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We consider a stationary continuous model of random size population with non-neutral mutations using a continuous state branching process with non-homogeneous immigration. We assume the type (or mutation) of the immigrants is random given by a constant mutation rate measure. We determine some genealogical properties of this process such as: distribution of the time to the most recent common ancestor (MRCA), bottleneck effect at the time to the MRCA (which might be drastic for some mutation rate measures), favorable type for the MRCA, asymptotics of the number of ancestors.

1. Introduction 1.1. Motivations. Galton-Watson (GW) processes are branching processes modeling discrete populations in discrete time. Since (non-degenerate) GW processes either become extinct or blow up at infinity, one needs to consider a stationary version of the GW process, such as a sub-critical GW process with immigration to model the stationary population. It is well known that the rescaled limit in time and space of GW processes are continuous-state branching (CB) processes, see Lamperti [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF], and that the rescaled limit of GW processes with immigration are CB processes with immigration (CBI), see Kawazu and Watanabe [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF]. Sub-critical CB process becomes extinct a.s., and conditioning this process not to become extinct gives a CBI with a particular immigration which is a natural continuous model for populations with stationary random size. For the study of genealogical properties of CBI we are interested in, see Chen and Delmas [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF] and Bi [START_REF] Bi | Time to MRCA for stationary CBI-processes[END_REF], for a more general immigration. The aim of this paper is to consider the simplest CB process (with quadratic branching mechanism) and an immigration taking into account non-neutral mutations. We shall prove the existence of this stationary continuous process and give some genealogical properties, such as a bottleneck effect at the time to the most recent common ancestor (TMRCA), favorable mutation for the most recent common ancestor (MRCA) of the process. 1.2. Constant size population models. A large literature is devoted to the constant size population: Wright-Fisher model (discrete time, discrete population), Moran model (continuous time, discrete population) and Fleming-Viot process (continuous time, continuum for the population). Neutral models can be described using spatial Fleming-Viot processes, see Dawson [START_REF] Dawson | Measure-valued Markov processes[END_REF] and Donnelly and Kurtz [START_REF] Donnelly | Particle representations for measure-valued population models[END_REF].

Non-neutral mutation models in stationary regime have been considered by Neuhauser and Krone [START_REF] Neuhauser | The genealogy of samples in models with selection[END_REF] for discrete population, by Fearnhead [START_REF] Fearnhead | Perfect simulation from nonneutral population genetic models: variable population size and population sub-division[END_REF] for discrete population (possibly with random size) in continuous time, and by Stephens and Donnelly [START_REF] Stephens | Ancestral inference in population genetics models with selection (with discussion)[END_REF] and Donnelly as well as Nordborg and Joyce [START_REF] Donnelly | Likelihoods and simulation methods for a class of nonneutral population genetic models[END_REF] for continuous models in which the type of the mutant does not depend on the type of the parent. In Fearnhead [START_REF] Fearnhead | The common ancestor at a nonneutral locus[END_REF] and Taylor [START_REF] Taylor | The common ancestor process for a Wright-Fisher diffusion[END_REF] the MRCA is studied. In particular it is shown in [START_REF] Fearnhead | The common ancestor at a nonneutral locus[END_REF] that the expected fitness of MRCA is greater than that of a randomly chosen individual.

Notice that the non-neutral models studied by Donnelly and Kurtz [START_REF] Donnelly | Genealogical processes for Fleming-Viot models with selection and recombination[END_REF] are nonstationary. Such models could be made stationary by conditioning on the non-extinction of all the types, see Foucart and Hénard [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF] for a work in this direction. For nonstationary models see also Bianconi, Ferretti and Franz [START_REF] Bianconi | Non-neutral theory of biodiversity[END_REF] for constant size discrete population in discrete time. In those latter models the non-neutral mutations are described using an immigration at constant rate but with various fitness. 1.3. Random size population models. Another large literature is devoted to random size population using branching processes. Neutral models are now well known, see Bertoin [START_REF] Bertoin | The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations[END_REF][START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF] for GW processes, Champagnat, Lambert and Richard [START_REF] Champagnat | Birth and death processes with neutral mutations[END_REF] for Crump-Mode-Jagers branching processes and Abraham and Delmas [START_REF] Abraham | Changing the branching mechanism of a continuous state branching process using immigration[END_REF][START_REF] Abraham | Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations[END_REF] with a CB process presentation in [START_REF] Abraham | Changing the branching mechanism of a continuous state branching process using immigration[END_REF] and a genealogical tree approach using continuous random tree presentation in [START_REF] Abraham | Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations[END_REF]. Conditioning on non-extinction will provide a stationary model, see [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF] in the CB process setting.

One can also use multi-type processes for non-neutral mutation models; in all those models the rate of mutation is proportional to the size of the current population. For the discrete setting, we refer to Athreay and Ney [START_REF] Athreya | Branching processes[END_REF] on multi-type GW processes, see also Buiculescu [11] or Nakagawa [START_REF] Nakagawa | The Q-process associated with a multitype Galton-Watson process and the additional results[END_REF] for sub-critical multi-type GW processes conditioned on non-extinction. Those latter processes provide natural stationary models. Similar results exist for multi-type CB process or non-homogeneous super-processes (which correspond to infinitely many types) conditioned on non-extinction see Champagnat and Roelly [START_REF] Champagnat | Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions[END_REF] for the former case and Delmas and Hénard [START_REF] Delmas | A Williams' decomposition for spatially dependent superprocesses[END_REF] for the more general latter case. A non-stationary model with non-neutral mutation is also given in Abraham, Delmas and Hoscheit [START_REF] Abraham | Exit times for an increasing Lévy tree-valued process[END_REF], with a model of immigration with (random) increasing fitness. In this model, the whole population is again a CB process.

