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Abstract

In this paper we consider the relaxation of a dynamic stochastic
optimization problem where we replace a stochastic constraint - for
example an almost sure constraint - by a conditional expectation con-
straint. We show an epiconvergence result relying on the Kudo con-
vergence of σ−algebra and continuity of the objective and constraint
operators. We also present some classicals constraints in stochastic
optimization and give some conditions insuring their continuity. We
conclude with a decomposition algorithm that uses such a relaxation.

1 Introduction

Mathematical optimization is concerned with the problem of minimizing an
objective function J mapping a set U into R∪{+∞} over a set of admissible
controls Uad ⊂ U . In the field of stochastic optimization the space of control
variable U is a space of random variables on a probability space (Ω,F ,P)
with value in a set U, and most of the time the objective function J is
given as J(U ) = E(j(U )), where j is a function mapping U into R∪{+∞}.
Consider the following problem

min
U∈U

E
(
j(U )

)
, (1a)

s.t. Θ(U ) = 0 . (1b)

If Ω is not finite solving this problem is extremely difficult as U is of infinite
dimension. Thus there is a need to approximate Problem (1). In order to
give theoretical results for the approximations of an optimization problem
the right notion of convergence is the epi-convergence. Indeed, under some
additional technical conditions, if a sequence of functions J̃n epi-converge to-
wards J̃ then the sequence of minimizers of J̃n converges toward a minimizer
of J̃ .
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A first idea consist in approximating the probability P. Roughly speaking
the Sample Average Approximation (see [8] and reference therein) procedure
consist in simulating a set of scenarios under the real probability P. Then we
solve Problem (1) under the empirical probability uniform on the simulated
scenarios. Intuitively the Law of Large Number gives theoretical foundation
for this method and there is a lot of litterature on this approach. To be more
precise there is a number of epi-convergence results for those approximations
(see [4] [7] or [19]). More generally the idea of discretizing or quantizing Ω,
for example by use of finite scenario trees have been largely studied in the
field of Stochastic Programming (see [18] for a thorough presentation).

However in those approach the constraints, and especially the informa-
tion constraints, are quite difficult to take into accounts. Therefore we pro-
pose a way to approximate constraints, especially almost sure constraints.
The main idea is to replace a constraint by its conditional expectation. This
is in some sense an aggregation of constraints. This approximation appears
when considering duality schemes for dynamic stochastic optimization prob-
lem. More precisely if we replace an almost sure constraint by its conditional
expectation with respect to (w.r.t.) a σ-algebra B, then if there exist an
optimal Lagrange multiplier, then there is an optimal Lagrange multiplier
measurable w.r.t. B. Consequently if B is well chosen then a decomposition-
coordination approach can be used to solve the approximated problem. This
is presented in the last part of our paper. Note that in this case the approxi-
mation can be seen as a decision rule approach in the dual, where we choose
to restrict the multiplier in the class of B-measurable random variables.

The paper is organized as follows. Section 2 presents the general form
of the problem considered and its relaxation. Section 3 shows conditions on
the sequence of approximate problems guaranteeing its convergence toward
the initial problem. The main assumptions are the Kudo’s convergence of
σ−algebra, and the continuity - as operators - of the constraint function Θ
and objective function J . Section 4 give some examples of continuous ob-
jective and constraint functions that represents some usual stochastic opti-
mization problems. Finally section 5 presents a decomposition-coordination
algorithm using this type of relaxation.

2 Problem statement

We consider a probability space (Ω,F ,P). We denote by Lp(Ω,F ,P;U)
the set of random variables U with value in a Banach space U such that
E
( ∥
∥U

∥
∥p

)
< +∞.

We consider a stochastic optimization problem
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min
U∈U

J(U ) , (2a)

s.t. Θ(U ) ∈ −C . (2b)

Where the criterion J maps U into R∪{+∞}; the operator of contraint
Θ maps U into V, with V := Lp

(
Ω,F ,P;V

)
, and p ∈ [1,∞). We specify

V because the convergence result rely on a result on random variables in
Lp; strictly speaking no assumption are required on U , however it is often
Lp(Ω,F ,P;U) for some p in [1,∞]. We assume that C ⊂ V is a closed convex
cone of V, and that U and V are separable Banach spaces with separable
dual. The fact that C is a cone is not essential for our results.

The problem is static for now, but we will later consider a dynamic
problem.

