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Highlights

Epiconvergence of relaxed stochastic optimization problems

Vincent Leclere

e We show conditions for the convergence of a sequence of
relaxed stochastic optimization problems

e We show examples satisfying theses conditions

e We are motivated by a lagrangian decomposition algo-
rithm

e We give consistency result of the approximation scheme
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Epiconvergence of relaxed stochastic optimization problems

Vincent Lecléere

Université Paris-Est, CERMICS (ENPC), F-77455 Marne-la-Vallée, France

Abstract

We consider relaxation of almost sure constraint in dynamic stochastic optimization problems and their convergence. We show an
epiconvergence result relying on the Kudo convergence of o-algebras and continuity of the objective and constraint operators. We
present classical constraints and objective functions with conditions ensuring their continuity. We are motivated by a Lagrangian
decomposition algorithm, known as Dual Approximate Dynamic Programming, that relies on relaxation, and can also be understood

as a decision rule approach in the dual.
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1. Introduction 36

37

Stochastic optimization problems often consist in minimiz- *
ing a cost over a set of random variables belonging to an infinite *
dimensional space. Consequently, there is a need for approxi- “
mation. We are interested in the approximation of almost sure *
constraints, say 6(u) = 0 almost surely (a.s.), by a conditional “
expectation constraint like E[0(u) | Fn]=0as. 4

Consider the following problem, “
45

. 1 46
w0 "
s.t. Ou)=0 as., (1b) 48

49
where the set of controls U is a set of random variables over s
a probability space (Q, 7, P), and J(u) := fQ Ju(w)dP(w). If s
Q is not finite, ¢ may be of infinite dimension. Moreover the s>
constraint (Tb) is a functional constraint that can roughly be
seen as an infinite number of constraints. For tractability pur-
poses, we consider approximations of this problem. In order to
give theoretical results for the approximations of Problem (]
the right notion of convergence is epi-convergence. Indeed, un- s
der some additional technical conditions, the epi-convergence s«
ensures the convergence of both the optimal value and the opti- ss
mal solutions. 56
One way of approximating Problem (T]) consists in approxi- 7
mating the probability P. Roughly speaking the Sample Aver- s
age Approximation procedure consists in drawing a set of sce- s
narios under the true probability P. We then solve Problem (T e
under the empirical probability on the set of drawn scenarios. In e
this literature (see |Dupacova and Wets| (1988)), |King and Wets|e2
(1991))) the authors are interested in problems where the con- e

trols are deterministic. However other epi-convergence results s
65
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have been shown for more general spaces of controls, includ-
ing spaces of random variables or random processes (see |Zer-
vos| (1999) and references therein, as well as [Pennanen| (2005));
Pennanen and Koivu (2005); [Pennanen| (2009)). More gener-
ally, the idea of discretizing or quantizing the set Q, for exam-
ple by use of finite scenario tree has been largely studied in the
field of Stochastic Programming (see Shapiro et al.|(2009) for a
thorough presentation).

Instead of approximating the probability space we propose
a way to approximate constraints, especially almost sure con-
straints. The main idea is to replace a constraint by its condi-
tional expectation with respect to (w.r.t.) a o-algebra 8. This
is in some sense an aggregation of constraints. This approxi-
mation appears when considering Lagrangian duality schemes
with dual linear decision rules for dynamic stochastic optimiza-
tion problem (Carpentier et al.|(2018])); Pacaud et al.|(2018)); |Ra-
makrishnan and Luedtke (2018))).

More precisely, we relax the almost sure constraint (Tb) by
replacing it by its conditional expectation, i.e.

E[6m)| 8] =0. )

If A is an integrable optimal multiplier for Constraint (TD)),
then 1z = E[A | 8] is an optimal multiplier for Constraint
(2). This leads to look for B-measurable multiplier, which may
authorize decomposition-coordination methods where the sub-
problems are easily solvable. More precisely if we replace an
almost sure constraint by its conditional expectation with re-
spect to (w.r.t.) a o-algebra B, then if there exists an optimal
Lagrange multiplier, then there is an optimal Lagrange multi-
plier measurable w.r.t. the o-algebra B. Consequently if B is
well chosen then a decomposition-coordination approach can
be used to solve the approximated problem. In this case, the
approximation can be seen as a decision rule approach in the
dual, where we choose to restrict the multiplier in the class of
B-measurable random variables. Works using a decision rule
approach on the dual problem are found in Kuhn et al.|(2011)).
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The paper is organized as follows. §2] presents the generalus
form of the problem considered and its approximation. §3}:
shows, after a few recalls on convergence notions of random
variables, functions and o-algebras, conditions on the sequence117
of approximate problems guaranteeing its convergence toward' "
the initial problem. The main assumptions are the Kudo’s con-' "
vergence of o-algebra, and the continuity - as operators - of the'®
constraint function ® and objective function J. §4] gives somerr
examples of continuous objective and constraint functions thatiz
represent usual stochastic optimization problems. Finally §B}zs
quickly presents a Lagrangian decomposition algorithm using
this type of relaxation. The results presented here show consis-
tency of this method : if we refine the approximation, the so-
lution obtained converges toward solution of the original prob-
lem.