1.4. The model. Our present model of a CB process with non-homogeneous immigration follows the approach of [START_REF] Fearnhead | Perfect simulation from nonneutral population genetic models: variable population size and population sub-division[END_REF] and [START_REF] Bianconi | Non-neutral theory of biodiversity[END_REF] as we consider non-neutral mutation provided by an immigration at constant rate.

For simplicity, we shall restrict our-self to the quadratic branching mechanism ψ(λ) = βλ 2 , with β > 0. For θ > 0, let Y θ = (Y θ t , t ≥ 0) denote a CB process with branching mechanism ψ θ (λ) = ψ(λ + θ)ψ(θ). It is well known that Y θ is stochastically larger than Y q for θ ≤ q. In particular, we shall say that the type (or mutation) θ is more advantageous than the type q. We shall consider a stationary CBI (Z t , t ∈ R) with non-homogeneous immigration such that at rate 2β dt there is an immigration of a CB process starting with an infinitesimal mass and of type θ, with θ chosen according to a σ-finite measure µ(dθ). We call µ the mutation rate measure.

In [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF], the immigration was homogeneous and the mutation rate measure was a Dirac mass measure; we shall call this model CBI with neutral mutations. In the framework of [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF] the process Z is distributed as the initial CB process conditioned on non-extinction (or Qprocess) under its stationary measure. The immigration can also be seen as the descendants of an immortal individual. This description of the genealogy using an immortal individual is in the same spirit as the bottom individual in the modified look-down process in [START_REF] Donnelly | Particle representations for measure-valued population models[END_REF]. Even if this interpretation is no more valid in our setting, we might keep the corresponding vocabulary as MRCA or TMRCA.

The mutation rate measure allows to consider non-neutral mutations. In our model different CB processes with different branching mechanism coexist at the same time and all mutations eventually die out. Contrary to [START_REF] Abraham | Exit times for an increasing Lévy tree-valued process[END_REF], who considered only advantageous mutations (that is advantageous immigration with rate proportional to the size of the population), the type of the immigrants in our model is random and there is no improvement of the type as time goes on. One of the advantages of our model is that it has a stationary version, which we shall consider. Notice also that the size of the population is random (and different from an homogeneous CBI unless the mutation rate measure is a constant time a Dirac mass).

1.5. Presentation of the results. After some preliminaries on CB processes in Section 2, we define precisely our model in Section 3. In particular, we give an integrability condition on the mutation rate measure µ for the process Z to be well defined (Theorem 3.1) and we check that Z is continuous (Theorem 3.3). We give the expectation of Z t (Corollary 3.4) which might be infinite and characterize the mutation rate measure for which the population size is always strictly positive (Proposition 3.5). Notice only this case is biologically meaningful. We also give (Lemma 3.2) the distribution of time to the most recent common ancestor (TMRCA) which is seen as the first immigration time of an ancestor of the current population living at time t = 0.

We study the type Θ of the MRCA in fact that the type of the first immigrant having descendants at time t = 0 in Section 4. In particular, we get that if µ is a probability measure, then Θ is stochastically more favorable than the type of a random immigrants given by µ (that is Θ is stochastically less than Θ ′ with probability measure µ).

Using arguments close to [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF] we give in Section 5 the distribution of the size Z A of the population at the TMRCA (Proposition 5.3) and check that the size of the population at the TMRCA is stochastically smaller than the size of the population at fixed time (which is the stationary measure). This can be interpreted as a bottleneck effect.

In Section 6.1 we give (Lemma 6.1) the asymptotic number of immigrants who still have descendants in the current population at time t = 0. In Section 6.2, we give a precise description of the genealogical structure of the population relying on the tree structure of the Brownian excursion. We study in Section 6.3 the asymptotic number M s of ancestors s unit of time in the past of the current population. In particular we get (Proposition 6.5) that βM s is of order Z 0 /s, which is similar to the CBI case with neutral mutation see [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF] or Berestycki, Berestycki and Limic [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] for Λ-coalescent models. We also give the fluctuations (Theorem 6.6) which are similar to the neutral case if the mutation rate behaves nicely. Section 7 is devoted to the stable mutation rate:

µ(dθ) = cθ α-1 1 {θ>0} dθ,
with c > 0 and α ∈ (0, 1). In this case we have E[Z 0 ] = +∞ and E[Z A ] finite iff α ∈ (1/2, 1).

In particular for α ∈ (1/2, 1) we have a drastic bottleneck effect as the ratio E[Z A ]/E[Z 0 ] is equal to 0. We also prove (Proposition 7.2) that the type of the MRCA is (stochastically) more advantageous than the type of an individual taken at random in the current population, see also [START_REF] Fearnhead | The common ancestor at a nonneutral locus[END_REF] for similar behavior in a different model. We conjecture this result holds for any mutation rate measure. We get in Section 7.3 that the number of families at s unit of time in the past for the model with non-neutral mutations behave as s -α and that this result can not be compared to the neutral case in [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF] even with stable branching mechanism where the number of families at s unit of time in the past is of order 1/| log(s)|. Concerning the fluctuations of the number of ancestors, M s , we get that results given in Theorem 6.6 holds iff α ∈ (0, 1/2) and we get a deterministic limit for α ∈ (1/2, 1). We interpret this latter phenomenon as a law of large number effect from the large number of small populations generated by immigrants with very disadvantageous mutations which is preponderant to the fluctuations of the number of ancestors in each of the immigrant populations.

