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In this paper we consider approximations of dynamic stochastic optimization problems and their convergence.
We focus on the relaxation of an almost sure constraint in a weaker conditional expectation constraint. We
show an epiconvergence result relying on the Kudo convergence of σ-algebras and continuity of the objective
and constraint operators. We also present some classical constraints and objective functions in stochastic
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1. Introduction Stochastic optimization problems often consist in minimizing a cost over a
set of random variables. If the set of events is infinite, the minimization is done over an infinite
dimensional space. Consequently there is a need for approximation. We are interested in the approx-
imation of almost sure constraints, say θ(U ) = 0 almost surely (a.s.), by a conditional expectation
constraint like E

(
θ(U )

∣
∣ Fn

)
≥ 0 a.s.

Consider the following problem,

min
U∈U

J(U ) , (1a)

s.t. θ(U ) = 0 a.s. , (1b)

where the set of controls U is a set of random variables over a probability space (Ω,F ,P). If Ω is not
finite, U may be of infinite dimension. Moreover the constraint (1b) is a functional constraint that
can roughly be seen as an infinity of constraints. For tractability purposes we consider approxima-
tions of this problem. In order to give theoretical results for the approximations of Problem (1) the
right notion of convergence is epi-convergence. Indeed, under some additional technical conditions,
the epi-convergence insures the convergence of both the optimal value and the optimal solutions.

One way of approximating Problem (1) consists in approximating the probability P. Roughly
speaking the Sample Average Approximation procedure consist in simulating a set of scenarios
under the real probability P. Then we solve Problem (1) under the empirical probability on the
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set of simulated scenarios. In this literature (see [5], [8]) the authors are interested in problems
where the controls are deterministic. However other epi-convergence results have been shown for
more general spaces of controls, including spaces of random variables or random processes (see
[24] and references therein, as well as [11], [13], [12]). More generally, the idea of discretizing or
quantizing the set Ω, for example by use of finite scenario trees has been largely studied in the
field of Stochastic Programming (see [22] for a thorough presentation).
Instead of approximating the probability space we propose a way to approximate constraints,

especially almost sure constraints. The main idea is to replace a constraint by its conditional expec-
tation with respect to (w.r.t.) a σ-algebra B. This is in some sense an aggregation of constraints.
This approximation appears when considering duality schemes for dynamic stochastic optimization
problem.
More precisely, we relax the almost sure constraint (1b) by replacing it by its conditional expec-

tation, i.e.
E
(
θ(U )

∣
∣ B

)
= 0 . (2)

If λ is an integrable optimal multiplier for Constraint (1b), then λB = E
(
λ
∣
∣ B

)
is an optimal

multiplier for Constraint (2). This leads to look for B-measurable multiplier, which may authorize
decomposition-coordination methods where the sub-problems are easily solvable. This is presented
in the last part of our paper. In this case, the approximation can be seen as a decision rule approach
in the dual, where we choose to restrict the multiplier in the class of B-measurable random variables.
Works using a decision rule approach on the dual problem are found in [10]. We refer the reader
to [23] for more comments on the decision rule approach, especially for linear decision rules.

The paper is organized as follows. Section 2 presents the general form of the problem considered
and its approximation. Section 3 shows, after a few recalls on convergence notions of random vari-
ables, functions and σ-algebras, conditions on the sequence of approximate problems guaranteeing
its convergence toward the initial problem. The main assumptions are the Kudo’s convergence of
σ-algebra, and the continuity - as operators - of the constraint function Θ and objective function
J . Section 4 gives some examples of continuous objective and constraint functions that represent
usual stochastic optimization problems. Finally Section 5 presents a decomposition-coordination
algorithm using this type of relaxation.

2. Problem statement We consider a probability space (Ω,F ,P) and a topological spaces of
controls U . Let V be the spaces of random variables with value in a Banach V with finite moment
of order p∈ [1,∞), denoted V =Lp(Ω,F ,P;V).
We consider now a stochastic optimization problem

min
U∈U

J(U ) , (3a)

s.t. Θ(U )∈−C , (3b)

with J mapping U into R∪ {+∞}, and Θ mapping U into V. We assume that C ⊂ V is a closed
convex cone of V, and that V is a separable Banach space with separable dual (the fact that C is
a cone is not essential for our results).
To give an example of cost operator, assume that U ⊂L1

(
Ω,F ,P;U

)
, where U is a Banach. The

usual choice for the criterion is the expected cost J(U ) := E
(
j(U )

)
, for a suitable cost function

j :U→R. Other choices could be risk measures (see [1] for example) like Conditional-Value-at-Risk
(see [17] for a definition), worst-case or robust approaches. The constraint operator Θ cover various
cases, for example

• almost sure constraint: Θ
(
U
)
(ω) := θ

(
U (ω)

)
, where θ maps U into V and θ

(
U
)
∈ −C is

realized almost surely;
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• measurability constraint: Θ
(
U
)
:=E

(
U

∣
∣ B

)
−U , with C = {0}, expresses that U is measur-

able with respect to the σ-algebra B, that is, E
(
U

∣
∣ B

)
=U ;

• risk constraint: Θ
(
U
)
:= ρ(U )− a, where ρ is a conditional risk measure, and C is the cone

of positive random variables.
We introduce a stability assumption of the set C that will be made throughout this paper.
Definition 1. We consider a sequence (Fn)n∈N of sub-fields of F . The closed convex cone C

is said to be stable w.r.t.
(
Fn

)

n∈N
, if for all n∈N we have

∀V ∈C, E(V | Fn)∈C .