124

Notation

Bold letters are used for random variables. I,(x) = 0if x € A,
and T4(x) = +oo otherwise. We denote by [a, b] the set of all
integers between a and b. 6 is used for the constraint function
mapping Euclidean space U into V, whereas O is used for the
constraint operator generally mapping a set of functions on U
into function a set of function on V.

2. Problem Statement

We consider a probability space (€2, %,P) and a topologi-
cal space of controls U. Let V be the spaces of random vari-
ables with value in a Banach V with finite moment of order
p € [1,00), denoted V = LP(Q, F,P; V).

We consider now a stochastic optimization problem s

126

mi(llll J(u) , (3a)
st. ®mw)eC, (3b)

with J mapping U into RU{+co}, and ® mapping U into V. We
assume that C C V is a subset of V, and that V is a separable
Banach space with separable dual.

To give an example of cost operator, assume that U C
L'(Q,F,P;U), where U is a Banach space. The usual choice
for the objective function is the expected cost J(u) := E[j(u)],
for a suitable cost function j : U — R. Other choices could
be risk measures (see |Artzner et al.| (1999) for example) like
Average-Value-at-Risk, worst-case or robust approaches. The
constraint operator ® cover various cases, for example

e almost sure constraint: @(u)(w) := 6(u(w)), where 6 maps'”
U into V and 6(u) € C is realized almost surely, where C,,

is a closed convex set; 12

o measurability constraint: ®(u) := E[u | 8] - u, with C ="
{0}, expresses that u is measurable with respect to the o-
algebra B, that is, E[u | Bl =u;

131
132
e risk constraint: @(u) := p(u) — a, where p is a conditionaliss
risk measure, and C is the cone of negative random vari-1a
ables. 135

2

We introduce a stability assumption of the set C that will be
made throughout this paper.

Definition 1. We consider a sequence (7,).en 0f sub-fields of
¥ . The set C is said to be stable w.r.t. (F,,),cn. if there exists
a set-valued mapping S from Q to V which is closed-convex
valued and measurable with respect to ¥ and all (7,)en.

In particular if C is stable, we have foralln € Nand allv € C,
Ev|¥,]€C.
We now consider the following relaxation of Problem (3)

rrgll} Jw), (4a)
st. E[0m)|FlecC, (4b)

where C is assumed to be stable w.r.t the sequence (7,,),cy-

We denote the set of admissible controls of Problem (3)
U :={ueU|Ow e-C}, 5)

and the corresponding set of admissible controls of Problem (@)

U = {ueU|E[Om)|F.] €-C}. (6)
Problems (3) and (@) can also be written as
min  J(u) + Ly (u) , @)
e — ———_———r
=J(u)
and
min  J(@) + Ly (u) . ®)
uel " ,
::jn(u)

Since F,, ¢ F, and C is stable w.r.t (F;,)nen, We have U ¢
U4 Problem (@) is a relaxation of the original Problem (3) .

Replacing an almost sure constraint by a conditional expec-
tation constraint is similar to an aggregation of constraints. For
example consider a finite set Q = {w;}iei,n7, With a probabil-
ity P such that, for all i € [1, N], we have P(w;) = p; > 0.
Consider a partition 8 = {B;}c[1,87 of €2, and the o-algebra ¥
generated by the partition 8. Assume that C = {0}, then the re-
laxation presented consists in replacing the constraint (u) = 0
almost surely, which is equivalent to N constraints 6(u(w;)) = 0
for i € [1,N], by the collection of |B| < N (where |B]| is the
number of sets in the partition $B) constraints

> i) =0

i€B;

Vie[L,|8] .

3. Epiconvergence Result

In this section we show the epiconvergence of the sequence
of approximated cost functions (J,,),ey towards J. We start with
some useful recalls.