Preliminaries and notations

We consider a quadratic branching mechanism ψ(λ) = βλ 2 for some fixed β > 0. We will consider a family (ψ θ , θ ≥ 0) of (sub)-critical branching mechanism defined by:

ψ θ (λ) = ψ(λ + θ) -ψ(θ) = 2βθλ + βλ 2 .
For every fixed θ ≥ 0, let P ψ θ

x be the law of a CB process, Y θ = (Y θ t , t ≥ 0), started at mass x with branching mechanism ψ θ . Let E ψ θ

x be the corresponding expectation and N ψ θ be the canonical measure (excursion measure) associated to Y θ . In particular N ψ θ is a σ-finite measure on the set D 0 of continuous functions from (0, ∞) to [0, ∞) having zero as a trap (for a function f , this means f (s) = 0 implies f (t) = 0 for all t ≥ s). According to [START_REF] Abraham | Changing the branching mechanism of a continuous state branching process using immigration[END_REF], see also Abraham, Delmas and Voisin [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF], it is possible to define the processes (Y θ , θ ≥ 0) on the same space so that a.s.

Y θ 1 ≥ Y θ 2 , for any 0 ≤ θ 1 ≤ θ 2 .
When there is no confusion we shall write Y for Y θ that is for example

E ψ θ x [F (Y )] or N ψ θ [F (Y )] instead of E ψ θ x [F (Y θ )] or N ψ θ [F (Y θ )].
We recall some well known results on quadratic CB processes. For every t ≥ 0 and λ > -2θ/(1e -θt ), we have:

(1)

E ψ θ x e -λYt = e -xu θ (λ,t) ,
where

u θ (λ, t) = N ψ θ [1 -e -λYt ] = 2θλ (2θ + λ)e 2βθt -λ •
Notice that u θ satisfies the backward and forward equations for λ ≥ 0 and t ≥ 0:

∂ t u θ (λ, t) = -ψ θ (u θ (λ, t)), ∂ t u θ (λ, t) = -ψ θ (λ) ∂ λ u θ (λ, t),
with initial conditions u θ (λ, 0) = λ and u θ (0, t) = 0. It is easy to deduce that for t ≥ 0:

(2)

N ψ θ [Y t ] = e -2βθt and N ψ θ Y t e -λYt = e -2βθt 1 + λ∆ θ t 2 ,
where we set for t ≥ 0:

(3)

∆ θ t = 1 -e -2βθt 2θ •
It is easy to get that for t ≥ 0 and λ ≥ 0:

(4)

β t 0 u θ (λ, r) dr = log(1 + λ∆ θ t ) and β ∞ 0 u θ (λ, r) dr = log 1 + λ 2θ . Let (5) ζ = inf{t > 0; Y t = 0} be the lifetime of Y and set c θ (t) = N ψ θ [ζ > t].
Then we have:

(6) c θ (t) = lim λ→∞ u θ (λ, t) = 2θ e 2βθt -1 = e -2βθt ∆ θ t •
Notice that for t, s > 0, we have c θ (t + s) = u θ (c θ (t), s). We also have for t > 0:

(7)

β ∞ t c θ (r) dr = -log 1 -e -2βθt .

Definition and properties of the total size process

For a Borel measure µ and a measurable non-negative function f defined on the same space, we will write µ, f = f (x) µ(dx).

Let µ be a non-zero Borel σ-finite measure on (0, +∞), which we shall call a mutation rate measure. Consider under P a Poisson point measure (PPM

) on R × (0, ∞) × D 0 , i∈I δ (t i ,θ i ,Y i ) (dt, dθ, dY ), with intensity 2βdtµ(dθ)N ψ θ [dY ]
. Let E be the expectation corresponding to the probability measure P. For i ∈ I, we shall call Y i a family, θ i its type (or mutation) and t i its birth time. Define the super-process Z = (Z t , t ∈ R) by:

Z t (dθ) = i∈I Y i t-t i δ θ i (dθ)
with the convention that Y i t = 0 for t < 0 and δ θ denotes the Dirac mass at θ. By construction Z is a stationary Markovian σ-finite measure-valued process. We shall consider the corresponding total size process Z = (Z t , t ∈ R) defined by:

Z t = Z t , 1 = i∈I Y i t-t i = t i <t Y i t-t i .
Notice that Z is stationary but it is not Markovian unless µ is a constant times a Dirac mass. The process Z is a CB process with a non-homogeneous immigration. It will represent the evolution of a random size population with non-neutral mutations in a stationary regime. The genealogy of Z will be defined in Section 6.2. First we will consider the condition on µ such that Z is well defined.

Theorem 3.1. Let t ∈ R. The random variable Z t is finite a.s. if and only if the following conditions are satisfied:

(8) 0+ | log θ| µ(dθ) < ∞ and +∞ µ(dθ) θ < ∞.
The distribution of Z t is characterized by its Laplace transform, for λ ≥ 0:

(9) E[e -λZt ] = exp -2 ∞ 0 µ(dθ) log 1 + λ 2θ .
Proof. By the exponential formula, one obtains that, for F non-negative measurable,

E exp - i∈I F (t i , θ i , Y i ) = exp -2β ∞ 0 dt ∞ 0 µ(dθ) N ψ θ [1 -e -F (t,θ,Y ) ] . Since Z t = Z t , 1 = t i ≤t Y i t-t i , we have using (4): E[e -λZt ] = exp -2β ∞ 0 ds ∞ 0 µ(dθ) N ψ θ [1 -e -λYs ] = exp -2β ∞ 0 ds ∞ 0 µ(dθ) u θ (λ, s) = exp -2 ∞ 0 µ(dθ) log 1 + λ 2θ .
Letting λ → 0 entails that ( 10)

P(Z t < ∞) = 1 ⇔ lim λ→0 ∞ 0 µ(dθ) log 1 + λ 2θ = 0.
The right hand side of ( 10) is equivalent to the existence of some λ > 0, such that:

(11) ∞ 0 µ(dθ) log 1 + λ 2θ < ∞.
As log(1 + λ/2θ) is equivalent to | log θ| (resp. λ/2θ) as θ goes to 0+ (resp. +∞), we deduce that ( 11) holds if and only if (8) holds.