A first widely used example would be C = {0}, or more generally any deterministic closed convex
cone, another example would be the set of almost surely positive random variables.
We now consider the following relaxation of Problem (3)

min
U∈U

J(U ) , (4a)

s.t. E
(
Θ(U )

∣
∣ Fn

)
∈−C , (4b)

where C is assumed to be stable w.r.t the sequence
(
Fn

)

n∈N
.

We denote the set of admissible controls of Problem (3)

Uad :=
{
U ∈ U

∣
∣ Θ(U )∈−C

}
, (5)

and the corresponding set of admissible controls of Problem (4)

Uad
n :=

{
U ∈ U

∣
∣ E

(
Θ(U )

∣
∣ Fn

)
∈−C

}
. (6)

Problems (3) and (4) can also be written1 as

min
U∈U

J(U )+χ
Uad

(U )
︸ ︷︷ ︸

:=J̃(U )

, (7)

and
min
U∈U

J(U )+χ
Uad
n

(U )
︸ ︷︷ ︸

:=J̃n(U )

. (8)

Note that we have Fn ⊂F , and that C is stable w.r.t (Fn)n∈N, thus Uad ⊂ Uad
n : Problem (4) is

a relaxation of the original Problem (3) as it has the same objective function but a wider set of
admissible controls.
Replacing an almost sure constraint by a conditional expectation constraint is similar to an

aggregation of constraints. For example consider a finite set Ω= {ωi}i∈[[1,N ]]
2, with a probability P

such that, for all i∈ [[1,N ]], we have P(ωi) = pi > 0. Consider a partition B= {Bl}l∈[[1,|B|]] of Ω, and
the σ-algebra FB generated by the partition B. Assume that C = {0}, then the relaxation presented
consists in replacing the constraint

θ(U ) = 0 P− a.s.

1 We use the notation χ
A

for the characteristic function of A, that is the function such that χ
A
(x) = 0 if x ∈A, and

χ
A
(x) =+∞ elsewhere.

2 We denote by [[a, b]] the set of all integers between a and b.
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which is equivalent to N constraints

θ(U (ωi)) = 0 ∀i∈ [[1,N ]] ,

by the collection of |B| ≤N (where |B| is the number of sets in the partition B) constraints

∑

i∈Bl

piθ(U (ωi)) = 0 ∀l ∈ [[1, |B|]] .

3. Epiconvergence result In this section we show the epiconvergence of the sequence of
approximated cost functions (J̃n)n∈N (defined in (8)) towards J (defined in (7)). In a first place we
need some recalls on convergence of random variables, epiconvergence of functions and convergence
of σ-algebras. Moreover a technical result is required.

3.1. Preliminaries Assume that p∈ [1,+∞) and denote q ∈ (1,+∞] such that 1/q+1/p= 1.
Recall that V is a separable Banach space with separable dual V∗.

Convergence of random variables A sequence (X
n
)n∈N of Lp(Ω,F ,P;V) is said to converges

strongly toward X ∈Lp(Ω,F ,P;V), and denoted X
n
→Lp X if

lim
n→∞

E
(∥
∥X

n
−X

∥
∥
p

V

)
= 0 .

A sequence (X
n
)n∈N of Lp(Ω,F ,P;V) is said to weakly converges toward X ∈ Lp(Ω,F ,P;V), and

denoted X
n
⇀Lp X if

∀X ′ ∈Lq(Ω,F ,P;V∗), lim
n→∞

E
(
〈X

n
−X ,X ′〉V,V∗

)
= 0 .

For more details we refer the reader to [19].

Epiconvergence of functions We first recall the definition of the Painlevé-Kuratowski con-
vergence of sets. Let E be a topological space and consider a sequence (An)n∈N of subsets of E.
Then the inner limit of (An)n∈N is the set of accumulation points of any sequence (xn)n∈N such
that xn ∈An, i.e,

limnAn = {x∈E | ∀n∈N, xn ∈An, lim
k→∞

xn = x} , (9)

and the outer limit of (An)n∈N is the set of accumulation points of any sub-sequence (xnk
)k∈N of

a sequence (xn)n∈N such that xn ∈An, i.e,

limnAn = {x∈E | ∃(nk)k∈N, ∀k ∈N, xnk
∈Ank

, lim
k→∞

xnk
= x} . (10)

We say that (An)n∈N converges toward A in the Painlevé-Kuratowski sense if

A= limnAn = limnAn .