3.1. Preliminaries

Assume that p € [1,+0c0) and denote g € (1, +oo] such that
1/g + 1/p = 1. Recall that V is a separable Banach space
with separable dual V*. We denote L? = LP(Q,7,P;V) and
L1 = L1(Q,F,P; V*).
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Convergence of random variables 183
A sequence (X,)eny of LP is said to converges184
strongly toward X € LP, and denoted X, —p X ifies
lim, o E[ IX,, — XIf, | = 0. A sequence (X,)nen of L is said
to weakly converge toward X € L?, and denoted X,, —» X 1f
for all X’ € L9, we have lim, . E[{X,, — X, X")yy:] = 0. For

more details we refer the reader to [Rudin| (1991). %

189

Epiconvergence of functions 1%0

Let E be a topological space and consider a sequence (A, ),en'™
of subsets of £. Then the inner limit of (A,),en, denoted lim, A,,,19?
is the set of accumulation points of any sequence (x;),en suchre
that x, € A,, and the outer limit of (A,),cn denoted lim,A,,
is the set of accumulation points of any sub-sequence (X, )rene4
of a sequence (x,)nen such that x, € A,. We say that (A,,),,E[\I195
converges toward A in the Painlevé-Kuratowski sense if A =
lim,A, = lim A,.

A sequence (J,)qen of functions taking value into R U {+00}197
is said to epi-converge toward a function J if the sequence of198
epigraphs of J, converges toward the epigraph of J, in the199
Painlevé-Kuratowski sense. For more details and properties200
of epi-convergence, see Rockafellar-Wets Rockafellar and Wets
(1998) in finite dimension, and Attouch |Attouch| (1984) for in-
finite dimension.

202

Convergences of o-algebras 203

Let ¥ be a o-algebra and (¥,),cn a sequence of sub-fields of204
¥ (not necessarily finite nor a filtration). It is said that the se-, .
quence (F,)qeny Kudo-converges toward the o-algebra ¥, and
denoted F, — Fo, if for each set F € F, (E[lF | T,,])%sz
converges in probability toward E[15 | Fool- 208

It is shown by Kudo| (1974) that ¥, — F if and only if forze
each integrable random variable x, E[x | F,] converges in L'z
toward E[x | Fo]. [Piccinini| (1998) extends this result to theait
convergence in L” (where p < +0c0) in the strong or weak sense22
with the following lemma.

Lemma 1. Let (Q, 7, P) be a probability space and (F,,),,y be
a sequence of sub-o-algebras of . The following statements
are equivalent:

206

L Fu - Fo,
2. VXelr, E[X|F.]-uE[X|Ful
3.VXelr, E[X|F]—pE[X|Fl

We have the following useful proposition where both the ran-

. . 213
dom variable and the o-algebra are parametrized by n. oo

Proposition 2. Assume that ¥, — T, and X, —p X
(resp. X, —p» X) then E[X, | Ful - E[X | Feoo| (resp.2®
E[X, | Ful =1 E[X | Fol): 216

217

Proof. The weak-limit case is detailed in |Piccinini| (1998). We
show the strong convergence case. If X, —» X, then

IE[X, | 7o) —E[X | F il < IE[X, | 7ol - E[X | Fullles
+E[X | 7] - E[X | F e

As the conditional expectation is a contraction and by Lemma
[[ we have the result. O

We end with a few properties on the Kudo-convergence of o-
algebras (for more details we refer to |Kudo| (1974) and |Cotter
(1986)):

1. the topology associated with the Kudo-convergence is
metrizable;

2. the set of o-fields generated by the partitions of Q is dense
in the set of all o-algebras;

3. if a sequence of random variables (x,),cn converges in
probability toward x and for all n € N we have o(x,) C
o(x), then we have the Kudo-convergence of (0(x;)),cy
toward o (X).

3.2. Main result

Denote 7 the topology of U, and recall that V = LP, with
p €[l,00).

Theorem 3. Let V be endowed with the strong or weak topol-
0gy. Assume that C is closed and stable w.r.t (Fp)nen. If the
two mappings ® and J are continuous, and if (F)nen Kudo-
converges toward T, then (J,)nen (defined in () epi-converges
toward J (defined in (8)).

Note that (F,),en is not assumed to be a filtration and that F,
is not assumed to be finite.

Proof. To prove the epi-convergence of (J)nen toward J it is
sufficient to show that U (defined in (6))) converges toward
U™ (defined in (@) in the Painlevé-Kuratowski sense. In-
deed it implies the epi-convergence of (Iqu)ueny toward lgga,
and adding a continuous function preserves the epi-convergence
(Attouch (Attouch, 1984, Th 2.15) ).

By stability of C w.r.t. (F,).eny We have that, for all n € N,
U c U™ and thus U c liminf, U (for any x € U™
take the constant sequence equal to x).