Before giving other properties of the process Z, we shall study the time A to the first immigration time of an ancestor (or equivalently the TMRCA) of the current population living at time 0 which is defined as:

(12) A = sup{|t i |; i ∈ I and Y i -t i > 0} = sup{|t i |; i ∈ I and t i < 0 < t i + ζ i }, with ζ i the lifetime (see definition (5)) of Y i . Lemma 3.2.
We have for all t ≥ 0:

P(A < t) = exp 2 ∞ 0 log(1 -e -2βθt ) µ(dθ) .
Under conditions [START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF], we get that A is a.s. finite.

Proof. The property of the Poisson random measure implies that for t ≥ 0:

P(A < t) = P(∀ i ∈ I, t i ≥ -t or ζ i + t i < 0) = exp -2β ∞ t ds ∞ 0 µ(dθ) N ψ θ [ζ < s] = exp -2β ∞ 0 µ(dθ) ∞ t c θ (s) ds = exp 2 ∞ 0 log(1 -e -2βθt ) µ(dθ) ,
where we used [START_REF] Bertoin | The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations[END_REF] for the last equality. Under conditions (8), we get that ∞ 0 log(1e -2βθt ) µ(dθ) is finite for any t > 0, which implies, thanks to dominated convergence, that lim t→+∞ P(A < t) = 1 that is A is a.s. finite. Theorem 3.3. Under conditions [START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF], the process Z is continuous.

In particular, we deduce that under conditions (8), Z is a stationary Markov process with values in the set of finite measures on R + .

Proof. To prove the continuity of the process Z, we notice that by stationarity, we just need to prove the continuity of Z on [0, 1]. Let c > 0 be a finite constant and consider the truncated process Z c = (Z c t , t ∈ [0, 1]) defined by:

Z c t = i∈I Y i t-t i 1 {t i ≥-c} .
Notice that Z c and (Z t , t ∈ [0, 1]) coincide on {A ≤ c}. Since A is a.s. finite, to get the continuity of Z on [0, 1], we just need to prove that Z c is continuous. We shall check the Kolmogorov criterion for Z c . Let λ ≥ 0 and γ ≥ 0, 0 ≤ s ≤ t ≤ 1. We have:

E e -λZ c t -γZ c s = E e --c≤t i ≤s (λY i t-t i +γY i s-t i ) E e -λ s<t i ≤t Y i t-t i = e -2β s -c dr ∞ 0 µ(dθ)N ψ θ [1-e -λY t-r -γY s-r ] e -2β t s dr ∞ 0 µ(dθ)N ψ θ [1-e -λY t-r ] = e -2β c+s 0 dr ∞ 0 µ(dθ)u θ (u θ (λ,t-s)+γ,r) e -2β t-s 0 dr ∞ 0 µ(dθ)u θ (λ,r) = exp -2 ∞ 0 µ(dθ) log(1 + (u θ (λ, t -s) + γ)∆ θ c+s ) + log(1 + λ∆ θ t-s ) = exp -2 ∞ 0 µ(dθ) log 1 + λ∆ θ t-s + (λ(1 -2θ∆ θ t-s ) + γ(1 + λ∆ θ t-s ))∆ θ c+s ,
where we used (4) for the fourth equality, and the equality 3)) for the fifth. Notice that for fixed r > 0, there exists a constant C r > 0 such that for all θ > 0:

u θ (λ, t -s) = λ(1 -2θ∆ θ t-s )/(1 + λ∆ θ t-s ) (see (
(13) 0 ≤ ∆ θ r ≤ C r θ + 1 and recall 1 -2θ∆ θ r = e -2βθr .
Therefore, there exists a constant c 1 ≥ 1 such that for λ, γ ∈ R:

λ∆ θ t-s + (λ(1 -2θ∆ θ t-s ) + γ(1 + λ∆ θ t-s ))∆ θ c+s ≤ c 1 1 + θ (|λ| + |γ| + |λγ|).
We deduce that under conditions (8), the function

(λ, γ) → ∞ 0 µ(dθ) log 1 + λ∆ θ t-s + (λ(1 -2θ∆ θ t-s ) + γ(1 + λ∆ θ t-s ))∆ θ c+s
is analytic in (λ, γ) in a neighborhood of 0 for example on {(λ, γ); |λ| + |γ| ≤ 1/4c 1 }. Taking γ = -λ, this implies that for |λ| ≤ 1/8c 1 , we have:

E e -λ(Z c t -Z c s ) = exp -2 ∞ 0 µ(dθ) log 1 + λ∆ θ t-s (1 -2θ∆ θ c+s ) -λ 2 ∆ θ t-s ∆ θ c+s .
Using [START_REF] Champagnat | Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions[END_REF], an easy computation yields that there exists a constant c 2 such that:

E (Z c t -Z c s ) 4 ≤ c 2 ∞ 0 µ(dθ)∆ θ t-s e -2βθ(c+s) 4 + ∞ 0 µ(dθ) 1 + θ ∆ θ t-s 2 + ∞ 0 µ(dθ) 1 + θ ∆ θ t-s 2 .
Then using that ∆ θ t-s ≤ β(ts), we get there exists a constant c 3 such that:

E (Z c t -Z c s ) 4 ≤ c 3 |t -s| 2 .
This gives the Kolmogorov criterion for Z c . Thus Z c is continuous, which ends the proof.