A sequence (Jn)n∈N of functions taking value into R ∪ {+∞} is said to epi-converge toward a
function J if the sequence of epigraphs of Jn converges toward the epigraph of J , in the Painlevé-
Kuratowski sense. For more details and properties of epi-convergence, see Rockafellar-Wets [16] in
finite dimension, and Attouch [2] for infinite dimension.
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Convergences of σ-algebras Let F be a σ-algebra and (Fn)n∈N a sequence of sub-fields of
F . It is said that the sequence (Fn)n∈N Kudo-converges toward the σ-algebra F∞, and denoted

Fn →F∞, if for each set F ∈F ,
(

E
(
1F

∣
∣ Fn

))

n∈N
converges in probability toward E

(
1F

∣
∣ F∞

)
.

In [9], Kudo shows that Fn →F∞ if and only if for each integrable random variableX , E
(
X

∣
∣ Fn

)

converges in L1 toward E
(
X

∣
∣ F∞

)
. In [14], Piccinini extends this result to the convergence in Lp

in the strong or weak sense with the following lemma.
Lemma 1. Let

(
Ω,F ,P

)
be a probability space and

(
Fn

)

n∈N
be a sequence of sub-σ-algebras

of F . The following statements are equivalent:
1. Fn →F∞,
2. ∀X ∈Lp(Ω,F ,P;V), E

(
X

∣
∣ Fn

)
→Lp E

(
X

∣
∣ F∞

)
,

3. ∀X ∈Lp(Ω,F ,P;V), E
(
X

∣
∣ Fn

)
⇀Lp E

(
X

∣
∣ F∞

)
.

We have the following useful proposition where both the random variable and the σ-algebra are
parametrized by n.
Proposition 1. Assume that Fn → F∞, and X

n
→Lp X (resp. X

n
⇀Lp X ) then

E
(
X

n

∣
∣ Fn

)
→Lp E

(
X

∣
∣ F∞

)
(resp. E

(
X

n

∣
∣ Fn

)
⇀Lp E

(
X

∣
∣ F∞

)
).

Proof The weak-limit case is detailed in [14]. We show the strong convergence case. IfX
n
→Lp X ,

then

||E
(
X

n

∣
∣ Fn

)
−E

(
X

∣
∣ F

)
||Lp ≤ ||E

(
X

n

∣
∣ Fn

)
−E

(
X

∣
∣ Fn

)
||Lp

+ ||E
(
X

∣
∣ Fn

)
−E

(
X

∣
∣ F

)
||Lp

As the conditional expectation is a contraction operator, we have

||E
(
X

n

∣
∣ Fn

)
−E

(
X

∣
∣ Fn

)
||Lp ≤ ||X

n
−X ||Lp → 0 .

Moreover we have

||E
(
X

∣
∣ Fn

)
−E

(
X

∣
∣ F

)
||Lp → 0

by Lemma 1, hence the result.
We finish by a few properties on the Kudo-convergence of σ-algebras (for more details we refer

to [9] and [4]):
1. the topology associated with the Kudo-convergence is metrizable;
2. the set of σ-fields generated by the partitions of Ω is dense in the set of all σ-algebras;
3. if a sequence of random variables (X

n
)n∈N converges in probability toward X and for all

n∈N we have σ(X
n
)⊂ σ(X ), then we have the Kudo-convergence of

(
σ(X

n
)
)

n∈N
toward σ(X ).

3.2. Main result Recall that U is endowed with a topology τ , and that V = Lp
(
Ω,F ,P;V

)
,

with p∈ [1,∞).

Theorem 2. Let V be endowed with the strong or weak topology. Assume that C is stable
w.r.t (Fn)n∈N. If the two mappings Θ and J are continuous, and if (Fn)n∈N Kudo-converges toward
F , then (J̃n)n∈N (defined in (7)) epi-converges toward J̃ (defined in (8)).

Note that (Fn)n∈N is not assumed to be a filtration, and that Fn is not assumed to be finite.
Proof To prove the epi-convergence of (J̃n)n∈N toward J̃ it is sufficient to show that Uad

n (defined
in (6)) converges toward Uad (defined in (5)) in the Painlevé-Kuratowski sense. Indeed it implies
the epiconvergence of (χ

Uad
n

)n∈N toward χ
Uad

, and adding a continuous function preserves the epi-

convergence (Attouch [2, Th 2.15] ).
By stability of C w.r.t. (Fn)n∈N we have that, for all n ∈N, Uad ⊂Uad

n and thus Uad ⊂ limn U
ad
n

(for any x∈ Uad take the constant sequence equal to x).
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We now show that Uad ⊃ limn Uad
n . Let U be an element of limn Uad

n . By Definition (10), there
is a sequence (U

nk
)k∈N that τ -converges to U , such that for all k ∈ N, E

(
Θ(U

nk
)|Fnk

)
∈ −C. As

Θ is continuous, we have Θ(U
nk
)→Θ(U ) strongly (resp. weakly) in Lp. Moreover we have that

Fnk
→F , and consequently by Corollary 1,

E
(
Θ(U

nk
)|Fnk

)
→Lp E

(
Θ(U )|F

)
=Θ(U) .

Thus Θ(U ) is the limit of a sequence in −C. By closedness of C (weak and strong as C is convex3),
we have that Θ(U )∈−C and thus U ∈ Uad.
The practical consequences for the convergence of the approximation (4) toward the original

Problem 3 is given in the following Corollary.