We now show that U > limsup, U%. Let u be an el-
ement of limsup, U%. By definition of outer-limit of sets,
there exists a sequence (u,, )ren that T-converges to u, such that
for all k € N, E(@(u,,)|F,,) € C. As O is continuous, we have
O(u,,) — O(u) strongly (resp. weakly) in L?. Since F,, — F,
by Corollary

E(©@)IF ) =1 E@@)F) = 0U) .

Thus ®(u) is the limit of a sequence in C. By closedness of C,
we have that ®(u) € —C and thus u € U“. O

The practical consequences for the convergence of the ap-
proximation (@) toward the original Problem [3]is given in the
following Corollary.

Corollary 4. Assume that ¥, — F, and that J and ® are
continuous. Then the sequence of Problems {@) approximates
Problem @) in the following sense. If (W,)nen is a sequence of
controls such that for alln € N,

Ja(u,) < in{( J,(w) + &,, where lime, =0,
ue n
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then, for every converging sub-sequence (U, )ken, we have 230
- - - 240
J(limu,,) = min J(u) = lim J,, (u,, ) - »
k uell k
242
Moreover if (F),cn IS a filtration, then the convergenceszs
are monotonous in the sense that the optimal value is non-

decreasing in n. "

245

Proof. The convergence result is a direct application of Attouch®*
(Attouch} (1984}, Th. 1.10, p. 27). Monotonicity is given by the*’
fact that, if (F,),en is a filtration, then for n > m then ng C
U O

248

3.3. Dynamic Problem

249

We cast Problem (3) into the following dynamic problem

250

251

1 J s 252
iy Y@
st. O,u) € C Vie[l1,7T], 254
u, <%;, 255

where u;, < ¥, stands for “u, is F;-measurable”. Here u is
a stochastic process of control (#,)c[i,7] defined on (Q,F,P)
with value in a space U. We have T constraints operators ©,,,
taking values in L?(Q, 7, P; V;), where (Foie[1,7] 1s @ sequence,,
of o-algebra. Note that (F;),c[1,77] is not necessarily a filtration. ,,
Then, for each ¢ € [1,T] we define a sequence of approximat-,,
ing o-algebra (¥, )nen. For all ¢ € [[1,T], C, is a closed convex,,,
cone stable w.r.t (¥,,),y- The interaction between the different
time-step is integrated into the objective function J (usually a
sum over time). s

Finally, we consider the sequence of approximated problem st

256

262

265

min  J(u), 206

st E[O@) | Fui] € C, vee[LT]. .
Furthermore we denote z:
U = {u, €U, | Ow;) € —-C;}, 271

and :z
UL = (u, € U, | E[O@,) | Fos € -C/} .

We define the set of admissible controls for the original prob-275
]em 276
277

U = UM x - x U,

and accordingly for the relaxed problem 78

ad _ ad ad 279
u, _(un,ox"'anf' 280
In order to show the convergence of the approximation pro->*
posed here, we consider the functions 22

283

Jw) = J@) + xqea(w), and  J,(u) = J@) + xqu(u) , 2

285
and show the epi-convergence of J, to J. 286

Theorem 5. Let U be endowed with a product topology T, and
V = LP(Q,F,P; V) be endowed with the strong or weak topol-
0gy (p being in [1,00)). If ® and J are continuous, and if for
allt € [1,T], (Frnnen Kudo-converges to F, then (J;)nGN epi-
converges to J.

Proof. The proof is deduced from the one of Theorem (3| By
following the same steps we obtain the Painlevé-Kuratowski
convergence of U to U, and thus the convergence of their

Cartesian products. O

4. Examples of Continuous Operators

The continuity of J and ® as operators required in Theorem
[3]is an abstract assumption. This section presents conditions
for some classical constraint and objective functions to be rep-
resentable by continuous operators. Before presenting those re-
sults we prove a technical lemma that allows us to prove conver-
gence for the topology of convergence in probability by consid-
ering sequences of random variables converging almost surely.

4.1. A technical Lemma

Lemma 6. Let ® : E — F, where (E,tp) is a space of ran-
dom variables endowed with the topology of convergence in
probability, and (F,7) is a topological space. Assume that ®
is such that if (u,),en converges almost surely toward u, then
O(u,) = (). Then O is a continuous operator from (E, Tp)
into (F, 7).