The usual choice for the criterion is the expected cost J(U ) := E
(
j(U )

)
,

where j : U → R. Other choices could be risk measures (see [1] for example)
like Conditional-Value-at-Risk (see [13] for a definition), worst-case or robust
approaches and many others. Θ is also very general, and can represent, for
example,

• almost sure constraints : Θ
(
U
)
(ω) := θ

(
U (ω)

)
, where θ maps U into

V and θ
(
U
)
∈ C is realized almost surely;

• measurability constraints : Θ
(
U
)
:= E

(
U

∣
∣ B

)
−U , with C = {0}, as

U is measurable with respect to the σ-algebra B iff E
(
U

∣
∣ B

)
= U ;

• risk constraint : Θ
(
U
)
:= ρ(U ) − a, where ρ is a risk measure, and

C = R+,

• or probability constraint : Θ
(
U
)
:= P

(
U ∈ A

)
− p, with C = R+,

that is P
(
U ∈ A

)
≥ p.

We consider a sequence (Fn)n∈N of sub-fields of F , not necessarily a
filtration. This sequence approximate in some sense F , and might not be
finitely generated. The closed convex cone of constraint C is said to be
eventually stable w.r.t. projection on Fn, if for all n ∈ N large enough we
have

∀V ∈ C, E(V | Fn) ∈ C . (3)

Let us consider the relaxation of Problem (2)

min
U∈U

J(U ) , (4a)

s.t. E
(
Θ(U )

∣
∣ Fn

)
∈ −C . (4b)
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We denote the set of admissible controls of Problem (2)

Uad :=
{
U ∈ U

∣
∣ Θ(U ) ∈ −C

}
, (5)

and the corresponding set of admissible controls of problem (4)

Uad
n :=

{
U ∈ U

∣
∣ E

(
Θ(U )

∣
∣ Fn

)
∈ −C

}
. (6)

Let us note that problems (2) and (4) can also be written1

min
U∈U

J(U ) + χ
Uad

(U )
︸ ︷︷ ︸

:=J̃(U )

, (7)

and
min
U∈U

J(U ) + χ
Uad
n
(U )

︸ ︷︷ ︸

:=J̃n(U )

. (8)

Note that if we have Fn ⊂ Fn′ then Uad
n ⊂ Uad

n′ ⊂ Uad, and in particular
the problem (4) is indeed a relaxation of the original problem (2) as it has
the same objective function but a wider set of admissible controls.

This is very similar to an aggregation constraint. Consider a finite set
Ω = {ωi}i∈[[1,n]], with a probability P such that, for all i ∈ [[1, n]], we have
P(ωi) = pi > 0. Consider a partition B = {Bl}l∈[[1,L]] of Ω, and the filtration
F generated by B. Assume that C = {0}, then the relaxation presented
replace the constraint

θ(U ) = 0 a.s.

explicitely written as n constraints

θ(U (ωi)) = 0 ∀i ∈ [[1, n]] ,

by the collection of L constraints
∑

i∈Bl

piθ(U (ωi)) = 0 ∀l ∈ [[1, L]] .

3 Epiconvergence result

Let fix some notations. Assume that p ∈ [1,+∞) and denote q ∈ (1,+∞]
such that 1/q+1/p = 1. Let E be a separable Banach space with separable
dual E′.

We say that a sequence (Xn)n∈N of Lp(Ω,F ,P;E) converges strongly
toward X ∈ Lp(Ω,F ,P;E), and write Xn →Lp X if

lim
n→∞

E
( ∥
∥Xn −X

∥
∥p

)
= 0 .

1We use the notation χ
A
(x) for the characteristic function of A, that is the function

with value 0 if x ∈ A, and +∞ elsewhere.
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We say that a sequence (Xn)n∈N of Lp(Ω,F ,P;E) weakly converges toward
X ∈ Lp(Ω,F ,P;E), and write Xn ⇀Lp X if

∀X ′ ∈ Lq(Ω,F ,P;E′) lim
n→∞

E
(
〈Xn −X ,X ′〉E,E′

)
= 0 .

See [15] for more information or properties on this convergences.
A sequence of function (Jn)n∈N epi-converge toward a function J if the

sequence of epigraphs of Jn converges toward the epigraph of J , where the
convergence of sets is the Painlevé-Kuratowski convergence. For precise defi-
nitions and properties of epi-convergence in finite dimension see Rockafellar-
Wets [12], and Attouch [2] for infinite dimension.