Corollary 3. Assume that Fn →F , and that J and Θ are continuous. Then the sequence of
Problems (4) approximates Problem (3) in the following sense. If (U

n
)n∈N is a sequence of control

such that for all n∈N,

J̃n(Un
)< inf

U∈U
J̃n(U )+ εn, where lim

n
εn = 0 ,

then, for every converging sub-sequence (U
nk
)k∈N, we have

J̃
(
lim
k

U
nk

)
=min

U∈U
J̃(U ) = lim

k
J̃nk

(
U

nk

)
.

Moreover if
(
Fn

)

n∈N
is a filtration, then the convergences are monotonous in the sense that the

optimal value is non-decreasing in n.

Proof The convergence result is a direct application of Attouch [2, Th. 1.10, p. 27]. Monotonicity
is given by the fact that, if (Fn)n∈N is a filtration, then for n>m then Uad

n ⊂Uad
m .

3.3. Dynamic Problem We extend Problem (3) into the following dynamic problem

min
U∈U

J(U ) ,

s.t. Θt(Ut
)∈−Ct ∀t∈ [[1, T ]] ,

U
t
�Ft ,

(11)

where U
t
� Ft stands for “U

t
is Ft-measurable”. Here U is a stochastic process of control

(U
t
)t∈[[1,T ]] defined on (Ω,F ,P) with value in U. We have T constraints operators Θt taking values in

Lp(Ω,Ft,P;Vt), where (Ft)t∈[[1,T ]] is a sequence of σ-algebra. Note that (Ft)t∈[[1,T ]] is not necessarily
a filtration. Then, for each t ∈ [[1, T ]] we define a sequence of approximating σ-algebra (Fn,t)n∈N.
For all t∈ [[1, T ]], Ct is a closed convex cone stable w.r.t

(
Fn,t

)

n∈N
.

Finally we consider the sequence of approximated problem

min J(U ) ,
s.t. E

(
Θ(U

t
)
∣
∣ Fn,t

)
∈−Ct ∀t∈ [[1, T ]] .

(12)

Furthermore we denote

Uad
t :=

{
U

t
∈ Ut

∣
∣ Θ(U

t
)∈−Ct

}
,

and

Uad
n,t :=

{
U

t
∈ Ut

∣
∣ E

(
Θ(U

t
)
∣
∣ Fn,t

)
∈−Ct

}
.

3 if C is non-convex we need it to be sequentially closed.
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We define the set of admissible controls for the original problem

Uad = Uad
0 × · · · ×Uad

T ,

and accordingly for the relaxed problem

Uad
n = Uad

n,0 × · · · ×Uad
n,T .

In order to show the convergence of the approximation proposed here, we consider the functions

J̃(U ) = J(U )+χUad(U ) ,

and

J̃n(U ) = J(U )+χUad
n
(U ) ,

and show the epi-convergence of J̃n to J̃ .
Theorem 4. If Θ and J are continuous, and if for all t ∈ [[1, T ]], (Ft,n)n∈N Kudo-converges to

Ft, then
(
J̃n

)

n∈N
epi-converges to J̃ .

Proof The proof is deduced from the one of Theorem 2. By following the same steps we obtain
the Painlevé-Kuratowski convergence of Uad

n,t to Uad
t , and thus the convergence of their Cartesian

products.

4. Examples The continuity of J and Θ as operators required in Theorem 2 is an abstract
assumption. This section presents conditions for some classical constraint and objective functions
to be representable by continuous operators. Before presenting those results we show a technical
lemma that allows us to prove convergence for the topology of convergence in probability by
considering sequences of random variables converging almost surely.

4.1. A technical Lemma

Lemma 2. Let Θ : E → F , where (E,τP) is a space of random variables endowed with the
topology of convergence in probability, and (F, τ) is a topological space. Assume that Θ is such
that if (U

n
)n∈N converges almost surely toward U , then Θ(U

n
)→τ Θ(U ). Then Θ is a continuous

operator from (E,τP) into (F, τ).
Proof We recall first a well known property (see for example [6, Th 2.3.3]). Let (xn)n∈N be a

sequence in a topological space. If from any sub-sequence
(
xnk

)

k∈N
we can extract a sub-sub-

sequence
(
xσ(nk)

)

k∈N
converging to x∗, then (xn)n∈N converges to x∗. Indeed suppose that (xn)n∈N

does not converges toward x∗. Then there exist an open set O containing x∗ and a sub-sequence
(
xnk

)

k∈N
such that for all k ∈ N, xnk

/∈ O, and no sub-sub-sequence can converges to x∗, hence a
contradiction.
Let (U

n
)n∈N be a sequence converging in probability to U . We consider the sequence

(
Θ(U

n
)
)

n∈N

in F . We choose a sub-sequence
(
Θ
(
U

nk

))

k∈N
. By assumption

(
U

n

)

n∈N
converges in probability

toward U , thus we have U
nk

→P U . Consequently there exist a sub-sub-sequence U
σ(nk)

converging

almost surely to U , and consequently Θ
(
U

σ(nk)

)
→Θ

(
U
)
. Therefore Θ is sequentially continuous,

and as the topology of convergence in probability is metrizable, Θ is continuous.
Remark 5. This Lemma does not imply the equivalence between convergence almost sure and

convergence in probability as you cannot endow U with the “topology of almost sure convergence”
as almost sure convergence is not generally induced by a topology.
However note that (U

n
)n∈N converges in probability toward U iff from any sub-sequence of

(U
n
)n∈N we can extract a further sub-sequence converging almost surely to U (see [6, Th 2.3.2]).
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4.2. Objective function Let U be a space of random variables on (Ω,F ,P), with value in a
Banach U.