Proof. Recall that if (x,),en iS a sequence in a topological
space, such that from any sub-sequence (x,, ),y We can extract
a sub-sub-sequence (Xq(n,)),y cOnvVerging to x*, then (x,)men
converges to x*. Indeed suppose that (x,),en does not converges
toward x*. Then there exist an open set O containing x* and a
sub-sequence (X, ).y Such that for all k € N, x,, ¢ O, and no
sub-sub-sequence can converges to x*, hence a contradiction.
Let (u,).cny be a sequence converging in probability to u.
We consider the sequence (®(u,)), . in F. We choose a sub-
sequence (O(u,,)),cy. By assumption (u,),.y converges in
probability toward u, thus we have u,, —p u. Consequently
there exist a sub-sub-sequence u,,, converging almost surely
to u, and consequently O(u,(,,)) — ©O(u). Therefore O is se-
quentially continuous, and as the topology of convergence in
probability is metrizable, ® is continuous. 0

Remark 1. This Lemma does not imply the equivalence be-
tween convergence almost sure and convergence in probability
as one cannot endow U with the “topology of almost sure con-
vergence” as almost sure convergence is not generally induced
by a topology.

However note that (#,),cy converges in probability toward u
iff from any sub-sequence of (#,),ey We can extract a further
sub-sequence converging almost surely to u (see (Durrett and
Durrett, 2010, Th 2.3.2)).
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4.2. Objective function

Let U be a space of random variables on (Q,F,IP), with
value in a Banach space U.

The most classical objective function is given as J(u) :=
E[j@)], where j : U — R is a measurable, bounded cost func-
tion. This objective function expresses a risk-neutral attitude;
indeed a random cost with high variance or a deterministic cost
with the same expectation are considered equivalent. Recently
in order to capture risk-averse attitudes, coherent risk measures
(as defined in |Artzner et al.| (1999)), or more generally convex
risk measures (as defined in [Follmer and Schied| (2002)), have
been prominent in the literature.

Following Ruszczynski and Shapiro| (2006b)), we call convex
risk measure an operator p : X — R U {+oo} verifying

e Convexity: forall 1 € [0, 1] and all X,Y € X, we have 315
P(AX + (1= DY) < Ap(X) + (1 = Dp(¥);
e Monotonicity: for all X,Y € X such that X < Y we havests
p(X) < p(Y);

e Translation equivariance: for all constant ¢ € R and ally
X € X, we have p(X + ¢) = p(X) + ¢, 319

317

where X is a linear space of measurable functions. We focus on™*
the case where X = L®(Q, F, P; R). %

322
Proposition 7. Let U be a set of random variables endowed:;
with the topology of convergence in probability, and JU) =z
p(jm)), where j : U — R is continuous and bounded, andss
p a proper lower semi-continuous convex risk measure. Then, sz
J : U — R is continuous. a7

Proof. Note that as j is bounded, ju) € X for any u € ‘Hz:
Then we know that (Ruszczynski and Shapiro| (2006b)) there is330

a convex set of probabilities $ such that N

p(x) = sup Eg(x) - 8(Q) , e
QepP

where g is convex and weak*-lowersemicontinuous on the™
space of finite signed measures on (€2, ). Moreover any prob-
ability in % is absolutely continuous w.r.t IP. 3%
Consider a sequence (#,),cy of elements of U converging in®®

probability toward u € U. Note that as j is bounded, we have
p(j(m)) < co by monotonicity of p. By definition of p, for all**
& > ( there is a probability P, € P such that 338

339

Ep,(j@)) — g®:) = p(jw)) — € . o

As PP, is absolutely continuous w.r.t P, the convergence in prob-""
ability under P of (u,),cn implies the convergence of probabil-a:
ity under P, and in turn the convergence in law under P,;. Byaus
definition of convergence in law we have that 344
345

lim Ep, (j(u,)) - g(Pe) = Ee, (j@) - g(Pe) .

346

Let iy be a positive real, and set £ = 17/2, and N € N such that
foralln > N,

[Ee, (j() ~ B, (ja)l < 7 . an

Then, recalling that

p(j@) = B, (j@) - g®y) = p(j@) =3, (12)

we have that for all n > N,
p(i(un)) = sup Eqj(u,)) - &(Q)
QeP
> Ep, (j@,) - 8(Py)
> Ep, (@) - ¢(Py)

> p(j@)) -n

by (),
by ([2),

and thus

p(j@) + g > p(j(n)) = p(j@) - 7.
Thus lim, p(j(u,)) = p(j(r)). Hence the continuity of J. O

The assumptions of this Proposition can be relaxed in differ-
ent ways.

In a first place, if the convex risk measure p is simply the
expectation then we can simply endow U with the topology of
convergence in law. In this case the continuity assumption on j
can also be relaxed. Indeed if (u,), converges in law toward
u, and if the set K of points where j is continuous is such that
P(u € K) = 1, then E[ j(u,)] converges toward E[ j(z)].