If F is a σ-algebra and (Fn)n∈N is a sequence of sub-fields of F , we
say that (Fn)n∈N Kudo-converges toward the sub-fields F∞, and denote

Fn → F∞ if for all set F ∈ F , we have that
(

E
(
1F

∣
∣ Fn

))

n∈N
converges

in probability toward E
(
1F

∣
∣ F∞

)
. In [9] Kudo shows that it is equivalent

to saying that for all integrable random variable X we have E
(
X

∣
∣ Fn

)

converging in L1 toward E
(
X

∣
∣ F∞

)
.

3.1 Preliminaries

We begin by a Lemma from Piccinini [10] that extends the convergence in
L1 to the convergence in Lp in the strong or weak sense.

Lemma 1. Let
(
Fn

)

n∈N
be a sequence of σ−algebra. The following state-

ments are equivalent :

1. Fn → F∞.

2. ∀X ∈ Lp(Ω,F ,P;E), E
(
X

∣
∣ Fn

)
→Lp E

(
X

∣
∣ F∞

)
.

3. ∀X ∈ Lp(Ω,F ,P;E), E
(
X

∣
∣ Fn

)
⇀Lp E

(
X

∣
∣ F∞

)
.

And we have the following corollary where both the random variable and
the σ-algebra are parametrized by n.

Corollary 1. Let
(
Fn

)

n∈N
be a sequence of σ-algebra. If Fn → F∞, and

Xn →Lp X (resp. Xn ⇀Lp X ) then E
(
Xn

∣
∣ Fn

)
→Lp E

(
X

∣
∣ F∞

)
(resp.

E
(
Xn

∣
∣ Fn

)
⇀Lp E

(
X

∣
∣ F∞

)
).

Proof. The weak-limit case is explicited in [10]. We show the strong conver-
gence case. If Xn →Lp X , then

||E
(
Xn

∣
∣ Fn

)
− E

(
X

∣
∣ F

)
||Lp ≤ ||E

(
Xn

∣
∣ Fn

)
− E

(
X

∣
∣ Fn

)
||Lp

+ ||E
(
X

∣
∣ Fn

)
− E

(
X

∣
∣ F

)
||Lp

And we have

||E
(
Xn

∣
∣ Fn

)
− E

(
X

∣
∣ Fn

)
||Lp ≤ ||Xn −X ||Lp → 0 ,
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as the conditional expectation is a contraction. And we have

||E
(
X

∣
∣ Fn

)
− E

(
X

∣
∣ Fn

)
||Lp → 0

by Lemma 1.

3.2 Epiconvergence in the general case

We can now present our main result.

Theorem 2. Let U be endowed with a topology τ , and V = Lp
(
Ω,F ,P;V

)
be

endowed with the strong or weak topology (p being in [1,∞)). Assume that C
is eventually stable by projection w.r.t (Fn)n∈N If Θ and J are continuous,
and if (Fn)n∈N Kudo-converges to F , then J̃n∈N epi-converges to J̃ .

Proof. In a first place we recall the definition of the Painlevé-Kuratowski
convergence of set. Let E be a topologic space and consider a sequence
(An)n∈N of subset of E. Then the inner limit of (An)n∈N is the set of
accumulation points of any sequence (xn)n∈N such that xn ∈ An, i.e,

limnAn = {x ∈ E | ∀n ∈ N, xn ∈ An, lim
k→∞

xn = x} .

the outer limit of (An)n∈N is the set of accumulation points of any sequence
(xnk

)k∈N such that xnk
∈ Ak, i.e,

limnAn = {x ∈ E | ∃(nk)k∈N, ∀k ∈ N, xnk
∈ Ak, lim

k→∞
xnk

= x} .

We say that (An)n∈N converges toward A in the Painlevé-Kuratowski sense
if

A = limnAn = limnAn .

To prove the epi-convergence of (J̃n)n∈N toward J̃ it is sufficient to show
that Uad

n converges toward Uad in the Painlevé-Kuratowski sense. Indeed it
implies the epiconvergence of (χ

Uad
n
)n∈N toward χ

Uad
, and adding a contin-

uous function conserve the epi-convergence (Attouch [2, Th 2.15] ).
By stability of C for projection w.r.t. (Fn)n∈N we have that, for all

n ∈ N, Uad ⊂ Uad
n and thus Uad ⊂ limn Uad

n .
We show that Uad ⊃ limn Uad

n . Let us take an element U of limn Uad
n .

By definition there is a sequence (Unk
)k that τ−converges to U , such that

for all k ∈ N, E
(
Θ(Unk

)|Fnk

)
∈ −C.

