
HAL Id: hal-00848268
https://hal.science/hal-00848268v1

Preprint submitted on 26 Jul 2013 (v1), last revised 2 Apr 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Framework for Dynamic Programming
Equation and Time Consistency

Michel de Lara, Vincent Leclère

To cite this version:
Michel de Lara, Vincent Leclère. A General Framework for Dynamic Programming Equation and
Time Consistency. 2013. �hal-00848268v1�

https://hal.science/hal-00848268v1
https://hal.archives-ouvertes.fr

A General Framework for Dynamic Programming

Equation and Time Consistency

Michel De Lara, Vincent Leclère,
Université Paris-Est, CERMICS,

École des Ponts ParisTech,
6 & 8 avenue Blaise Pascal,

77455 Marne-la-Vallée Cedex 2

25/07/2013

Abstract

Time consistency is an important property for a sequence of stochastic optimization
problem, especially with regard to risk attitudes. It is known that a sequence of problem is
time-consistent if a Dynamic Programming equation holds. In this paper we present a general
framework for Dynamic Programming where general aggregators in time and uncertainties
are considered instead of the expectation and sum. The key assumptions are montonicity,
commutation property, and decomposability of aggregators.

1 Introduction

Dynamic consistency has been studied in the field of economics (see Hammond, [11]) and
more recently introduced in the context of risk measures (see Artzner et al., [2] and references
therein for definitions and properties of coherent and consistent dynamic risk measures).

In discrete time dynamic optimal control problem, the property of time consistency is
loosely stated as follows. The decision maker formulates an optimization problem at time
t0 that yields a sequence of optimal decision rules for t0 and for the following time steps
t1, . . . , tN = T . Then, at the next time step t1, he formulates a new problem starting at t1
that yields a new sequence of optimal decision rules from time steps t1 to T . Suppose the
process continues until time T is reached. The sequence of optimization problems is said
to be time consistent if the optimal strategies obtained when solving the original problem
at time t0 remain optimal for all subsequent problems. In other words, time consistency
means that strategies obtained by solving the problem at the very first stage do not have
to be questioned later on. It is well known that the existence of a Dynamic Programming
Principle imply the time consistency of the sequence of problems (see [7]).

The traditional framework for Dynamic Programming consist in minimizing the expec-
tation of the sum of costs. However there is other less known case where a Dynamic Pro-
gramming equation holds, for example for the expectation of a product of costs or for the
supremum over the realisations of a sum of costs. It appears that there is two aggrega-
tors, one that aggregates the costs over time, and one that aggregates the costs over the
uncertainties. We aim at giving general conditions on those aggregators under which a Dy-
namic Programming equation holds for the selected information state. Indeed if the state
is increased it is sometimes possible to find a Dynamic Programming equation, and thus a
time-consistent sequence of problems.

In §2 we present three usual settings where a Dynamic Programming principle can be
derived. In §3 we present the general setting we consider, and the general conditions that
are sufficient for a Dynamic Programming principle. In §4 we present some class of problems
satisfying our conditions and the Dynamic Programming Principle associated to them. Fi-
nally in §5 we present some tools that allow to construct new aggregators and the associated
Dynamic Programming equation.

1

2 Examples of Dynamic Programming equations

In this section we present three settings in which a Dynamic Programming equation holds
for discrete time systems. We stress out the structures that will be generalized in Section 3.
Proof of the Dynamic Programming result exposed here are not presented as they fit into
the framework developed in Section 3. Finally for the sake of clarity we will assume in this
section that every mathematical expectation is well defined.

2.1 Expected and worst case scenario case for additive costs

Expected costs

Let (Ω,F ,P) be a probability space. For any t ∈ [[0, T]], where [[a, b]] denote the set of integers
between a and b, we consider a state set Xt, a control set Ut and a noise set Wt. Appropriate
measurability assumptions are supposed to hold on this sets. Consider measurables functions
ft that maps Xt × Ut ×Wt into Xt+1, a controled stochastic dynamic system,

∀t ∈ [[0, T − 1]], Xt+1 = ft(Xt, Ut,Wt), (1)

where the state of the system is a stochastic process xt that take values into the set Xt, the
control Ut is a random variable with values in Ut, and Wt is a random variable with values
in Wt. Non-anticipativity constraint implies that the control Ut is measurable with respect
to σ(X0, . . . , Xt,W0, . . . ,Wt). It is widely known that, under independance assumption over
the noise, the control can be choosen as a function of Xt. We call s = (st)t∈[[0,T]], where for
all t ∈ [[0, T]], st maps Xt into Ut, a strategy. We denote S the set of all strategies.