The most classical objective function is given as J(U ) := E
(
j(U )

)
, where j : U→ R is a mea-

surable, bounded cost function. This objective function expresses a risk-neutral attitude; indeed a
random cost with high variance or a deterministic cost with the same expectation are considered
equivalent. Recently in order to capture risk-averse attitudes, coherent risk measures (as defined
in [1]), or more generally convex risk measures (as defined in [7]), have been prominent in the
literature.
Following [21], we call convex risk measure an operator ρ :X →R∪{+∞} verifying
• Convexity: for all λ∈ [0,1] and all X,Y ∈X , we have

ρ
(
λX +(1−λ)Y

)
≤ λρ

(
X
)
+(1−λ)ρ

(
Y
)
;

• Monotonicity: for all X,Y ∈X such that X ≤ Y we have ρ(X)≤ ρ(Y );
• Translation equivariance: for all constant c∈R and all X ∈X , we have ρ(X + c) = ρ(X)+ c ,

where X is a linear space of measurable functions. We focus on the case where X =L∞(Ω,F ,P;R).
Proposition 6. Let U be a set of random variables endowed with the topology of convergence

in probability, and J(U ) := ρ
(
j(U )

)
, where j :U→R is continuous and bounded, and ρ a convex

risk measure. Then, J : U →R is continuous.
Proof Note that as j is bounded, j(U ) ∈ X for any u ∈ U . Then we know that ([21]) there is a

convex set of probabilities P such that

ρ(X ) = sup
Q∈P

EQ

(
X

)
− g(Q) ,

where g is convex and weak*-lowersemicontinuous on the space of finite signed measures on (Ω,F).
Moreover any probability in P is absolutely continuous w.r.t P.

Consider a sequence (U
n
)n∈N of elements of U converging in probability toward U ∈ U . Note

that as j is bounded, we have ρ
(
j(U )

)
<∞ by monotonicity of ρ. By definition of ρ, for all ε > 0

there is a probability Pε ∈P such that

EPε

(
j(U )

)
− g(Pε)≥ ρ

(
j(U )

)
− ε .

As Pε is absolutely continuous w.r.t P, the convergence in probability under P of (U
n
)n∈N implies

the convergence of probability under Pε and in turn the convergence in law under Pε. By definition
of convergence in law we have that

lim
n

EPε

(
j(U

n
)
)
− g(Pε) =EPε

(
j(U )

)
− g(Pε) .

Let η be a positive real, and set ε= η/2, and N ∈N such that for all n≥N ,

|EPε

(
j(U

n
)
)
−EPε

(
j(U )

)
| ≤

η

2
. (13)

Then, recalling that

ρ
(

j
(
U
))

≥EP η
2

(
j(U )

)
− g(P η

2
)≥ ρ

(
j
(
U
))

−
η

2
, (14)

we have that for all n≥N ,

ρ
(
j(U

n
)
)
= sup

Q∈P

EQ

(

j(U
n
)
)

− g(Q)

≥EP η
2

(

j(U
n
)
)

− g
(
P η

2

)

≥EP η
2

(

j(U )
)

− g
(
P η

2

)
by (13),

≥ ρ
(

j(U )
)

− η by (14),
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and thus

ρ
(

j
(
U
))

+
η

2
≥ ρ

(

j
(
U

n

))

≥ ρ
(

j
(
U
))

− η .

Thus limn ρ
(
j(U

n
)
)
= ρ

(
j(U )

)
. Hence the continuity of J .

The assumptions of this Proposition can be relaxed in different ways.
In a first place, if the convex risk measure ρ is simply the expectation then we can simply endow

U with the topology of convergence in law. In this case the continuity assumption on j can also
be relaxed. Indeed if

(
U

n

)

n∈N
converges in law toward U , and if the set K of points where j is

continuous is such that P(U ∈K) = 1, then E
(
j(U

n
)
)
converges toward E

(
j(U )

)
.

Otherwise assume that U is a set of random variables endowed with the topology of convergence
in probability, and that j continuous. Moreover if we can ensure that j(U ) is dominated by some
integrable (for all probability of P) random variable, then J : U → R is continuous. Indeed we
consider a sequence

(
U

n

)

n∈N
almost surely converging to U . We modify the proof of Proposition

6 by using a dominated convergence theorem to show that limnEPε

(
j(U

n
)
)
= EPε

(
j(U )

)
. Lemma

2 concludes the proof.