As Θ is continuous, we have Θ(Unk
) → Θ(U ) strongly (resp weakly) in

Lp. Moreover we have that Fnk
→ F , consequently by Corollary 1

E
(
Θ(Unk

)|Fnk

)
→ E

(
Θ(U )|F

)
,

and thus Θ(U ) is the limit of a sequence in −C, and by closedness of C
(weak and strong as C is convex2) Θ(U) ∈ −C.

2if C is non-convex we need it to be sequentially closed.
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The practical consequences on our relaxed problem is given in the fol-
lowing Corollary.

Corollary 3. If
(
Fn

)
→ F , J and Θ are continuous, then we have the

sequence of Problems (4) approximate Problem (2) in the following sense.
If (Un)n∈N is a sequence of control such that for all n ∈ N,

J̃n(Un) < inf
U∈U

J̃n(U ) + εn, where lim
n

εn = 0,

then, for every converging sub-sequence (Unk
)k∈N, we have

J̃(lim
k

Unk
) = min

U∈U
J̃(U ) = lim

k
J̃nk

(
Unk

)

Moreover if
(
Fn

)
is a filtration, then the convergences are monotonous in

the sense that the optimal value is non-decreasing.

Proof. The convergence result is a direct application of Attouch [2, Th. 1.10,
p. 27]. Monotonicity is given by the fact that, if (Fn)n∈N is a filtration, then
for n > m then Uad

n ⊂ Uad
m .

3.3 Dynamic Problem

We extend Problem (2) into the following dynamic problem

min J(U ),

s.t. Θ(Ut) ∈ −Ct ∀t ∈ [[1, T ]].
(9)

WhereU is a stochastic process of control (Ut)t∈[[1,T ]] defined on (Ω,F ,P)
with value in U. We have T constraints operators Θt with value in Lp(Ω,Ft,P),
where (Ft)t∈[[1,T ]] is a sequence of σ-algebra3. Then, for each t we define a
sequence of approximating σ-algebra (Fn,t)n∈N. For all t ∈ [[1, T ]], Ct is a
closed convex cone stable with respect to the projection on each Fn,t for
n ∈ N.

Finally we consider the sequence of approximated problem

min J(U ) ,

s.t. E
(
Θ(Ut)

∣
∣ Fn,t

)
∈ −Ct ∀t ∈ [[1, T ]] .

(10)

Furthermore we denote

Uad
t :=

{
Ut ∈ Ut

∣
∣ Θ(Ut) ∈ −Ct

}
, (11)

and
Uad
n,t :=

{
Ut ∈ Ut

∣
∣ E

(
Θ(Ut)

∣
∣ Fn

)
∈ −Ct

}
. (12)

3even if it is usually a filtration, it is not necessary.
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Thus we have the set of admissible control for the original problem

Uad = Uad
0 × · · · × Uad

T ,

and accordingly for the relaxed problem

Uad
n = Uad

n,0 × · · · × Uad
n,T .

In order to show the convergence of the approximation proposed here we
consider the functions

J̃(U ) = J(U ) + χUad(U ) ,

and
J̃n(U ) = J(U ) + χUad

n
(U ) ,

and show the epi-convergence of J̃n to J̃ .

Theorem 4. If Θ and J are continuous, and if for all t ∈ [[1, T ]] (Ft,n)n∈N
Kudo-converges to Ft, then J̃n epi-converges to J̃ .

Proof. The proof is deduced from the proof of Theorem 2. By following the
same steps we obtain the Painlevé-Kuratowski convergence of Uad

n,t to Uad
t ,

and thus the convergence of their cartesian products.

4 Examples

The assumption of continuity on J and Θ are not very usual as they are
operators, that is they take random variables as arguments, consequently in
this section we will give some examples of continuous Θ and J . We do not
aim at exhaustivity but only gives some very classical examples and proofs
that can be adapted to other cases.

4.1 A technical Lemma

We give a lemma that allow us to prove convergence for the topology of
convergence in probability by considering sequence of random variables con-
verging almost surely.

Lemma 2. Let Θ : U → V, where U is a set of random variable endowed
with the topology of convergence in probability, and (V, τ) is a topological
space. Assume that Θ is such that if (Un)n∈N converges almost surely toward
U then Θ(Un) →τ Θ(U ). Then Θ is continuous for the topology of the
convergence in probability.
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Proof. We recall first a well known property (see for example [5, Th 2.3.3]).
Let (xn)n∈N be a sequence in a topological space. If from any subsequence
(
xnk

)

k∈N
we can extract a sub-subsequence

(
xσ(nk)

)

k∈N
converging to x∗,

then (xn)n∈N converges to x∗. Indeed suppose that (xn)n∈N does not con-
verges toward x∗. Then there exist an open set O containing x∗ and a sub-
sequence

(
xnk

)

k∈N
such that for all k ∈ N, xnk

/∈ O, and no sub-subsequence
can converges to x∗, which is a contradiction.