The problem considered reads as follows

min
s∈S

E

[T−1∑

t=0

Jt(Xt, Ut,Wt) +K(XT)

]
(2a)

s.t. Xt+1 = ft(Xt, Ut,Wt) (2b)

Ut = st(Xt) (2c)

In order to present the Dynamic Programming Principle associated to problem (2) we
need to introduce the value functions Vt recursively defined by

{
VT (x) = K(x) ∀x ∈ XT

Vt(x) = minu∈Ut
E

[
Jt(x, u,Wt) + Vt+1 ◦ ft(x, u,Wt)

]
∀x ∈ Xt, ∀t ∈ [[0, T − 1]]

(3)

The Dynamic Programming principle states that, if there exists a strategy s∗ (with
proper measurability assumptions that we do not discuss here (see [6])) such that, for each
t ∈ [[0, T − 1]], and each x ∈ Xt, we have

st(x) ∈ argmin
u∈Ut

E

[
Jt(x, u,Wt) + Vt+1 ◦ ft(x, u,Wt)

]
, (4)

then s∗ is an optimal strategy for problem (2).
In problem (2) we make two choices to aggregate the time-step cost. The first one is to

consider the sum over time of the instantaneous costs. And the second choice is to consider
the expectation the costs. A usual alternative to the sum over time is the discounted sum,
and we show in Section 2.2 another example where we naturally consider the product of the
cost instead of the sum. The so-called fear-operator (as defined by Bernhard in [4]), and
presented next, is another usual aggregator over the uncertainties.

Worst-case scenario

The fear-operator, or worst-case scenario operator, which take the supremum over the pos-
sible realisation of the cost also lead to a Dynamic Programming principle. It is often
considered in the field of robust optimization (see [14] and [3]).

More precisely if Wt take values in Wt, and we denote W = W1 × · · · × WT then the
problem considered is

2

min
ut∈F(Xt;Ut)

sup
w∈W

[T−1∑

t=0

Jt(xt, ut, wt) +K(xT)

]
(5a)

s.t. xt+1 = ft(xt, ut, wt) (5b)

in [5], section 1.6, it is shown that we can write a Dynamic Programming equation for this
problem

{
VT (x) = K(x) ∀x ∈ XT

Vt(x) = minu∈Ut
supwt∈Wt

[
Jt(x, u, wt) + Vt+1

(
ft(x, u, wt)

)]
∀x ∈ Xt, ∀t ∈ [[0, T − 1]]

(6)

2.2 Expectation and multiplicative costs

An expected multiplicative cost appears in a financial context if we consider a final payoff
K(XT+1) depending on the final state of our system, but discounted with a controled rate
rt(Xt). In this case the problem of maximizing the discounted expected product reads

maxE

(T−1∏

t=1

(1

1 + rt(Xt)

)
K(XT)

)
,

where rt is the interest rate at time t.
We present another interesting setting where multiplicative cost appears. In control

problems we consider a dynamic system and thrive to find a control such that the state
xt satisfy some constraints xt ∈ Xt ⊂ Xt. In a deterministic setting the problem is either
impossible (there is no strategy such that for all t ∈ [[0, T − 1]], xt ∈ Xt) or have a solution
depending on the starting point x0. However in a stochastic setting satisfying the constraint
for all time t ∈ [[0, T − 1]], xt ∈ Xt for all ω (or P−almost surely) can be extremely difficult,
and will lead to problems without solution. Indeed if for example we add to a controled
dynamic an unknown gaussian error, then the resulting state can be anywhere in the state
space, and thus a constraint xt ∈ Xt ⊂ Xt where Xt is, say, a compact set, can not be satisfied
almost surely.

For such a control problem we propose alternatively to maximize the probability of sat-
isfying the constraint (see [9]) :

max
st

P

({
∀t ∈ [[0, T]], Xt ∈ Xt

})
, (7a)

s.t Xt+1 = ft
(
Xt, st(Xt),Wt

)
, ∀t ∈ [[0, T − 1]] . (7b)

This is the so called stochastic viability approach.
This problem can be written

max
st∈F(Xt,Ut)

E

[T∏

t=0

1{Xt∈Xt}

]
, (8a)

s.t Xt+1 = ft
(
Xt, st(Xt),Wt

)
, ∀t ∈ [[0, T − 1]] . (8b)

And it is shown in [8] that under independance of noises assumption the Dynamic Program-
ming equation associated is given by

Vt(x) = min
u∈Ut

E

[
1{x∈Xt} · Vt+1

(
ft(x, u,Wt)

)]
. (9)

More precisely if we can define a strategy s∗ such that for all t ∈ [[0, T − 1]], and all x ∈ Xt,

s∗t (x) ∈ argmin
u∈Ut

E

[
1{x∈Xt} · Vt+1

(
ft(x, u,Wt)

)]
, (10)

then this strategy is optimal for Problem (7).

3

3 A general Dynamic Programming equation

3.1 Problem statement

Dynamic system and state

In a first place we define a controled T-step dynamical system, with T ≥ 2. We consider a
sequence of set of states

(
X0, . . . ,XT

)
and define X = X0 × · · · × XT ; a sequence of set of

uncertainties
(
W0, . . . ,WT−1

)
, and define W = W0 × · · · ×WT−1 ; and a sequence of set of

controls
(
U0, . . . ,UT−1

)
and define U = U0 × · · ·×UT−1. We consider T evolution functions

ft : Xt × Ut × Wt → Xt+1, for t ∈ [[0, T − 1]]. We consider the constraint multifunctions
Ut : Xt ⇉ Ut, for t ∈ [[0, T − 1]].