4.3. Constraint operator We present some usual constraints and how they can be repre-
sented by an operator Θ that is continuous and take values into V.

4.3.1. Almost sure constraint From Lemma 2, we obtain a first important example of
continuous constraints.
Proposition 7. Suppose that U is the set of random variables on

(
Ω,F ,P

)
, with value in U,

endowed with the topology of convergence in probability. Assume that θ :U→V is continuous and
bounded. Then the operator Θ

(
U
)
(ω) := θ

(
U (ω)

)
maps U into V and is continuous.

Proof The function θ being continuous, is also Borel measurable.Thus for all U ∈ U , for all Borel
set V ⊂V, we have

(
Θ(U )

)−1
(V ) = {ω ∈Ω |U (ω)∈ θ−1(V )} ∈ B ,

thus Θ(U ) is F-measurable. Boundeness of θ insure the existence of moment of all order of Θ(U ).
Thus Θ is well defined.
Suppose that

(
U

n

)

n∈N
converges to U almost surely. Then by boundedness of θ, we have that

(∥
∥θ

(
U

n

)
− θ

(
U
)∥
∥
p

V

)

n∈N
is bounded, and thus by dominated convergence theorem we have that

lim
n→∞

θ
(
U

n

)
= θ

(
U
)

in Lp(Ω,F ,P;V) ,

which is exactly
lim
n→∞

Θ
(
U

n

)
=Θ

(
U
)
.

Consequently by Lemma 2 we have the continuity of Θ.
We note that boundedness of θ is only necessary in order to use the dominated convergence

theorem. Thus an alternative set of assumptions is given in the following proposition.
Proposition 8. Let B be a sub-field of F . If U =Lp′

(
Ω,B,P

)
, with the topology of convergence

in probability, and if θ is γ-Hölder, with γ ≤ p′/p then Θ
(
U
)
(ω) := θ

(
U (ω)

)
is well defined and

continuous as an operator mapping U into V.
Proof By definition a function θ mapping U into V is γ-Hölder if there exist a constant C > 0

such that for all u,u′ in U we have

‖θ(u)− θ(u′)‖
V
≤C ‖u−u′‖

γ

U
,

in particular the 1-Hölder continuity is the Lipschitz continuity.
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Following the previous proof we just have to check that the sequence
(∥
∥θ

(
U

n

)
− θ

(
U
)∥
∥
p

V

)

n∈N

is dominated by some integrable variable. The Hölder assumption implies
∥
∥
∥θ

(
U

nk

)
− θ

(
U
)
∥
∥
∥

p

V
≤Cp

∥
∥
∥Unk

−U

∥
∥
∥

pγ

U
.

And as pγ ≤ p′, and U
n
and U are elements of Lp′(Ω,F ,P),

∥
∥
∥Unk

−U

∥
∥
∥

pγ

U
is integrable.

4.3.2. Measurability constraint When considering a dynamic stochastic optimization
problem, measurability constraints are used to represent the nonanticipativity constraints. They
can be expressed by stating that a random variable and its conditional expectation are equal.
Proposition 9. We set U =Lp′

(
Ω,F ,P;U

)
, with p′ ≥ p. Assume that

• either U is equipped with the strong topology, and V is equipped with the strong or weak
topology,

• or U and V are equipped with the weak topology.
If B is a sub-field of F , then Θ

(
U
)
:=E

(
U

∣
∣ B

)
−U , is well defined and continuous.

Proof In a first place note that as p′ ≥ p, and F ′ ⊂F , U ⊂ V; and if V ∈ V then E
(
V

∣
∣ B

)
∈ V

as the conditional expectation is a contraction. Thus for all U ∈ U , we have Θ(U )∈ V.
Consider a sequence (U

n
)n∈N of U strongly converging in Lp′ toward U ∈ U . We have

||Θ
(
U

n

)
−Θ

(
U
)
||p ≤ ||U

n
−U ||p + ||E

(
U

n
−U

∣
∣ B

)
||p

≤ 2||U
n
−U ||p

≤ 2||U
n
−U ||p′ → 0 .

Thus the strong continuity of Θ is proven.
Now consider (U

n
)n∈N converging weakly in Lp′ toward U ∈ U . We have, for all Y ∈Lq,

E

(

E
(
U

n

∣
∣ B

)
·Y

)

= E

(

U
n
E
(
Y

∣
∣ B

))

,

−→
n

E

(

UE
(
Y

∣
∣ B

))

,

= E

(

E
(
U

∣
∣ B

)
Y
)

.

Thus we have the weak convergence of the conditional expectation and therefore of Θ. Finally
as the strong convergence imply the weak convergence we have the continuity from U-strong into
V-weak.
Until now the topology of convergence in probability has been largely used. If we endow U with

the topology of convergence in probability in the previous proposition we will obtain continuity of
Θ on a subset of U . Indeed if a set of random variables Uad such that there exist a random variable
in Lp′

(
Ω,F ,P

)
dominating every random variable in Uad, then a sequence converging almost surely

will converge for the Lp′ norm and we can follow the previous proof to show the continuity of Θ
on Uad.