Let (Un)n∈N be a sequence converging in probability to U . We consider
the sequence

(
Θ(Un)

)

n∈N
in V. We choose a subsequence

(
Θ
(
Unk

))

k∈N
, and

we have Unk
→P U . Thus there exist a sub-subsequence U

σ(nk)
converging

almost surely to U , and consequently Θ
(
U

σ(nk)

)
→ Θ

(
U
)
. Therefore Θ is

sequentially continuous, and as the topology of convergence in probability
is metrizable, Θ is continuous.

Let us note that the convergence in probability of (Un)n∈N toward U is
equivalent to saying that from any subsequence of (Un)n∈N there is a further
subsequence converging almost surely to U (see [5, Th 2.3.2]). Remark that
this Lemma does not imply the equivalence between convergence almost sure
and convergence in probability as you can not endow U with the “topology
of almost sure convergence” as almost sure convergence is not induced by a
topology.

4.2 Objective function

Let U be a set of random variables on (Ω,F ,P).
The most classical objective function is given as J(U ) := E

(
j(U )

)
,

where j : U → R is a pointwise bounded cost function. This objective func-
tion represent a risk-neutral attitude as a random cost with high variance
or a deterministic cost with the same expectation are considered equivalent.
Recently in order to modelize risk-averse attitude coherent risk measures as
defined in [1], or more generally convex risk measures as defined in [6], have
been proeminent in the litterature.

Following [17] and reference therein we call a convex risk measure an
operator ρ : L∞

(
Ω,F ,P

)
→ R ∪ {+∞} defined by

ρ(X ) := sup
Q∈P

EQ

(
X

)
− g(P) ,

where P is a set of probabilities on (Ω,F) absolutely continuous w.r.t. P,
and g maps P into R.

Proposition 5. Let U be a set of random variable endowed with the topology
of convergence in probability, and J(U ) := ρ

(
j(U )

)
, where j : U → R is

continuous and bounded, and ρ a convex measure of risk. We have that
J : U → R is continuous.
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Proof. Consider a sequence (Un)n∈N of U converging in probability toward
U ∈ U . Note that as j is bounded we have ρ

(
j(U )

)
< ∞. By definition of

ρ, for all ε > 0 there is a probability Pε ∈ P such that

EPε

(
j(U )− g(Pε)

)
≥ ρ

(
j(U )

)
− ε .

As Pε is absolutely continuous w.r.t P, the convergence in probability under
P of (Un)n∈N imply the convergence of probability under Pǫ and in turn the
convergence in law under Pǫ. By definition of convergence in law we have
that

lim
n

EPε

(
j(Un)

)
− g(Pε) = EPε

(
j(U )

)
− g(Pε) .

It is easy to see that limn ρ◦ j(Un) = ρ◦ j(U ). Indeed let η be a positive
real, and set ǫ = η/2, and N ∈ N such that

|EPε

(
j(Un)

)
− EPε

(
j(U )

)
| ≤

η

2
.

Then, recalling that

ρ ◦ j
(
U
)
≥ EP η

2

(
j(U )

)
− g(P η

2

) ≥ ρ ◦ j
(
U
)
−

η

2
,

we have that for all n ≥ N ,

ρ ◦ j
(
U
)
+

η

2
≥ ρ ◦ j

(
Un

)
≥ ρ ◦ j

(
U
)
− η .

Note that if the convex risk measure ρ is simply the expectation then we
can simply endow U with the topology of convergence in law.

More generally, if U is a set of random variables endowed with the topol-
ogy of convergence in probability, and j continuous such that j(U ) is dom-
inated by some integrable random variable, then J : U → R is continuous.
Indeed from Lemma 2 we know that we can consider a sequence Un almost
surely converging to U , and we show that limn E

(
j(Un)

)
= E

(
j(U )

)
using

a dominated convergence theorem.
The continuity assumption on j can also be relaxed. Indeed if

(
Un

)

n∈N

converges in law toward U , and if the set K of points where j is continuous
is such that P(U ∈ K) = 1, then E

(
j(Un)

)
converges toward E

(
j(U )

)
.