A strategy s = (st)t∈[[0,T−1]] is a sequence of functions such that for all t ∈ [[0, T − 1]], st
maps Xt into Ut. We denote S the set of all strategies, and Sad ⊂ S the set of all admissible
strategy. An admissible strategy s satisfy in particular :

∀t ∈ [[0, T − 1]], ∀x ∈ Xt, st(x) ∈ Ut(x).

Other constraints, such as measurability constraint can be required for a strategy to be
admissible.

Given w ∈ W, and a strategy s ∈ S, a trajectory follow the equation

∀t ∈ [[0, T − 1]], xt+1 = ft(xt, st(xt), wt),

where ut ∈ Ut and wt ∈ Wt.

Time preferences

Consider that we have T time-step cost function Jt : Xt × Ut ×Wt 7→ R̄, (where we denote
by R̄ the set R ∪ {+∞}) and a final cost function K : XT → R̄. This means that we have
T + 1 values that we want to minimize. However to be able to compare two sets of values
we aggregate them through a global time-aggregator Ψ : R̄T+1 → R̄.

Example 1. For example in Section 2.1 the global time aggregator is simply given by
Ψ
{
c0, . . . , cT

}
=
∑T

i=0 ci, and in Section 2.2 the time aggregator is Ψ
{
c0, . . . , cT

}
=
∏T

i=0 ci.

Thus the cost to minimize reads

Ψ
{
J0(x0, u0,W0), . . . , JT−1(xT−1, uT−1,WT−1),K(xT)

}
.

Risk attitudes

As we did with time we now define an aggregation with respect to uncertainties. We define
a global noise aggregator G : F(W, R̄) → R̄.

Consequently the objective function of our problem reads

G

[
w 7→ Ψ

{
J0
(
x0, u0, w0

)
, . . . , JT−1(xT−1, uT−1, wT−1),K(xT)

}]
.

Example 2. For example in the first part of Section 2.1 the noise aggregator is the extended
expectation with respect to the law image of P by W . Where the extended expectation oper-
ator is defined as the usual expectation if the operand is measurable and integrable and +∞
otherwise. The extended expectation with respect to the probability P will be denoted ĒP. In
the second part the aggregator is the maximum over W.

Optimization problem statement

Thus the problem we want to address is

4

min
s∈Sad

G

[
w 7→ Ψ

{
J0
(
x0, u0, w0

)
, . . . , JT−1

(
xT−1, uT−1, wT−1

)
,K
(
xT
)}]

, (11a)

xt+1 = ft
(
xt, ut, wt

)
t ∈ [[0, T − 1]],

(11b)

ut = st(xt) t ∈ [[0, T − 1]],
(11c)

ut ∈ Ut(xt) t ∈ [[0, T − 1]].
(11d)

3.2 Ingredients for a Dynamic Programming Principle

We give some definitions that represent two key assumptions for our theorem : the global
aggregators can be written as a composition of time step aggregators, and there is a com-
mutation property between those aggregators.

Definition 1. We consider Ψt : R̄× R̄ → R̄, for t ∈ [[0, T − 1]] a sequence of time-step time

aggregators. Their composition Ψ =
t

⊙
τ=0

Ψτ = Ψ0 ⊙ · · · ⊙Ψt : R̄
t → R̄ is recursively defined

by, for all c ∈ R̄
t+1,

(t

⊙
τ=t′

Ψτ

)
{c} := Ψt′

{
ct′ ,
(t

⊙
τ=t′+1

Ψτ

){
ct, . . . , ct+1

}}
, (12)

for all t′ < t.

Definition 2. We consider Gt : F
(
Wt; R̄

)
→ R̄, for t ∈ [[0, T − 1]] a sequence of time-

step noise aggregators. Their composition G =
t

⊡
τ=0

Gτ = G0 ⊡ · · · ⊡ Gt : F
(
W; R̄

)
→ R̄ is

recursively defined, for all functions A ∈ F
(
Wt′ × · · · ×Wt; R̄

)
, by

(t

⊡
τ=t′

Gτ

)[
A
]
:= Gt′

[
wt′ 7→

(t

⊡
τ=t′+1

Gτ

)[
(wt′+1, . . . , wt) 7→ A(wt′ , wt′+1, . . . , wt)

]]
. (13)

for all t′ < t.

Example 3. In order to shed some light on those notations we define

Ψ{c1, c2} = c1 + c2, Ψ′{c1, c2} = c1c2,

then we have

Ψ⊙Ψ{c1, c2, c3} = c1 + c2 + c3,

Ψ′ ⊙Ψ′{c1, c2, c3} = c1c2c3,

Ψ⊙Ψ′{c1, c2, c3} = c1 + c2c3,

Ψ′ ⊙Ψ{c1, c2, c3} = c1(c2 + c3).

