conditional expectation431

of this constraint yields exactly the same constraint. However432

consider a constraint Θ1 : U → R of this form, and another433

constraint Θ2 : U → V. Then if Θ1 and Θ2 are continuous,434

then so is the constraint Θ = (Θ1,Θ2) → R × V. Thus we can435

apply Theorem 3 on the coupled constraint.436

5. Dual Approximate Dynamic Programming437

In this section, we say a few words about how the approxi-438

mation of an almost sure constraint by a conditional expectation439

– as presented in section 3 – can be used. More details and nu-440

merical experiment of this algorithm can be found in Barty et al.441

(2010); Leclère (2014); Carpentier et al. (2018); Ramakrishnan442

and Luedtke (2018).443

5.1. Presentation of the problem444

We are interested in an electricity production problem with N445

power stations coupled by an equality constraint. At time step t,446

each power station i have an internal state Xi
t, and is affected by447

a random exogenous noise ξi
t. For each power station, and each448

time step t, we have a control qi
t ∈ Q

ad
t,i that must be measurable449

with respect to Ft where Ft is the σ-algebra generated by all450

past noises: Ft = σ
(
ξi

s
)
1≤i≤n,0≤s≤t. Moreover, there is a coupling451

constraint expressing that the total production must be equal to452

the demand. This constraint is represented as
∑N

i=1θ
i
t(qi

t) = 0,453

where θi
t is a continuous bounded function from Qad

t,i into V, for454

all i ∈ J1, nK. The cost to be minimized is a sum over time and455

power stations of all current local cost Li
t
(
xi

t, qi
t, ξ

i
t
)
.456

Finally the problem reads

min
x,q

E
[ N∑

i=1

T∑
t=0

Li
t
(
xi

t, q
i
t, ξ

i
t
)]

(13a)

s.t. xi
t+1 = f i

t (xi
t, q

i
t, ξ

i
t) ∀t, ∀i, (13b)

xi
0 = xi

0 ∀i, (13c)

qi
t ∈ Q

ad
t,i ∀t, ∀i, (13d)

qi
t � Ft ∀t, ∀i, (13e)
N∑

i=1

θi
t(qi

t) = 0 ∀t, ∀i. (13f)

For the sake of brevity, we denote by A the set of random pro-457

cesses (X, q) verifying constraints (13b), (13c) and (13d).458

Let assume that all random variables are in L2 spaces and459

dualize the coupling constraint (13f). We do not study here the460

relation between the primal and the following dual problem (see461

Rockafellar and Wets (1977, 1978) for an alternative formula-462

tion involving duality between L1 and it’s dual).463

max
λ∈L2

min
(x,q)∈A

E
[ N∑

i=1

T∑
t=0

Li
t
(
xi

t, q
i
t, ξ

i
t
)

+ λtθ
i
t(qi

t)
]

(14a)

s.t. qi
t � Ft ∀t, ∀i. (14b)

Note that, for fixed λ, the inner minimization problem is de-464

composable. Thus for a fixed λ(k) we have to solve N prob-465

lems of smaller size than Problem (14), λ(k) being updated in a466

gradient-like scheme.467

(P) min
(x,u)∈A

E
[ T∑

t=0

Li
t
(
xi

t, q
i
t, ξ

i
t
)

+ λ(k)
t θi

t(qi
t)
]

(15a)

s.t. qi
t � Ft ∀t, ∀i. (15b)

Note that the process λ(k) has no given dynamics but can be468

chosen to be adapted to the filtration (Ft)t=1,..,T . Consequently469

solving Problem (15) by Dynamic Programming is possible but470

numerically difficult as we need to keep all the past realizations471

of the noises in the state. In fact, the so-called curse of dimen-472

sionality prevents us to solve numerically this problem.473

Nevertheless it has been proposed in Barty et al. (2010) to474

replace λt by E
[
λt

∣∣∣ Yt
]
, where Yt is a random variable mea-475

surable with respect to (yt−1, ξt) instead of λt. This is similar476

to a decision rule approach for the dual as we are restraining477

the control to a certain class, the Yt-measurable λ in our case.478

Thus Problem (15) can be solved by Dynamic Programming479

with the augmented state (xi
t, yt). It has also been shown that,480
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under some non-trivial conditions, replacing λt by its condi-481

tional expectation E
[
λt

∣∣∣ Yt
]

is equivalent to solving482

min
(x,q)∈A

E
[ N∑

i=1

T∑
t=0

Li
t
(
xi

t, q
i
t, ξ

i
t
)]

(16a)

s.t. qi
t � Ft ∀t, ∀i, (16b)

E
[ N∑

i=1

θi
t(qi

t)
∣∣∣∣ Yt

]
= 0 ∀t, ∀i. (16c)

Problem (16) is a relaxation of Problem (13) where the al-483

most sure constraint (13f) is replaced by the constraint (16c).484

Now consider a sequence of information processes (Y(n))n∈N485

each generating a σ-algebra Fn, and their associated relaxation486

(Pn) (as specified in Problem 16) of Problem (13) (denoted487

(P)). Those problems correspond to Problems (9) and (10)488

with J(u) = E
[∑N

i=1
∑T

t=0 Li
t
(
xi

t, qi
t, ξ

i
t
)]
, where u = (q(i))i∈J1,NK489

and xi
t follow the dynamic equation (13b). We also have490

Θt(ut) =
∑N

i=1 θ
i
t(qi

t) and Ct = {0}.491

Assume that for all t ∈ J1,TK, and all i ∈ J1,NK the cost492

functions Li
t, dynamic functions ft and constraint functions θi

t493

are continuous, and that Qad
t,i is a compact subset of an euclid-494

ian space. Moreover we assume that the noise variables ξi
t are495

essentially bounded. Finally we endow the space of control pro-496

cesses with the topology of convergence in probability. Then by497

induction we have that the state processes and the control pro-498

cesses are essentially bounded, thus so is the cost Li
t
(
xi

t,ui
t, ξ

i
t
)
.499

Thus the cost function can be effectively replaced by bounded500

functions. Consequently Proposition 7 ensures that J is contin-501

uous ifU is equipped with the topology of convergence in prob-502

ability. Similarly Proposition 8 ensures that Θ is continuous.503

Theorem 5 implies that our sequence of approximated problems504

(Pn) converges toward the initial problem (P). Thus, let (un)n∈N505

be a sequence of εn-optimal solution of Pn, i.e. un verifying506

constraint (16c) and J(un) < infu∈Uad
n

J(u) + εn, with (εn)n∈N a507

sequence of positive real number converging to 0. Then we can508

extract a subsequence (unk )k∈N converging almost surely to an509

optimal solution of (P), and the limit of the approximated value510

of (Pn) converges to the value of (P).511

Remark 2. To get an idea of the numerical interest of such an512

approach fix all discretization (in space, control, time and num-513

ber of units) to 10, frontal dynamic programming require 1031
514

operations, whereas, in the decomposed approach, each sub-515

gradient iteration requires only 106 iterations. The subgradient516

method being applied in R10 require a few thousand iterations517

to give a reasonable solution, hence the approximated problem518

can be solved in around 1010 operations.519
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