Otherwise assume that U is a set of random variables en-
dowed with the topology of convergence in probability and that
Jj continuous. Moreover, if we can ensure that j(z) is dominated
by some integrable (for all probability of £) random variable,
then J : U — R is continuous. Indeed we consider a sequence
(u,),en almost surely converging to u. We modify the proof
of Proposition [/|by using a dominated convergence theorem to
show that lim,, Ep, (j(u,)) = Ep,(j(u)), and end with Lemma [6]

4.3. Constraint operator

We present some usual constraints and how they can be rep-
resented by an operator ® that is continuous and take values
into V.

4.3.1. Almost sure constraint

From Lemma [f] we obtain a first important example of con-
tinuous constraints, which can also be obtained and extended
from results on Nemytskij operators (see, e.g. |Appell and
Zabrejkol(1990)).

Proposition 8. Suppose that U is the set of random variables
on (Q, F,P), with value in U, endowed with the topology of
convergence in probability. Assume that 0 : U — V is continu-
ous and bounded. Then the operator O(u)(w) = O(u(w)) maps
U into V and is continuous.

Proof. The function 6 being continuous, is also Borel measur-
able.Thus for all u € U, for all Borel set V C V, we have

©@) ' (V) ={weQ|uw) ed ' (V)}eB,
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thus O(u) is F -measurable. Boundedness of 6 ensure the exis-
tence of moment of all order of @(u). Thus © is well defined.
Suppose that (u,),.y converges to u almost surely. Then

by boundedness of #, we have that (”H(un) - H(u)Hg )neN is
bounded, and thus by dominated convergence theorem we have

that
lim O(u,) = 6(w) in LP(Q,F,P;V), 875

which is exactly
lim O(u,) = O(u) .

Consequently by Lemmal6] we have the continuity of ©. 0

We note that boundedness of 6 is only necessary in order to
use the dominated convergence theorem. Thus an alternative

set of assumptions is given in the following proposition.
376

Proposition 9. Let B be a sub-field of F. If U = LP (Q, B, P),s77
with the topology of convergence in probability, and if 0 is y-3
Holder, with y < p’/p then O(u)(w) := 6(u(w)) is well defineds
and continuous as an operator mapping U into V.
380
Proof. By definition a function § mapping U into V is y-Holderse
if there exist a constant M > 0 such that for all u, ' in U wess2
have 383
e = o], < flu = [l

385
in particular the 1-Holder continuity is the Lipschitz continuity.
386

Following the previous proof we just have to check that,
the sequence (H@(un) - 9(")|K; )neN is dominated by some in-,,
tegrable variable. The Holder assumption implies

Jotan) - 6@, < €, ~ a7 N
391

392

And as py < p’, and u, and u are elements of L (Q,F,P)

by . >393
||unk - u“U is integrable.

394
395
4.3.2. Measurability constraint 396
When considering a dynamic stochastic optimization prob-se
lem, measurability constraints are used to represent the nonan-
ticipativity constraints. They can be expressed by stating that a
random variable and its conditional expectation are equal.

Proposition 10. We set U = L”(Q,F,P;U), with p’ > p.
Assume that

o cither U is equipped with the strong topology, and V is**®
equipped with the strong or weak topology, 5%

e or U and V are equipped with the weak topology. 400

401
If B is a sub-field of ¥, then O(u) = E[u | Bl — u, is well
defined and continuous. 402

403

Proof. In afirst place note thatas p’ > p,and ¥’ C 7, U C V;e04
and if v € V then E[v | B] € V as the conditional expectationsos
is a contraction. Thus for all u € U, we have O(u) € V. 406

6

Consider a sequence (u,,),en of U strongly converging in L
toward u € U. We have

10@,) — O@)ll, < llu, — ull, + |E[u, —u | B]Il,

< 2||un - u”p < 2||un - u”p’ —0.

Thus the strong continuity of ® is proven.
Now consider (#,),ey converging weakly in L? toward u €
U. We have, for all y € L9,

E[E[u,|8]-Y]= E[wE[r|8]].
— E[«E[Y | 8],
= E[E[x|8]Y].

Thus we have the weak convergence of the conditional expec-
tation and therefore of ®. Finally, as the strong convergence
imply the weak convergence we have the continuity from U-
strong into V-weak. O

Until now the topology of convergence in probability has
been largely used. If we endow U with the topology of con-
vergence in probability in the previous proposition we will ob-
tain continuity of ® on a subset of Y. Indeed if a set of ran-
dom variables U“? such that there exist a random variable in
L7 (Q,F,P) dominating every random variable in U, then
a sequence converging almost surely will converge for the L”
norm and we can follow the previous proof to show the conti-
nuity of ® on U,

4.3.3. Risk constraints

Risk attitude can be expressed through the objective function
or through constraints. We have seen that a risk measure can be
chosen as the objective function, we now show that conditional
risk measure can used as constraints.