Definition 3. A sequence of time aggregators (Ψ0, . . . ,Ψt) is said to commute with a se-
quence of noise aggregators (G0, . . . ,Gt) if for all t′ ∈ [[0, t]], all Ct′ ∈ F

(
W0 × · · · ×Wt′ ; R̄

)
,

and all Ct+1 ∈ F
(
W0 × · · · ×Wt; R̄

)
we have

(t

⊡
τ=0

Gτ

)
◦
(t

⊙
τ=0

Ψτ

)
(C1, . . . , Ct+1) = G1

[
Ψ1

(
C1, . . .Gt

[
Ψt{Ct, Ct+1}

])]
.

Or, if we extend slightly the definition of time-aggregators,

(t

⊡
τ=0

Gτ

)
◦
(t

⊙
τ=0

Ψτ

)
=

t

⊙
τ=0

(
Gτ ◦Ψτ

)
.

5

Definition 4. A noise aggregator G is said to strongly commute with a time aggregator Ψ
if for any A ∈ F(W; R̄), and any c ∈ R̄,

G
[
w 7→ Ψ

{
c, A(w)

}]
= Ψ

{
c,G

[
w 7→ A(w)

]}

Example 4. If W is a probability space (W,F ,P) and Ψ(c1, c2) = c1+ c2, then the extended
expectation ĒP is strongly commuting with Ψ.

Proposition 1. If for any t ∈ [[0, T −2]], Gt+1 strongly commute with Ψt, then the sequence
(G0, . . . ,GT−1) commutes with the sequence (Ψ0, . . . ,ΨT−1).

Proof. We prove by backward induction the property

(Hk) (Gk, . . . ,GT−1) commutes with (Ψk, . . . ,ΨT−1).

For k = T − 2 the property holds because for any CT−2 ∈ F
(
WT−2; R̄

)
, and any CT−1 and

CT in F
(
WT−2 ×WT−1; R̄

)
we have

GT−1

[
ΨT−2 ⊙ΨT−1

{
CT−2, CT−1, CT

}]
= GT−1

[
ΨT−2

{
CT−2,ΨT−1

{
CT−1, CT

}}]
,

= ΨT−2

{
CT−2,GT−1

[
ΨT−1

{
CT−1, CT

}]}
.

Aggregating with GT−2 gives HT−2. Assuming that (Hk) holds true, we show (Hk−1) in a
similar fashion by defining

C ′
T−k := GT−k

[
ΨT−k

{
CT−k, . . .GT−1

[
ΨT−1

{
CT−1, CT

}]}
]
,

we have

(T−1

⊡
t=T−k−1

Gt

)[T−1

⊙
t=T−k−1

Ψt

{
CT−k−1, CT−k, . . . , CT

}]
= GT−k−1

[
ΨT−k−1

{
CT−k−1, C

′
T−k

}]

We can note that there is no commutation assumption concerning G1 or ΨT .

3.3 Dynamic Programming principle

We now gives the main theorem.

Theorem 2. Assume that (G1, . . . ,GT) commute with (Ψ1, . . . ,ΨT). Moreover assume that,
for all t ∈ [[1, T − 1]], all C1 ∈ R̄, C 7→ Ψt

{
C1, C

}
is non decreasing and Gt is monotonous.

We define the value functions

VT := K, (14a)

Vt(x) := inf
u∈Ut(x)

Gt

[
Ψt

{
Jt
(
x, u, ·

)
, Vt+1

(
ft(x, u, ·)

)}]
∀t ∈ [[0, T − 1]], ∀x ∈ Xt. (14b)

If there exists an admissible strategy s∗ such that for all t ∈ [[0, T − 1]],

s∗t (x) ∈ argmin
u∈Ut(x)

Gt

[
Ψt

{
Jt(x, u, ·), Vt+1

(
ft(x, u, ·)

)}]

then s∗ is an optimal strategy for Problem (11), and its value is V0(x0).

6

From now on we consider the Problem (11) with T = 2 for simplicity of notation. The
proof can easily be extended to the T -step case. We assume that Ψ = Ψ0 ⊙ Ψ1 and G =
G0 ⊙G1 where (Ψ0,Ψ1) commutes with (G0,G1).

Before presenting the proof itself we need some notations and a technical lemma. We
denote, for any strategy s ∈ S,

xs1(w0) := f0
(
x0, s0(x0), w0

)

xs2(w0, w1) := f1
(
xs1, s1(x

s
1), w1

)

Js(x0)(w0, w1) := (Ψ0 ⊙Ψ1)
{
J0
(
x0, s0(x0), w0

)
, J1
(
xs1, s1(x

s
1), w1

)
,K
(
xs2
)}

Js0
0 (x0, C)(w0) := Ψ0

{
J0
(
x0, s0(x

s
0), w0

)
, C
}

Js1
1 (x1,K)(w0, w1) := Ψ1

{
J1
(
x1, s1(x1), w1

)
,K(xs2)

}

Thus Problem (11) reads reads

min
s∈Sad

G
[
(w0, w1) 7→ Js(x0)(w0, w1)

]
.