We give the first moment of Z. Corollary 3.4. Under conditions [START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF], we have for t ∈ R:

(14) E[Z t ] = ∞ 0 µ(dθ) θ ∈ [0, ∞].
Proof. Using (9), we get:

E[Z t ] = 2β ∞ 0 ds ∞ 0 µ(dθ) N ψ θ [Y s ] = 2β ∞ 0 ds ∞ 0 µ(dθ) e -2βθs = ∞ 0 µ(dθ) θ •
We give a criterion for Z to reach 0. See also Foucart and Bravo [START_REF] Foucart | Local extinction in continuous-state branching processes with immigration[END_REF] for such a criterion for CBI. Proposition 3.5. Under conditions [START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF], we have {t; Z t = 0} = ∅ a.s. if and only if

(15) 1 0 dt exp -2 ∞ 0 log(1 -e -2βθt ) µ(dθ) = ∞.
In particular, {t; Z t = 0} = ∅ a.s. if µ, 1 > 1/2 and with probability strictly positive {t;

Z t = 0} = ∅ if µ, 1 < 1/2.
Proof. Recall that ζ i is the lifetime of Y i . By using Theorem 2 in Fitzsimmons, Fristedt and Shepp [START_REF] Fitzsimmons | The set of real numbers left uncovered by random covering intervals[END_REF], we can derive that {t; Z t = 0} = ∅ a.s. if and only if:

1 0 exp 2β ∞ t ds ∞ 0 µ(dθ)N ψ θ [ζ > s] dt = ∞.
Thanks to ( 6) and [START_REF] Bertoin | The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations[END_REF], this last condition is equivalent to [START_REF] Dawson | Measure-valued Markov processes[END_REF].

If µ, 1 > 1/2, then there exists θ 0 ∈ (0, +∞) such that B = θ 0 0 µ(dθ) > 1/2. Then, we have:

-2 ∞ 0 log(1 -e -2βθt ) µ(dθ) ≥ -2 θ 0 0 log(1 -e -2βθt ) µ(dθ) ≥ -2B log(1 -e -2βθ 0 t ).
As 2B > 1, we deduce:

1 0 dt exp -2 ∞ 0 log(1 -e -2βθt ) µ(dθ) ≥ 1 0 (1 -e -2βθ 0 t ) -2B dt = +∞. Thus a.s. {t; Z t = 0} = ∅.
If µ, 1 < 1/2, then, as 1e -x ≥ x/2 for x ∈ [0, 1], we have for t ∈ (0, 1/2β]:

-2 ∞ 0 log(1 -e -2βθt ) µ(dθ) ≤ -2 1 0 log(1 -e -2βθt ) µ(dθ) -2 log(1 -e -2βt ) ∞ 1 µ(dθ) ≤ -2 1 0 log(βθt) µ(dθ) -2 log(1 -e -2βt ) ∞ 1 µ(dθ) = C -2 log(t) 1 0 µ(dθ) -2 log(1 -e -2βt ) ∞ 1 µ(dθ),
where C is a finite constant thanks to [START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF]. We deduce that for ε > 0 small enough:

ε 0 dt exp -2 ∞ 0 log(1 -e -2βθt ) µ(dθ) ≤ ε 0 dt t -2 1 0 µ(dθ) (1 -e -2βt ) -2 ∞ 1 µ(dθ) e C < +∞,
as µ, 1 < 1/2. This implies that with strictly positive probability {t; Z t = 0} = ∅.

Type of the MRCA

We assume that conditions (8) hold.

Because of the stationarity, we shall focus on the MRCA of the current population living at time 0. Recall the TMRCA is given by [START_REF] Champagnat | Birth and death processes with neutral mutations[END_REF]. We set i 0 ∈ I the (unique) index i such that A = -t i . We shall say that Y i 0 is the oldest family. We define the type of the MRCA that is of the oldest immigrant family as: Θ = θ i 0 . We give the joint distribution of the TMRCA and the type of the MRCA. Lemma 4.1. We have for every t ∈ R, θ > 0, ( 16)

P(A ∈ dt, Θ ∈ dθ) = 4βθ e 2βθt -1 exp 2 ∞ 0 log(1 -e -2βθ ′ t )µ(dθ ′ ) dtµ(dθ).
Proof. For f non-negative measurable, we get:

E[f (A, Θ)] = E i∈I f (-t i , θ i ) 1 Y i -t i >0, t j <t i 1 {Y j -t j >0} =0 = 2β ∞ 0 ds ∞ 0 µ(dθ) f (s, θ) N ψ θ [Y s > 0] P(A < s) = 2β ∞ 0 ds ∞ 0 µ(dθ) f (s, θ) c θ (s) P(A < s).
We deduce that P(A ∈ dt, Θ ∈ dθ) = 2βc θ (t) P(A < t) dtµ(dθ). Then, using Lemma 3.2, it follows that:

P(A ∈ dt, Θ ∈ dθ) = 2β dtµ(dθ) 2θ e 2βθt -1 exp 2 ∞ 0 log(1 -e -2βθ ′ t )µ(dθ ′ ) .
Using Lemma 3.2, we can derive the distribution µ MRCA t of the type of MRCA given the TMRCA being equal to t:

µ MRCA t (Θ ∈ dθ) = P(Θ ∈ dθ|A ∈ dt) = θ(e 2βθt -1) -1 ∞ 0 θ ′ (e 2βθ ′ t -1) -1 µ(dθ ′ ) µ(dθ).
Notice that the function θ → θ(e 2βθt -1) -1 decreases to 0 as θ increases to +∞. Intuitively, the distribution of the type of the MRCA is more likely to focus on the favorable θ (that is θ small which corresponds to large population) than that on the θ large (which corresponds to small population). In particular if µ is a probability measure then µ MRCA t is stochastically smaller that µ. This means the type of the MRCA (given {A = t}) is stochastically less, which means stochastically more favorable, than the type of a random immigrant. Notice also that µ MRCA t is stochastically decreasing with t which means that the oldest family, Y i 0 , is stochastically increasing with |t i 0 |.

Bottleneck effect

We assume that conditions (8) hold. We consider Z -A , which we shall denote Z A , the size of the population at the TMRCA:

Z A = Z -A = i∈I Y i -A-t i = t i <-A Y i -A-t i .
Let Z O = Y -t i 0 be the size of the old family at time 0 and Z I = Z 0 -Z O be the size of the population at time 0 not belonging to the old family. Following Theorem 4.1 in [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF], it is easy to get the following result.

Lemma 5.1. The joint distribution of (Z A , Z O , Z I , A, Θ) is characterized by: for λ, γ, η ∈ [0, +∞), and t, θ ∈ (0, +∞),

E[exp(-λZ A -γZ I -ηZ O ); A ∈ dt, Θ ∈ dθ] = 2β dtµ(dθ) (c θ (t) -u θ (η, t)) exp -2β t 0 ds ∞ 0 u θ ′ (γ, s) µ(dθ ′ ) exp -2β ∞ 0 ds ∞ 0 u θ ′ (λ + c θ ′ (t), s) µ(dθ ′ ) .
We deduce the following result.

Lemma 5.2. Conditionally on A, (Z O , Θ), Z I and Z A are independent.

Now we concentrate on the population size at the MRCA. Recall ∆ θ t defined in (3). Proposition 5.3. Let t ∈ (0, +∞). We have for η ≥ 0:

(17) E[e -ηZ A |A = t] = exp -2 ∞ 0 log(1 + η∆ θ t ) µ(dθ) , and 
(18) E[Z A |A = t] = 2 ∞ 0 ∆ θ t µ(dθ) < +∞.
Furthermore conditionally on A (or not), Z A is stochastically smaller than Z 0 , that is for all z > 0:

(19) P(Z A ≤ z|A = t) ≥ P(Z 0 ≤ z) and P(Z A ≤ z) ≥ P(Z 0 ≤ z).

The fact that Z A is stochastically smaller than Z 0 corresponds to the bottleneck effect.

Proof. Using (16), we get:

(20) E[e -ηZ A |A = t] = exp -2β ∞ 0 ds ∞ 0 u θ (η + c θ (t), s) µ(dθ) exp -2β ∞ 0 ds ∞ 0 u θ (c θ (t), s) µ(dθ) •
Then, using (4), ( 7) and (3), it is easy to get [START_REF] Donnelly | Genealogical processes for Fleming-Viot models with selection and recombination[END_REF]. This readily implies [START_REF] Donnelly | Particle representations for measure-valued population models[END_REF]. We now prove the stochastic order. First notice that ∆ θ t ≤ 1/(2θ). We deduce that for all η ≥ 0, we have:

E[e -ηZ A |A = t] ≥ E[e -ηZ 0
]. This means that Z A is smaller than Z 0 in the Laplace transform order. We will however prove the stronger result on the stochastic order.

We deduce from ( 17) that conditionally on

{A = t}, Z A is distributed as i∈I Y i,1 -t i , with Z 1 = i∈I δ Y i,1 ,t i a PPM with intensity 2βdt ∞ 0 µ(dθ)N ψ 1/(2∆ θ t ) [dY ].
As recalled in Section 2, it is possible to define on the same space two CB processes Y 1 and

Y 2 such that Y 1 ≤ Y 2 a.e. and Y 1 (resp. Y 2 ) is distributed under N ψ 1/(2∆ θ t ) [dY ] (resp. N ψ θ [dY ]) since θ ≤ 1/(2∆ θ t
). We deduce that Z 1 can be defined on a possible enlarged space so that there exists a PPM

Z 2 = i∈I δ Y i,2 ,t i with intensity 2βdt ∞ 0 µ(dθ)N ψ θ [dY ]
and such that a.s. for all i ∈ I, Y i,1 ≤ Y i,2 . This implies that a.s. i∈I Y i,1

-t i ≤ i∈I Y i,2 -t i . As i∈I Y i,2 -t i is distributed as Z 0 ,
we deduce that Z A (conditionally on {A = t}) is stochastically less than Z 0 . This gives the first part of [START_REF] Donnelly | Likelihoods and simulation methods for a class of nonneutral population genetic models[END_REF]. By integrating the first part of ( 19) with respect to P(A ∈ dt), we deduce the second part of [START_REF] Donnelly | Likelihoods and simulation methods for a class of nonneutral population genetic models[END_REF].

As a direct consequence of ( 18) we can compute the expectation of Z A , which will be used in Section 7.