4.3 Constraint operator

We present some usual constraints and how they can be represented by an
operator Θ that is continuous and take values into V = Lp(Ω,F ,P).
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4.3.1 Almost sure constraint

From Lemma 2 we obtain a first important example of continuous con-
straints,

Proposition 6. If U is the set of random variable on
(
Ω,B,P

)
, with the

topology of convergence in probability, and if θ : U → V is continuous and
bounded, then Θ

(
U
)
(ω) := θ

(
U (ω)

)
is continuous. Moreover if B ⊂ F ,

then Θ
(
U
)
∈ V.

Proof. Suppose that Un converges to U almost surely, then by boundeness

of θ we have that
(∥
∥
∥θ

(
U

n)

)
− θ

(
U
)
∥
∥
∥

p

V

)

n∈N
is bounded, and thus by domi-

nated convergence theorem we have that

lim
k→∞

θ
(
Un

)
= θ

(
U
)

in Lp .

Consequently by Lemma 2 we have the continuity of Θ. As θ is continuous
it is Borel measurable thus for all U ∈ U , for all Borel set V ⊂ V we have

(
Θ(U )

)−1
(V ) = {ω ∈ Ω | U (ω) ∈ θ−1(V )} ∈ B ,

thus Θ(U ) is B measurable. Boundeness of θ insure the existence of moment
of all order of Θ(U ). Thus if B ⊂ F then Θ(U ) ∈ V.

We note that boundeness of θ is only necessary in order to use the domi-
nated convergence theorem. Thus an alternative set of assumptions is given
in the following proposition.

Proposition 7. If U = Lp′
(
Ω,B,P

)
, with the topology of convergence in

probability, and if θ is γ−Holdër, with γ ≤ p′/p then Θ
(
U
)
(ω) := θ

(
U (ω)

)

is continuous. Moreover if B ⊂ F , then Θ
(
U
)
∈ V.

Proof. By definition a function θ mapping U into V is γ−Holdër iff there
exist a constant C > 0 such that for all u, u′ in U we have

∥
∥θ(u)− θ(u′)

∥
∥
V
≤ C

∥
∥u− u′

∥
∥
U

,

in particular the 1-Holdër continuity is the Lipschitz continuity.
Following the preceding proof we just have to verify that the sequence(∥

∥θ
(
Un

)
− θ

(
U
)∥
∥p

V

)

n∈N
is dominated by some integrable variable. With

our assumption we have
∥
∥
∥θ

(
Unk

)
− θ

(
U
)
∥
∥
∥

p

V
≤ Cp

∥
∥
∥Unk

−U

∥
∥
∥

pγ

U
.

And as pγ ≤ p′, and Un and U are elements of Lp′(Ω,F ,P),
∥
∥
∥Unk

−U

∥
∥
∥

pγ

U
is integrable.
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4.3.2 Measurability constraint

Measurability constraints are extremely important in a dynamic setting.
They can be represented by stating that a random variable and its condi-
tional expectation are equal.

Proposition 8. We set U = Lp′
(
Ω,F ′,P

)
, with p′ ≥ p and F ′ ⊂ F . If U is

equipped with the strong topology then V is either equipped with the strong or
weak topology, and if U is equipped with the weak topology then V is equipped
the weak topology. If B is a sub-σ-algebra of F , then Θ

(
U
)
:= E

(
U

∣
∣ B

)
−U ,

is continuous. Moreover for all U ∈ U , we have Θ
(
U
)
∈ V.

Proof. In a first place note that as p′ ≥ p, and F ′ ⊂ F , U ⊂ V; and if V ∈ V
then E

(
V

∣
∣ B

)
∈ V as the conditional expectation is a contraction.Thus for

all U ∈ U , we haveΘ(U ) ∈ V.
Consider a sequence (Un)n∈N of U converging strongly in Lp toward

U ∈ U . We have

||Θ
(
Un

)
−Θ

(
U
)
||p ≤ ||Un −U ||p + ||E

(
Un −U

∣
∣ B

)
||p ,

≤ 2||Un −U ||p ,

≤ 2||Un −U ||p′ → 0 .

Thus the strong continuity of Θ is proven.
Now consider (Un)n∈N converging weakly in Lp toward U ∈ U , we have,

for all Y ∈ Lq,

E

(

E
(
Un

∣
∣ B

)
Y
)

= E

(

UnE
(
Y

∣
∣ B

))

,

−→
n

E

(

UE
(
Y

∣
∣ B

))

,

= E

(

E
(
U

∣
∣ B

)
Y
)

.