Lemma 1. For any strategy s we have

(G0 ⊙G1)
[
Js(x0)

]
= G0

[
Js0
0

(
x0,G1

[
Js1
1 (xs1,K)

])]
.

Proof. We have

Js(x0)(w0, w1) = (Ψ0 ⊙Ψ1)
{
J0(x0, s0(x0), w0), J1(x

s
1, s1(x

s
1),W1),K(xs2)

}
by definition of Js

= Ψ0

{
J0(x0, s0(x0), w0),Ψ1

{
J1
(
xs1, s1(x

s
1), w1

)
,K(xs2)

}}

Then we have

(G0 ⊙G1)
[
Js(x0)

]
= (G0 ⊙G1)

[
Ψ0

{
J0(x0, s0(x0), ·),Ψ1

{
J1
(
xs1, s1(x

s
1), ·
)
,K(xs2)

}}]
,

= G1

[
Ψ1

{
J1

(
x1, s1(x1), ·

)
,G2

[
Ψ2

{
J2
(
xs2, s2(x

s
2), ·
)
,K(xs3)

}]}]
,

By commutativity

= G0

[
Js0
0

(
x0,G1

[
Js1
1 (xs1,K)

])]
.

And now we gives the proof of theorem 2.

Proof. We have

G1

[
J
s∗1
1 (x1,K)

]
= G1

[
Ψ1

{
J1(x1, s

∗
1(x1), ·),K

}]
= V1(x1) . (15)

Moreover

G
[
Js∗(x0)

]
= G0

[
J
s∗0
0

(
x0,G1

[
J
s∗1
1

(
xs

∗

1 ,K
)])]

by Lemma 1

= G0

[
J
s∗0
0

(
x0,G1

[
V1 ◦ f0

(
x0, s

∗
0(x0), ·

)]
)]

by (15)

= V0(x0) by definition of s∗0

7

Now we show that s∗ is optimal. Considering an admissible strategy s, we have by definition
of V1,

∀x ∈ X1, V1(x) ≤ G1

[
Js1
1 (x)

]
.

Moreover note that C 7→ Js0
0 (x0, C) is non-decreasing. Thus

G
[
Js∗(x0)

]
= G0

[
J
s∗0
0

(
x0, V1 ◦ f0

(
x0, s

∗
0(x0), ·

))
]

≤ G0

[
Js0
0

(
x0, V1 ◦ f0(x0, s0(x), ·)

)]
by monotonicity of G1,

≤ G0

[
Js0
0

(
x0,G1

[
Js1
1 ◦ f0

(
x0, s0(x0), ·

)
,K

])]
by monotonicity of G1 and Js0

0 (x0, ·)

4 Applications

In this Section we present some class of time aggregators and noise aggregators that are
strongly commuting, and monotonous, and thus yield a Dynamic Programming principle.

In all the example we consider a Stochastic Dynamic System with the notations presented
in Section 3.1.

4.1 Coherent risk measures

For t ∈ [[0, T − 1]], let (Ωt,Ft) be a measurable space. Consider a set of probabilities Pt

on (Ωt,Ft), and denote P = P0 ⊗ · · · ⊗ PT−1. Consider a sequence of random variables
(Wt)t∈[[0,T−1]] such that each Wt is measurable with respect to Ft.

Consider the following problem, with βt non negative,

min
s∈Sad

sup
P∈P

ĒP

[T−1∑

t=0

{
αt

(
Jt(xt, st(xt),Wt)

) ∏

t′<t

βt′
(
Jt′(xt′ , st′(xt′),Wt′)

)}
(16a)

+

T−1∏

t=0

βt
(
Jt(xt, st(xt),Wt)

)
K(xT)

]
. (16b)

s.t. xt+1 = ft(xt, st(xt),Wt) (16c)

Proposition 3. Problem (16) can be solved by using the following Dynamic Programming
Principle

VT (x) = K(x) , (17a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
ĒPt

[
αt

(
Jt(x, u,Wt)

)
(17b)

+ βt
(
Jt(x, u,Wt)

)
· Vt+1 ◦ ft(x, u,Wt)

]}
. (17c)

Proof. Problem (16) fit the framework of Problem 11 where Ψ = Ψ0 ⊙ · · · ⊙ ΨT−1, and
G = G0 ⊙ · · · ⊙GT−1 with

Ψt

{
C1, C2

}
= αt(C1) + βt(C1)C2, (18)

Gt

[
A
]
= sup

Pt∈Pt

ĒPt

[
A
]
, (19)

We show that if βt is non-negative, Gt strongly-commute with Ψt+1.

8

We have for any Ct ∈ R̄, and any function Ct+1 ∈ F(Ωt+1; R̄),

Gt+1

[
Ψt{Ct, Ct+1}

]
= sup

Pt+1∈Pt+1

{
ĒPt+1

[
α(Ct) + β(Ct)Ct+1

]}
(20)

= αt(Ct) + βt(Ct) sup
Pt+1∈Pt+1

{
ĒPt+1

[Ct+1]
}

as β is non-negative

(21)

= αt(Ct) + βt(Ct)Gt+1[Ct+1] (22)

Moreover it is easy to check that Gt is monotonous, and that C 7→ α(Ct) + β(Ct)C is non
decreasing.