Let p be a conditional risk mapping as defined in
Ruszczynski and Shapiro| (2006a)), and more precisely p maps
U into V where U = LP(Q,F,P;U) and V = LP(Q, B,P; V),
with B C ¥, and verifies the following properties

e Convexity: foralld € U, 1 € [0,1]and all X,Y € V, we
have

pPAX + (1 - )Y) < Ap(X) + (1 - Dp(Y);

e Monotonicity: for all X,Y € V such that X < Y we have
p(X) < p(Y);

e Translation equivariance: for all c € V and all X € U, we
have p(X +¢) = p(X) + ¢ .

Proposition 11. Let U be endowed with the topology of con-
vergence in probability, and V endowed with the strong topol-
ogy. If p is a conditional risk mapping, 0 is a continuous
bounded cost function mapping U into R, and a € V, then
Ou) := p(@(u)) — a is continuous.
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Proof. Consider a sequence of random variables (i), cOn-so
verging in probability toward u.,. Let m : LP(Q,B,P;U) —us
LP(Q,B,P;U) be a selector of V = LP(Q,B,P; 1), i.e. fors
any x € LP(Q,F,P;U), n(X) € x. For any w € Q, anyss
x € LP(Q,F,P; U) we define 454

455

pm(u) = n(p(u))(a)) . 456

Note that for P-almost all w € Q, the function O, ) :=
pu(0(u)), satisfies the conditions of Proposition Thus for
P-almost all w € Q, (04, (1)), converges toward O, (Ux).
Thus we have shown that (®(u,)),y converges almost surely
toward @(u.,). By boundedness of § and monotonicity of p
we obtain the boundedness of (®(u,)),y. Thus almost sure
convergence and dominated convergence theorem ensure that
(®(u,)), converges in L? toward O(u., ), hence the continuity
of ©. 0

Another widely used risk measure, even if it has some se-
rious drawbacks, is the Value-at-Risk. If X is a real ran-
dom variable its value at risk of level @ can be defined as
VaR,(X) := inf{F’l(a)} where Fx(x) := P(X < x). 457

Proposition 12. [f0 : U — R is continuous, and if U is such

that every u € U have a continuous distribution function, then 9
O) := VaRa(G(u)) is continuous if we have endowed U wtthjj
the topology of convergence in law, and a fortiori for the topol- _,

0gy of convergence in probability. .

Proof. By definition of convergence in law, if u, — u in law,
then (6(u,)),y converges in law toward 6(u) and we have, for
all x € R, Fyu,)(x) = Fou(x). Thus (@u,)),y converges
almost surely toward ®(u), and as ®(u) is deterministic, ® is
continuous. O

Note that in Proposition[I2]the constraint function take deter-
ministic values. Thus considering the conditional expectation
of this constraint yields exactly the same constraint. However
consider a constraint ®; : U — R of this form, and another
constraint @, : U — V. Then if ®; and ®, are continuous,
then so is the constraint ® = (01, ®,) —» R x V. Thus we can
apply Theorem [3]on the coupled constraint.

464
465
466

467

5. Dual Approximate Dynamic Programming

In this section, we say a few words about how the approxi-,
mation of an almost sure constraint by a conditional expectation,
— as presented in section [3]— can be used. More details and nu-,_
merical experiment of this algorithm can be found in|Barty et al.|
(2010); Leclere|(2014); |Carpentier et al. (2018)); Ramakrishnan472
and Luedtke (2018)).

473
. 474
5.1. Presentation of the problem .

We are interested in an electricity production problem with Nazs
power stations coupled by an equality constraint. At time step ,477
each power station i have an internal state X', and is affected by
a random exogenous noise &.. For each power station, and eachars

time step ¢, we have a control q§ € Q;‘j’ that must be measurableaso

7

with respect to 7; where 7, is the o-algebra generated by all
past noises: ; = o-(.ff;)1 <i<n0<s<- Moreover, there is a coupling
constraint expressing that the total production must be equal to
the demand. This constraint is represented as Zf\i 0i(gh) =0,
where ¢! is a continuous bounded function from Q;‘j into V, for
all i € [1,n]. The cost to be minimized is a sum over time and
power stations of all current local cost Li(x/, ¢', £!).
Finally the problem reads

mm E[Z Z Li(xi, g, .ft)] (13a)
st x,, = fix g &) Vi, Vi, (13b)
xo = xO Vi, (13c¢)
g Q" Vi, Vi, (13d)
q, =% Vi, Vi, (13¢)
N . .
> 6ig) =0 Vi, Vi (13f)
i=1

For the sake of brevity, we denote by A the set of random pro-
cesses (X, ¢) verifying constraints (T3b), and (I3d).