Thus we have the weak convergence of the conditional expectation and there-
fore of Θ. Finally as the strong convergence imply the weak convergence we
have the continuity from U -strong into V-weak.

Until now the topology of convergence in probability has been largely
used. In order to be endow U with the topology of convergence in proba-
bility in the previous proposition we need some stronger assumption on U .
Indeed if U is a set of probabilities such that there exist a random variable in
Lp′

(
Ω,F ′,P

)
dominating every random variable in U , then a sequence con-

verging almost surely will converge in for the Lp′ norm and we can follow
the previous proof to show the continuity of Θ.

12



4.3.3 Risk constraints

There is a lot of different ways to incorporate risk constraints in an optimiza-
tion problem, we have seen that a risk measure can be choosen as objective
function, and we show that it can also be used as a constraint.

Let ρ be a conditional risk mapping as defined in [16], that is ρ maps U
into V where V ⊂ U are linear spaces of real-valued functions φ(ω), ω ∈ Ω,
measurable with respect to FU and FV respectively (FV ⊂ FU ). For each
ω ∈ Ω we define

ρω(U ) := [ρ(U )](ω)

and we have in particular that ρω is a convex function.

Proposition 9. If ρ is a conditional risk mapping, j is a cost function
mapping U into R, and a ∈ V, then Θ

(
U
)
:= ρ ◦ j

(
U
)
− a is continuous

on the interior of its domain if U and V are equipped with the topology of
convergence in probability.

Proof. Let Un be a sequence of random variables in the interior of the do-
main of ρ ◦ j converging almost surely to U . Thus for almost all ω ∈ Ω,
Un(ω) ∈ int(dom(ρω ◦ j)), and as ρω ◦ j is convex, we obtain ρω ◦ j(Un) →
ρω ◦ j(U ). Thus ρ ◦ j(Un) converges almost surely toward ρ ◦ j(U ) and
Lemma 2 achieve the proof.

Note that if j is bounded then dom(ρ ◦ j) = U .
Another widely used risk measure, even if it has some serious drawback,

is the Value-at-Risk. If X is a real random variable it’s value at risk of level
α can be defined as V aRα(X ) := inf{F−1

X
(α)} where FX (x) := P(X ≤ x).

Proposition 10. If j : U → R is continuous, and U such that every U ∈ U

have a continuous distribution function, then Θ(U ) := V aRα

(

j
(
U
))

is

continuous if we have endowed U with the topology of convergence in law,
and a fortiori for the topology of convergence in probability.

Proof. By definition of convergence in law, if Un → U in law, we have, for
all x ∈ R, FUn

(x) → FU (x), which means that Θ(Un) → Θ(U ) almost
surely, and as Θ(j(U )) is deterministic, Θ is continuous.

5 Dual Approximate Dynamic Programming

In this section we will say a few words about how this approximation can
be used.
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5.1 Presentation of the problem

We are interested in an electricity production problem with N power sta-
tions. Each power station i have an internal state X

i
t at time step t, and

is affected by a random exogenous noise W
i. For each power station, and

each time step, we have a control U i
t ∈ Uad

t,i that must be measurable with

respect to Ft (denoted U
i
t � Ft) where Ft is the sigma algebra generated by

all past noises : Ft = σ
(
W

i
s

)

1≤i≤n,0≤s≤t
. Moreover there is a coupling con-

straint saying that the total production must be equal to the demand. It is
represented as

∑N
i=1θ

i
t(U

i
t ) = 0, where θi is a continuous bounded function

from U into V, for all i ∈ [[1, n]]. The cost to be minimized is a sum over
time and power stations of all current local cost Li

t

(
X

i
t ,U

i
t ,W

i
t

)
.

Finally the problem reads

min
X ,U

E

( N∑

i=1

T∑

t=0

Li
t

(
X

i
t ,U

i
t ,W

i
t

)
)

(13a)

X
i
t+1 = f i

t (X
i
t ,U

i
t ,W

i
t ) ∀t, ∀i, (13b)

X
i
0 = xi0 ∀i, (13c)

U
i
t ∈ Uad

t,i ∀t, ∀i, (13d)

U
i
t � Ft ∀t, ∀i, (13e)

N∑

i=1

θit(U
i
t ) = 0 ∀t, ∀i, (13f)

Let assume that all random variable are in L2 spaces and dualize the cou-
pling constraint. We do not study here the relation between the primal and
the following dual problem (see [11] and [14] for an alternative formulation
involving duality between L1 and its dual).