The Dynamic Programming equation directly derive from Theorem 2.

We conclude by a few remarks on the class of aggregator studied here.
If β = 1 Ψ is the additive-costs case, and if α = 0 Ψ represent the multiplicative-costs

case.
Let give three example of random aggregators constructed this way:

• if Pt is the singleton {Pt}, then Gt is simply the extended expectation operator with
respect to probability Pt.

• if Pt contains all the Dirac mass of each ω ∈ Ωt then G is the worst-case scenario
aggregator.

• if Pt is obtain from a closed convex set of densities then Gt is a coherent risk measure
as defined by Artzner et al. in [1].

4.2 Convex risk measures

In the same setting we consider the following problem

min
s∈Sad

sup
P∈P

ĒP

[T−1∑

t=0

{
αt

(
Jt(xt, st(xt),Wt)

)
− gt

(
Pt

)}
+K(xT)

]
. (23a)

s.t. xt+1 = ft(xt, st(xt),Wt) (23b)

Proposition 4. Problem (23) can be solved by using the following Dynamic Programming
Principle

VT (x) = K(x) , (24a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
ĒPt

[
αt

(
Jt(x, u,Wt)

)
+ Vt+1 ◦ ft(x, u,Wt)

]}
− gt(Pt) . (24b)

Note that if Pt is a closed convex set of probability and ft is convex and lower semi
continuous then Gt is a convex measure of risk as defined in [10].

Proof. Problem 23 fit the framework of Problem 11 where Ψ = Ψ0 ⊙ · · · ⊙ ΨT−1, and
G = G0 ⊙ · · · ⊙GT−1 with

Ψt

{
C1, C2

}
= αt(C1) + C2, (25)

Gt

[
A
]
= sup

Pt∈Pt

ĒPt

[
A
]
− gt(Pt), (26)

We show that for all t ∈ [[0, T − 1]], Gt+1 strongly commute with Ψt.
Let C ∈ R̄×F(Ωt, R̄), we have

Gt+1

[
Ψt

{
Ct, Ct+1

}]
= sup

Pt+1∈Pt+1

{
ĒPt+1

[
α(Ct) + Ct+1

]
− gt+1(Pt+1)

}
, (27)

= αt(Ct) + sup
Pt+1∈Pt+1

{
ĒPt+1

[
Ct+1

]
− gt+1(Pt+1)

}
, (28)

= αt(Ct) +Gt+1[Ct+1]. (29)

Moreover Gt is monotonous and C 7→ α(Ct) + C is non decreasing. We conclude with
Theorem 2.

9

4.3 Fear Operator

A special case of coherent risk measures are the worst case scenario operators, also called the

fear operator. For each time t we consider W̃t a subset of Wt, and a function Ψt : R̄
2 → R̄

which is non-decreasing in its second variable. We denote W̃ = W̃1 × · · · × W̃T and consider
the following problem

min
s∈Sad

sup
w∈W̃

Ψ0

{
J0
(
x0, s0(x0), w0

)
,Ψ1

{
· · · ,ΨT−1

{
JT−1

(
xT−1, sT−1(xT−1), wT−1

)
,K(xT (wT−1))

}}}

(30a)

s.t. xt+1 = ft(xt, st(xt),Wt) (30b)

Proposition 5. Problem (30) can be solved by using the following Dynamic Programming
Principle

VT (x) = K(x) , (31a)

Vt(x) = min
u∈Ut(x)

sup
wt∈W̃t

{
Ψt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}}
. (31b)

Proof. This problem fit the framework of Problem (11) where Ψ = Ψ0 ⊙ · · · ⊙ ΨT−1, and
G = G0 ⊙ · · · ⊙GT−1 with

Ψt

{
C1, C2

}
= Φt

{
C1, C2

}
, (32)

Gt

[
A
]
= sup

wt∈W̃t

A(wt), (33)

Note that the composition
T−1

⊙
t=0

Gt is simply the fear operator on the cartesian product

W̃ = W̃0 × · · · × ×W̃T−1.
We show that if, for any C1 ∈ R̄, C2 7→ Ψt(C1, C2) is non-decreasing then Gt+1 strongly

commutes with Ψt.
Let C ∈ R̄×F(W2, R̄), we have

Gt+1

[
Ψt

{
Ct, Ct+1

}]
= sup

w∈W̃t+1

[
Ψt

{
Ct, Ct+1(wt+1)

}]
, (34)

= Ψt

{
Ct, sup

w∈W̃t+1

[
Ct+1(wt+1)

]}
, (35)

= Ψt

{
Ct,Gt+1[Ct+1]

}
. (36)

Moreover Gt is monotonous. Theorem 2 concludes the proof.