Let assume that all random variables are in L? spaces and
dualize the coupling constraint (TI3f). We do not study here the
relation between the primal and the following dual problem (see
Rockafellar and Wets| (1977, 1978) for an alternative formula-
tion involving duality between L' and it’s dual).

N T
max  min_ [Zl ; Lixl.qi.€) + A0a)|  (4a)
st. g <F Vi, Vi (14b)

Note that, for fixed A, the inner minimization problem is de-
composable. Thus for a fixed AX' we have to solve N prob-
lems of smaller size than Problem (T4), A% being updated in a
gradient-like scheme.

T
: iy i gl ®) i i
P min E[;Lz(x,,qut)hlt 6i(q)) (15)
st ¢ =2F Vi, Vi. (15b)

Note that the process A has no given dynamics but can be
chosen to be adapted to the filtration (¥;);=1, 7. Consequently
solving Problem (T3] by Dynamic Programming is possible but
numerically difficult as we need to keep all the past realizations
of the noises in the state. In fact, the so-called curse of dimen-
sionality prevents us to solve numerically this problem.

Nevertheless it has been proposed in [Barty et al.| (2010) to
replace A, by E[4, | Y,], where Y, is a random variable mea-
surable with respect to (y,_;,¢&,) instead of A;. This is similar
to a decision rule approach for the dual as we are restraining
the control to a certain class, the Y,-measurable A in our case.
Thus Problem (I3)) can be solved by Dynamic Programming
with the augmented state (xﬁ, y,)- It has also been shown that,
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under some non-trivial conditions, replacing A, by its condi-se

tional expectation E[24, | Y,] is equivalent to solving
528

529

N T 530

i 531
(min_ [; ; Li(x}, ¢, &) ] (162)"
533

s.t. qi <% vt, Vi, (16b)s
535

i . 536

Z 6i(q)) Y, = vt, Vi (16¢).,

538

539

Problem (T6) is a relaxation of Problem (I3)) where the al-,,
most sure constraint (I31) is replaced by the constraint (T6)).ss
Now consider a sequence of information processes (Y ) N2
each generating a o-algebra %, and their associated relaxation:j
(P,) (as specified in Problem [I6) of Problem (13) (denoteds,s
(P)). Those problems correspond to Problems (9) and (T0]s«s

with J() = E|XY, 3L, Li(xi, ¢, £)|, where u =

and x! follow the dynamic equation (I3B). We also have’ z

O,u) = 3, 6i(g}) and C; = {0). 551
Assume that for all + € [1,T], and all i € [1,N] the costss

functions Lf, dynamic functions f; and constraint functions 0§553
. . . 554
are continuous, and that Q;‘j’ is a compact subset of an euchd-555

0 547
(4" ic[1.N] s

ian space. Moreover we assume that the noise variables .f; aresss
essentially bounded. Finally we endow the space of control pro-%’
cesses with the topology of convergence in probability. Then byzzz
induction we have that the state processes and the control pro-g,
cesses are essentially bounded, thus so is the cost Li(x!, u!, £).se1
Thus the cost function can be effectively replaced by bounded®®*
functions. Consequently Proposition [/|ensures that J is contin-sz
uous if U is equipped with the topology of convergence in prob-sgs
ability. Similarly Proposition [§] ensures that ® is continuous.ses
Theorem|[5]implies that our sequence of approximated problems

(P,,) converges toward the initial problem (#). Thus, let (u,l),,eN569
be a sequence of g,-optimal solution of P,, i.e. u, verifyings»
constraint (16c) and J(u,) < infycqu J(w) + &,, With (&,)nen a5
sequence of positive real number converging to 0. Then we canzzz
extract a subsequence (u,, )ren converging almost surely to an,,,
optimal solution of (#), and the limit of the approximated valuesrs
of (P,) converges to the value of (P). 576

577
Remark 2. To get an idea of the numerical interest of such ans

approach fix all discretization (in space, control, time and num-s7
ber of units) to 10, frontal dynamic programming require 1035
operations, whereas, in the decomposed approach, each sub-:z;
gradient iteration requires only 10° iterations. The subgradientss
method being applied in R'? require a few thousand iterationsss:
to give a reasonable solution, hence the approximated problem®®
can be solved in around 10'° operations. z:
588
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