Lemma 5.4. We have:

(21) E[Z A ] = 2β ∞ 0 dt ∞ 0 µ(dθ) 2θ e 2βθt -1 ∞ 0 µ(dθ ′ )
1e -2βθ ′ t θ ′ e 2 ∞ 0 log(1-e -2βθ ′′ t )µ(dθ ′′ ) .

Asymptotics for the number of families and ancestors

We assume that conditions (8) hold.

6.1. Asymptotics for the number of families. For s > 0, let N s be the number of families at time -s which are still alive at time 0:

N s = i∈I 1 {t i <-s,ζ i >-t i } = i∈I 1 {t i <-s,Y i -t i >0} .
We set:

(22) Λ(s) = -2 ∞ 0 µ(dθ) log(1 -e -2βθs
).

We have the following result.

Lemma 6.1. We have a.s.:

lim s↓0+ N s Λ(s) = 1.
Proof. Notice that N s is by construction a Poisson random variable with intensity

2β -s -∞ dr ∞ 0 µ(dθ) N ψ θ [ζ > -r] = -2 ∞ 0 µ(dθ) log(1 -e -2βθs ) = Λ(s),
where we used ( 6) and [START_REF] Bertoin | The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations[END_REF] for the first equality. As s → 0+, Λ(s) goes to infinity. Then notice that (N Λ -1 (s) , s ≥ 0) is a Poisson process with parameter 1. We deduce the result from the strong law of large numbers for Lévy processes.

6.2. The genealogical tree. In order to consider the number of ancestors M s at time -s of the current population living at time 0, we need to introduce the genealogical tree for a CB process, see Le Gall [START_REF] Gall | Itô's excursion theory and random trees[END_REF] or Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. Since the branching mechanism is quadratic, we will code the genealogical tree using Brownian excursion. Let W = (W t , t ∈ R + ) be a Brownian motion. We consider the Brownian motion W θ = (W θ t , t ∈ R + ) with negative drift and the corresponding reflected process above its minimum H θ = (H θ (t), t ∈ R + ):

W θ t = 2 β W t -2θt and H θ (t) = W θ t -inf s∈[0,t] W θ s .
We deduce from equation (1.7) in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] that H θ is the height process associated to the branching mechanism ψ θ . For a function H, we set: ζ (H θ ), r ∈ R + ) and write N ψ θ for N ψ θ . When there is no confusion, we shall write H for H θ and Y for Y θ . We now recall the construction of the genealogical tree of the CB process Y from H.

max(H) = max(H(t), t ∈ R + ). Let N ψ θ [dH θ ] be the excursion measure of H θ above 0 normalized such that N ψ θ [max(H θ ) ≥ r] = c θ (r). Let (L x t (H θ ), t ∈ R + , x ∈ R + )
Let f be a continuous non-negative function defined on [0, +∞), such that f (0) = 0, with compact support. We set ζ f = sup{t; f (t) > 0}, with the convention sup ∅ = 0. Let d f be the non-negative function defined by:

d f (s, t) = f (s) + f (t) -2 inf u∈[s∧t,s∨t] f (u).
It can be easily checked that d f is a semi-metric on [0, ζ f ]. One can define the equivalence relation associated to d f by s ∼ t if and only if d f (s, t) = 0. Moreover, when we consider the quotient space T f = [0, ζ f ]/ ∼ and, noting again d f the induced metric on T f and rooting T f at ∅ f , the equivalence class of 0, it can be checked that the space (T f , d f , ∅ f ) is a compact rooted real tree. The so-called genealogical tree of the CB process Y is the real tree T = (T H , d H , ∅ H ). In what follows, we shall mainly present the result using the height process H instead of the genealogical tree. Lemma 6.2. Let 0 < a < b. For λ, ρ, η ≥ 0, we have:

N ψ θ 1 -e -ρYa-λY b -ηR a,b = u θ (ρ + γ θ b-a (λ, η), a), with γ θ r (λ, η) = (1 -e -η
)c θ (r) + e -η u θ (λ, r). Proof. We have:

N ψ θ 1 -e -ρYa-λY b -ηR a,b = N ψ θ 1 -e -ρYa-k∈Ka (λY b-a (H k )+η1 {max(H k )≥b-a} ) = N ψ θ 1 -e -Ya(ρ+N ψ θ [1-exp(-λYb-a-η1{ζ≥b-a})]) = N ψ θ 1 -e -Ya(ρ+γ θ b-a (λ,η)) = u θ (ρ + γ θ b-a (λ, η), a)
, where we used the property of the PPM k∈Ka δ H k for the second equality, and

1 -e -λYs-η1 {ζ≥s} = (1 -e -η )1 {ζ≥s} + e -η (1 -e -λYs )
as Y s = 0 on {ζ < s}, for the third equality.