A good example of monotonous time aggregator is Ψt

{
C1, C2

}
= max

{
C1, C2

}
that is

used in intertemporal comparison as in [8].

5 Combining commuting aggregators

5.1 Maximum and infimum

We consider time aggregator Ψ non-decreasing in its second argument and a family of
monotonous uncertainties aggregators Gi that strongly commute with Ψ.

Proposition 6. Let Ψ be a time aggregator non-decreasing in its second argument. Suppose
that (Gi)i∈I is a family of monotonous random aggregators strongly commuting with Ψ.
Moreover if we have either one of the two following conditions

i) for all C2 ∈ F(W2, R̄), supi∈I G
i[C2] is attained (always true for I finite);

ii) for all C1 ∈ R̄ Ψ
{
C1, ·

}
is lower-semicontinuous (resp. upper-semicontinuous);

10

then the aggregator Ḡ := supi∈I G
i (resp. G := infi G

i) is monotonous and strongly com-
mutes with Ψ.

Proof. Consider C ∈ R̄×F(W2, R̄),
we have

Ḡ

[
Ψ
{
C1, C2

}]
= sup

i∈I

G
i
[
Ψ
{
C1, C2

}]
by definition of Ḡ, (37)

= sup
i∈I

Ψ
{
C1,G

i
[
C2

]}
by strong commutation, (38)

= Ψ
{
C1, sup

i∈I

G
i
[
C2

]}
by monotonicity of Ψ. (39)

(40)

The last equality being obtained either if the supremum over i ∈ I of Gi[C2] is attained or
by semicontinuity. Thus we have shown that

Ḡ

[
Ψ
{
C1, C2

}]
= Ψ

{
C1, Ḡ

[
C2

]}
.

The proof for the minimum is obtained by substituting sup by inf.

Moreover if Ψ is affine in its second variable (i.e. Ψ
{
c1, c2

}
= α(c1) + β(c1)c2) then any

convex combinaison of infimum or maximum of monotonous aggregators strongly-commuting
with Ψ is monotonous and strongly-commuting with Ψ. In addition if Ψ is linear in its second
variable we can consider positive linear combinaison instead of convex combinaison.

5.1.1 Change of variables

We now focus on a way to derive a new pair of commuting agregators from another one via
the use of a “utility” function (not assumed to be concave).

Proposition 7. Let ν be an increasing bijection from I ⊂ R̄ onto J ⊂ R̄. Assume that we
have an aggregator such that the image of G◦ν is contained in I. We define G̃t := ν−1◦G◦ν.

In a similar fashion, we define Ψ̃t given by, for all C ∈ R̄
2,

Ψ̃t : (C1, C2) 7→ ν−1
(
Ψt

{
C1, ν(C2)

})
.

If the sequence (G1, . . . ,Gt) commutes with (Ψ1, . . . ,Ψt), then the sequence (G̃1, . . . , G̃t)
commutes with (Ψ̃1, . . . , Ψ̃t). Finally if Gt is monotonous then so is G̃t, and if Ψt

{
C, ·
}
is

monotonous so is Ψ̃t

{
C, ·
}
.

When we modify the aggregators with a “utility” function it is natural to also modify
the time-stage cost, and consider J̃t = νt ◦ Jt. Note that the result is mathematically weak
however it gives the possibility of writting a sequence of consistent problems that are similar.

Proof. For simplicity the proof is written for T = 2, but can easily be extended to the general

11

case. For any C ∈ L(W1; R̄)× L(W1 ×W2; R̄)
2,

(
G̃1 ⊙ G̃2

)[(
Ψ̃1 ⊙ Ψ̃2

)(
C
)]

= G̃1

[
G̃2

[
Ψ̃1

{
C1, Ψ̃2{C2, C3}

}]]
,

by definition of compositions,

= ν−1

(
G1 ◦ ν

[
ν−1 ◦G2 ◦ ν

[
ν−1 ◦Ψ1

{
C1, ν ◦ ν

−1 ◦Ψ2{C2, ν(C3)}
}]]

)
,

= ν−1

(
G1

[
G2

[
Ψ1

{
C1,Ψ2{C2, ν(C3)}

}]]
,

= ν−1

((
G1 ⊙G2

)[(
Ψ1 ⊙Ψ2

){
C1, C2, ν(C3)

}])
)
,

by definition of compositions,

= ν−1

(
G1

[
Ψ1

(
C1,G2

[
Ψ2{C2, ν(C3)}

])])
,

by commutativity of G with Ψ,

= ν−1

(
G1 ◦ ν ◦ ν

−1

[
Ψ1

(
C1, ν ◦ ν

−1 ◦G2 ◦ ν ◦ ν
−1
[
Ψ2{C2, ν(C3)}

])])
,

= G̃1

[
Ψ̃1

(
C1, G̃2

[
Ψ̃2{C2, C3}

])]
.

Which conclude the proof of commutativity. Monotonicity is directly given by composition
of non-decreasing functions.