4.3.3. Risk constraints Risk attitude can be expressed through the criterion or through
constraints. We have seen that a risk measure can be chosen as objective function, we now show
that conditional risk measure can used as constraints.
Let ρ be a conditional risk mapping as defined in [20], and more precisely ρ maps U into V where

U =Lp
(
Ω,F ,P;U

)
and V =Lp

(
Ω,B,P;V

)
, with B ⊂F , and verifies the following properties

• Convexity: for all λ∈ U , λ∈ [0,1] and all X,Y ∈ V, we have

ρ
(
λX +(1−λ)Y

)
≤ λρ

(
X
)
+(1−λ)ρ

(
Y
)
;
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• Monotonicity: for all X,Y ∈ V such that X ≤ Y we have ρ(X)≤ ρ(Y );

• Translation equivariance: for all c∈ V and all X ∈ U , we have ρ(X + c) = ρ(X)+ c .

Proposition 10. Let U be endowed with the topology of convergence in probability, and V

endowed with the strong topology. If ρ is a conditional risk mapping, θ is a continuous bounded

cost function mapping U into R, and a∈ V, then Θ
(
U
)
:= ρ

(

θ
(
U
))

− a is continuous.

Proof Consider a sequence of random variables
(
U

n

)

n∈N
converging in probability toward

U∞. Let π : Lp(Ω,B,P;U) → Lp(Ω,B,P;U) be a selector of V = Lp(Ω,B,P;U), i.e. for any X ∈

Lp(Ω,F ,P;U), π(X )∈X . For any ω ∈Ω, any X ∈Lp(Ω,F ,P;U) we define

ρω(U ) := π(ρ
(
U
)
)(ω) .

Note that for P-almost all ω ∈ Ω, the function Θω(U ) := ρω
(
θ(U )

)
, satisfies the conditions of

Proposition 6. Thus for P-almost all ω ∈ Ω,
(
Θω(Un

)
)

n∈N
converges toward Θω(U∞). Thus we

have shown that
(
Θ(U

n
)
)

n∈N
converges almost surely toward Θ

(
U∞

)
. By boundedness of θ and

monotonicity of ρ we obtain the boundedness of
(
Θ(U

n
)
)

n∈N
. Thus almost sure convergence and

dominated convergence theorem insure that
(
Θ(U

n
)
)

n∈N
converges in Lp toward Θ

(
U∞

)
, hence

the continuity of Θ.

Another widely used risk measure, even if it has some serious drawbacks, is the Value-at-Risk. If

X is a real random variable its value at risk of level α can be defined as V aRα(X ) := inf{F−1
X (α)}

where FX (x) := P(X ≤ x).

Proposition 11. If θ :U→R is continuous, and if U is such that every U ∈ U have a contin-

uous distribution function, then Θ(U ) := V aRα

(

θ
(
U
))

is continuous if we have endowed U with

the topology of convergence in law, and a fortiori for the topology of convergence in probability.

Proof By definition of convergence in law, if U
n
→U in law, then

(
θ
(
U

n

))

n∈N
converges in law

toward θ
(
U
)
and we have, for all x∈R, Fθ(Un)(x)→ Fθ(U )(x). Thus

(
Θ(U

n
)
)

n∈N
converges almost

surely toward Θ(U ), and as Θ(U ) is deterministic, Θ is continuous.

Note that in Proposition 11 the constraint function take deterministic values. Thus considering

the conditional expectation of this constraint yields exactly the same constraint. However consider

a constraint Θ1 : U → R of this form, and another constraint Θ2 : U → V. Then if Θ1 and Θ2 are

continuous, then so is the constraint Θ= (Θ1,Θ2)→R×V. Thus we can apply Theorem 2 on the

coupled constraint.

5. Dual Approximate Dynamic Programming In this section we say a few words about

how the approximation of an almost sure constraint by a conditional expectation – as presented

in section 3 – can be used.

5.1. Presentation of the problem We are interested in an electricity production problem

with N power stations coupled by an equality constraint. At time step t, each power station i have

an internal state X i
t
, and is affected by a random exogenous noise W i

t
. For each power station, and

each time step t, we have a control Qi
t
∈Qad

t,i that must be measurable with respect to Ft where Ft

is the σ-algebra generated by all past noises: Ft = σ
(
W i

s

)

1≤i≤n,0≤s≤t
. Moreover there is a coupling

constraint expressing that the total production must be equal to the demand. This constraint is

represented as
∑N

i=1θ
i
t(Q

i
t
) = 0, where θit is a continuous bounded function from Qad

t,i into V, for all

i∈ [[1, n]]. The cost to be minimized is a sum over time and power stations of all current local cost

Li
t

(
X i

t
,Qi

t
,W i

t

)
.
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Finally the problem reads

min
X ,Q

E

( N∑

i=1

T∑

t=0

Li
t

(
X i

t
,Qi

t
,W i

t

)
)

(15a)

s.t. X i
t+1 = f i

t (X
i
t
,Qi

t
,W i

t
) ∀t, ∀i, (15b)

X i
0 = xi

0 ∀i, (15c)
Qi

t
∈Qad

t,i ∀t, ∀i, (15d)
Qi

t
�Ft ∀t, ∀i, (15e)

N∑

i=1

θit(Q
i
t
) = 0 ∀t, ∀i. (15f)

For the sake of brevity, we denote by A the set of random processes (X ,Q) verifying constraints
(15b), (15c) and (15d).
Let assume that all random variables are in L2 spaces and dualize the coupling constraint (15f).