max
λt∈L2

min
X ,U

E

( N∑

i=1

T∑

t=0

Li
t

(
X

i
t ,U

i
t ,W

i
t

)
+ λtθ

i
t(U

i
t )

)

X
i
t+1 = f i

t (X
i
t ,U

i
t ,W

i
t ) ∀t, ∀i,

X
i
0 = xi0 ∀i,

U
i
t ∈ Uad

t,i ∀t, ∀i,

U
i
t � Ft ∀t, ∀i,

(14)

We solve this problem with a gradient-type algorithm on λ. Thus for a
fixed λ(k) we have to solve N problems of smaller size
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min
X ,U

E

( T∑

t=0

Li
t

(
X

i
t ,U

i
t ,W

i
t

)
+ λ

(k)
t θit(U

i
t )

)

X
i
t+1 = f i

t (X
i
t ,U

i
t ,W

i
t ) ∀t,

X
i
0 = xi0

U
i
t ∈ Uad

t,i ∀t,

U
i
t � Ft ∀t,

(15)

However the process λ(k) can be choosen to be adapted to the filtration
(Ft)t=1,..,T . Consequently solving Problem (15) by Dynamic Programming is
possible but numerically difficult as we need to keep all the past realisations
of the noises in the state. Consequently the so-called curse of dimensionality
prevent us to solve numerically this problem.

Nevertheless it has recently been proposed in [3] to use E
(
λt

∣
∣ Yt

)
where

Yt is a random variable measurable with respect to (Yt−1,Wt) instead of
λt. This is comparable to a decision rule approach for the dual as we are
restraining the control to a certain class, the Yt-measurable λ in our case.
Thus (Xi

t ,Yt) is a state for Problem (15), which can be solved by Dynamic
Programming (or another method). It has also been shown that, under some
non-trivial conditions, using E

(
λt

∣
∣ Yt

)
instead of λt is equivalent to solving

min
X ,U

E

( N∑

i=1

T∑

t=0

Li
t

(
X

i
t ,U

i
t ,W

i
t

)
)

(16a)

X
i
t+1 = f i

t (X
i
t ,U

i
t ,W

i
t ) ∀t, ∀i, (16b)

X
i
0 = xi0 ∀i, (16c)

U
i
t ∈ Uad

t,i ∀t, ∀i, (16d)

U
i
t � Ft ∀t, ∀i, (16e)

E

( N∑

i=1

θit(U
i
t )

∣
∣
∣ Yt

)

= 0 ∀t, ∀i. (16f)

Thus Problem (16) is a relaxation of Problem (13) where the almost
sure constraint (13f) is replaced by the constraint (16f). Now consider a
sequence of information processus (Y (n))n∈N each generating a σ−algebra
Fn, and their associated relaxation (Pn) (as specified in Problem 16) of
Problem (13) (denoted (P)). Those problems corresponds to Problems (9)
and (10) with

J(U ) = E

( N∑

i=1

T∑

t=0

Li
t

(
X

i
t ,U

i
t ,W

i
t

)
)

,
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where U = (U (i)) and X
i
t follow the dynamic equation (13b). We also have

Θt(Ut) =

N∑

i=1

θit(U
i
t )

and Ct = {0}.
From now on we assume that for all t ∈ [[1, T ]], and all i ∈ [[1, N ]] the

cost functions Li
t and constraint function Θi

t are continuous, and that Uad
t,i is

a compact subset of an euclidian space. Moreover we assume that the noise
variables W i

t are essentially bounded. Finally we endow the space of control
processes with the topology of convergence in probability. Then by induction
we have that the state processes and the control processes are essentially
bounded, thus so is the cost Li

t

(
X

i
t ,U

i
t ,W

i
t

)
. Thus the cost function can

be effectively replaced by bounded functions. Consequently Proposition 5
insure that J is continuous if U is equipped with the topology of convergence
in probability. Similarly Proposition 6 insure that Θ is continuous.

Thus Theorem 4 imply that our sequence of approximated problems
(Pn) converges toward the initial problem (P). More precisely assume that
(Un)n∈N is a sequence of εn-optimal solution of Pn, i.e. Un verifying con-
straint (16f) and J(Un) < infU∈Uad

n
+εn, with (εn)n∈N a sequence of positive

real number converging to 0. Then we can extract a subsequence (Unk
)k∈N

converging almost surely to an optimal solution of (P), and the limit of the
approximated value of (Pn) converges to the value of (P).
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