Example 5. We give the risk sensitive approach as an example of application. Risk-sensitive
approach as expected utility goes back to Pratt ([15]) and Howard and Thomason ([12]). Even
if this approach has some drawbacks (see for example [13]) it is still widely used and studied.

We consider the following problem

inf
s∈Sad

−
1

γ
ln

(
Ē

[
e−γ

(∑
T

t=1
Jt(xt,st(xt),Wt)+K(xT)

)])
. (41)

Then Problem (41) can be solved by using the following Dynamic Programming Principle

VT+1(x) = K(x) ,

Vt(x) = min
u∈Ut(x)

−
1

γ
ln

(
Ē

[
e−γ

(
Jt(xt,u,Wt)+Vt+1◦ft(xt,u,Wt)

)])
.

Proof. Defining

Ψt

{
c1, c2

}
= e−γc1 × c2 ,

Gt = ĒPt
,

ν : x 7→ −e−γx ,

we see that Problem (41) is simply the transformation by ν of the expected product of
costs.

5.2 Multi-G-linearity

We define a new concept of commutation between a R̄-operator of arity n, i.e a function
Ψ : R̄

n → R̄ and an uncertainty aggregator: we say that Ψ is multi-G2-linear if for all
C ∈ F(W2, R̄)

n we have

G

[
Ψ
{
C1, · · · , Cn

}]
= Ψ

{
G
[
C1

]
, · · · ,G

[
Cn

]}
.

12

In particular if the uncertainty aggregator G conserve the constants that is

∀c ∈ R̄, G[c] = c

and Ψ1 is multi-G-linear then G strongly commutes with Ψ1.

Proposition 8. If Ψ is a multi-G2-linear R̄-operator of arity n, and for all i ∈ [[1, n]],

and G strongly commutes with ψi then G strongly commutes with Ψ̃ defined as, for all
C ∈ F(W, R̄)2,

Ψ̃
{
C1, C2

}
= Ψ

{
Ψ1{C1, C2}, . . . ,Ψ

n{C1, C2}
}
.

Proof. For C ∈ F(W2, R̄)
2 we have

G

[
Ψ̃
{
C1, C2

}]
= G

[
Ψ
{
Ψ1{C1, C2}, . . . ,Ψ

n{C1, C2}
}]

by defining Ψ̃,

= Ψ
{
G
[
Ψ1{C1, C2}

]
, . . . ,G

[
Ψn{C1, C2}

]}
by multilinearity,

= Ψ
{
Ψ1
{
C1,G2[C2]

}
, . . . ,Ψn

{
C1,G[C2]

}}
by strong commutation,

= Ψ̃
{
C1,G2[C2]

}
.

6 Conclusion

In this paper we have described a general framework for a Dynamic Programming Principle.
For simplicity reasons we have presented fixed uncertainty aggregators and not conditional
ones. However the framework will be extended to conditional aggregators and thus allow us
to make more precise links between this dynamic optimization concept of time-consistency
and the time-consistency defined in the risk measure litterature.

References

[1] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of risk. Mathe-
matical Finance, 9:203–228, 1999.

[2] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, David Heath, and Hyejin Ku. Co-
herent multiperiod risk adjusted values and bellman’s principle. Annals of Operations
Research, 152(1):5–22, 2007.

[3] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and appli-
cations. Mathematical Programming, 92(3):453–480, 2002.

[4] Pierre Bernhard. Max-plus algebra and mathematical fear in dynamic optimization.
Set-Valued Analysis, 8(1-2):71–84, 2000.

[5] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific Belmont, 1995.

[6] Dimitri P Bertsekas and Steven E Shreve. Stochastic optimal control: The discrete time
case, volume 139. Academic Press New York, 1978.

[7] Pierre Carpentier, Jean-Philippe Chancelier, Guy Cohen, Michel De Lara, and Pierre
Girardeau. Dynamic consistency for stochastic optimal control problems. Annals of
Operations Research, 200(1):247–263, 2012.

[8] Michel De Lara and Luc Doyen. Sustainable management of natural resources. Springer,
2008.

[9] Luc Doyen and Michel De Lara. Stochastic viability and dynamic programming. Systems
& Control Letters, 59(10):629–634, 2010.

[10] Hans Föllmer and Alexander Schied. Convex measures of risk and trading constraints.
Finance and Stochastics, 6:429–447, 2002. 10.1007/s007800200072.

13

[11] Peter J Hammond. Consistent plans, consequentialism, and expected utility. Econo-
metrica: Journal of the Econometric Society, pages 1445–1449, 1989.

[12] Ronald A Howard and James E Matheson. Risk-sensitive markov decision processes.
Management Science, pages 356–369, 1972.

[13] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under
risk. Econometrica: Journal of the Econometric Society, pages 263–291, 1979.

[14] John M Mulvey, Robert J Vanderbei, and Stavros A Zenios. Robust optimization of
large-scale systems. Operations research, 43(2):264–281, 1995.

[15] John W Pratt. Risk aversion in the small and in the large. Econometrica: Journal of
the Econometric Society, pages 122–136, 1964.

14