We do not study here the relation between the primal and the following dual problem (see [15] and
[18] for an alternative formulation involving duality between L1 and its dual).

max
λ∈L2

min
(X ,Q)∈A

E

( N∑

i=1

T∑

t=0

Li
t

(
X i

t
,Qi

t
,W i

t

)
+λtθ

i
t(Q

i
t
)

)

s.t. Qi
t
�Ft ∀t, ∀i.

(16)

We solve this problem using a gradient-like algorithm on λ. Thus for a fixed λ
(k) we have to

solve N problems of smaller size than Problem (16).

min
(X ,U )∈A

E

( T∑

t=0

Li
t

(
X i

t
,Si

t
,W i

t

)
+λ

(k)
t θit(Q

i
t
)

)

s.t. Qi
t
�Ft ∀t, ∀i.

(17)

Note that the process λ
(k) has no given dynamics but can be chosen to be adapted to the

filtration (Ft)t=1,..,T . Consequently solving Problem (17) by Dynamic Programming is possible but
numerically difficult as we need to keep all the past realizations of the noises in the state. In fact
the so-called curse of dimensionality prevent us to solve numerically this problem.
Nevertheless it has recently been proposed in [3] to replace λt by E

(
λt

∣
∣ Y

t

)
, where Y

t
is a

random variable measurable with respect to (Y
t−1,Wt

) instead of λt. This is similar to a decision
rule approach for the dual as we are restraining the control to a certain class, the Y

t
-measurable λ

in our case. Thus Problem (17) can be solved by Dynamic Programming with the augmented state
(X i

t
,Y

t
). It has also been shown that, under some non-trivial conditions, using E

(
λt

∣
∣ Y

t

)
instead

of λt is equivalent to solving

min
(X ,Q)∈A

E

( N∑

i=1

T∑

t=0

Li
t

(
X i

t
,Qi

t
,W i

t

)
)

(18a)

s.t. Qi
t
�Ft ∀t, ∀i, (18b)

E

( N∑

i=1

θit(Q
i
t
)
∣
∣
∣ Yt

)

= 0 ∀t, ∀i. (18c)

Problem (18) is a relaxation of Problem (15) where the almost sure constraint (15f) is replaced by
the constraint (18c). Now consider a sequence of information processes (Y (n))n∈N each generating
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a σ-algebra Fn, and their associated relaxation (Pn) (as specified in Problem 18) of Problem (15)
(denoted (P)). Those problems correspond to Problems (11) and (12) with

J(U ) =E

( N∑

i=1

T∑

t=0

Li
t

(
X i

t
,Qi

t
,W i

t

)
)

,

where U = (Q(i))i∈[[1,N ]] and X i
t
follow the dynamic equation (15b). We also have

Θt(Ut
) =

N∑

i=1

θit(Q
i
t
)

and Ct = {0}.
Assume that for all t∈ [[1, T ]], and all i∈ [[1,N ]] the cost functions Li

t and constraint function θit
are continuous, and that Qad

t,i is a compact subset of an euclidian space. Moreover we assume that
the noise variables W i

t
are essentially bounded. Finally we endow the space of control processes

with the topology of convergence in probability. Then by induction we have that the state processes
and the control processes are essentially bounded, thus so is the cost Li

t

(
X i

t
,U i

t
,W i

t

)
. Thus the

cost function can be effectively replaced by bounded functions. Consequently Proposition 6 insures
that J is continuous if U is equipped with the topology of convergence in probability. Similarly
Proposition 7 insures that Θ is continuous.

Thus Theorem 4 implies that our sequence of approximated problems (Pn) converges toward the
initial problem (P). More precisely assume that (U

n
)n∈N is a sequence of εn-optimal solution of Pn,

i.e. U
n
verifying constraint (18c) and J(U

n
)< infU∈Uad

n
+εn, with (εn)n∈N a sequence of positive

real number converging to 0. Then we can extract a subsequence (U
nk
)k∈N converging almost surely

to an optimal solution of (P), and the limit of the approximated value of (Pn) converges to the
value of (P).

Conclusion In this paper we have used the standard theory of epiconvergence on a stochastic
optimization framework combined with results on the Kudo convergence of σ-algebras. The abstract
continuity conditions have been shown on some interesting frameworks under more classical condi-
tions. Consequently most objective functions and constraints of a stochastic optimization problem,
including tools such as convex conditional risk measures, are continuous as operators, and thus lead
to a converging relaxation. Finally this relaxation naturally appears in a spatial decomposition-
coordination approach in multistage stochastic optimization problem known as DADP.

Acknowledgments. The author thanks P.Carpentier, J.P.Chancelier and M.De Lara for their
useful help and comments on this paper.
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