In order to describe the genealogical structure of Z, following the beginning of Section 3, we shall consider under P the PPM:

i∈I δ (t i ,θ i ,H i ) (dt, dθ, dH), with intensity 2βdtµ(dθ)N ψ θ [dH].
Let s > 0. We define the super-process for the number of ancestors for the population at time 0 of each family:

M s (dθ) = i∈I 1 {t i <-s} R -s-t i ,-t i (H i ) δ θ i (dθ).
Then the number of ancestors at time -s of the population at time 0, is:

M s = M s , 1 .
We will first consider the joint distribution of (Z 0 , Z -s , M s ). Proposition 6.3. Let ρ, λ and η be non-negative measurable functions defined on R + . We have:

E e -Z -s ,ρ -Z 0 ,λ -Ms,η = exp -2 ∞ 0 µ(dθ) log 1 + λ(θ)∆ θ s + log 1 + w θ (s) ,
with for r > 0:

w θ (s) = ρ(θ) + γ θ s (λ(θ), η(θ)) 2θ •
In particular, we deduce that a.s.:

(23) E e -Z 0 ,λ -Ms,η |Z -s = e -2 ∞ 0 µ(dθ) log(1+λ(θ)∆ θ s ) e -Z -s ,γ • s (λ(•),η(•)) .
Proof. We have: E e -Z -s ,ρ -Z 0 ,λ -Ms,η = A * E e

-i∈I 1 {-s<t i ≤0} λ(θ i )Y i -t i = A e -2β s 0 dt ∞ 0 µ(dθ)u θ (λ(θ),t) , with A = E exp - i∈I 1 {t i ≤-s} (ρ(θ i )Y -s-t i (H i ) + λ(θ i )Y -t i (H i ) + η(θ i )R -s-t i ,-t i (H i )) .
Using Lemma 6.2, we get:

A = exp -2β ∞ 0 dt ∞ 0 µ(dθ) N ψ θ [1 -exp(-ρ(θ)Y t -λ(θ)Y t+s -η(θ)R t,t+s )] = exp -2β ∞ 0 dt ∞ 0 µ(dθ) u θ (2θw θ (s), t) .
Then use (4) to end the proof. Remark 6.4. We get from Proposition 6.3, with ρ(θ) = ρ 0 , η(θ) = βsη 0 and λ = 0, that:

E e -ρ 0 Z -s -βsη 0 Ms = exp -2 ∞ 0 µ(dθ) log 1 + ρ 0 + (1 -e -βsη 0 )c θ (s) 2θ .
We get that:

lim s↓0 E e -ρ 0 Z -s -βsη 0 Ms = e -2 ∞ 0 µ(dθ) log 1+ ρ 0 +η 0 2θ = E e -(ρ 0 +η 0 )Z 0 .
We deduce then from the continuity of the process Z that the convergence lim s→0+ βsM s = Z 0 holds in probability.

In fact, we shall see that the convergence in the previous Remark is an a.s. convergence. Proposition 6.5. We have a.s.:

lim s→0+ βsM s = Z 0 .
Notice the order of M s do not depend on µ: the non-neutral mutations do not change the asymptotics of the number of ancestors.

Proof. Let λ = 0 and η(θ) = η 0 . We deduce from [START_REF] Fitzsimmons | The set of real numbers left uncovered by random covering intervals[END_REF] that:

E[e -ηMs |Z -s ] = e -Z -s ,γs(0,η 0 ) = e -(1-e -η ) t i ≤-s c θ i (s)Y i -s-t i .
Therefore, conditionally on Z -s , the number of ancestors M s is a Poisson random variable with mean W s = t i ≤-s c θ i (s)Y i -s-t i . We first prove that a.s.: [START_REF] Foucart | Local extinction in continuous-state branching processes with immigration[END_REF] lim

s→0+ βsW s = Z 0 .
Notice that the function x → x/(e x -1) is decreasing on (0, +∞) and is less than 1. We deduce that βsc θ (s) ≤ 1 and therefore βsW s ≤ Z -s .

Let q > 0 and set Z q t = i∈I Y i t-t i 1 {θ i ≤q} . By construction, we have a.s. Z q 0 ≤ Z 0 and lim q→+∞ Z q 0 = Z 0 . Let ε ∈ (0, 1). There exists q such that Z q 0 ≥ (1ε)Z 0 . There exists s 0 > 0 such that for all θ ∈ (0, q], s ∈ (0, s 0 ), we have βsc θ (s) ≥ 1ε. We deduce that, for s ∈ (0, s 0 ):

(1ε)Z q -s ≤ βsW s ≤ Z -s . The process Z q = (Z q t , t ∈ R) is distributed as Z with the mutation rate measure µ q (dθ) = µ(dθ)1 {θ≤q} instead of µ. Since conditions (8) hold for µ, they also hold for µ q . In particular the process Z q is continuous. We deduce that a.s.:

(1 -ε) 2 Z 0 ≤ (1 -ε)Z q 0 ≤ lim inf s→0+ βsW s ≤ lim sup s→0+ βsW s ≤ Z 0 .
Since ε ∈ (0, 1) is arbitrary, this implies that a.s. ( 24) holds. Recall that M s is increasing, is conditionally on Z -s a Poisson random variable with mean W s . Then use [START_REF] Foucart | Local extinction in continuous-state branching processes with immigration[END_REF] and properties of Poisson distributions to get that a.s.:

lim s→0+ βsM s /βsW s = 1.
This and (24) end the proof.

We have the following partial result on the fluctuations. Theorem 6.6. We have the convergence in distribution of ((Z 0 ,

(Z 0 -Z -s )/ √ βs), s ≥ 0) towards (Z 0 , √ 2Z 0 G
) with G a standard Gaussian random variable independent of Z 0 . Under the conditions:

(25) lim A→+∞ √ A ∞ A µ(dθ) θ = 0 and lim A→+∞ 1 √ A A 0 µ(dθ) = 0,
we have the convergence in distribution of ((Z 0 ,

(Z 0 -Z -s )/ √ βs, (βsM s -Z -s )/ √ βs), s ≥ 0) towards (Z 0 , √ Z 0 (G+G ′ ), √ Z 0 G) with G and G ′ two independent standard Gaussian random variables independent of Z 0 .
If conditions [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF] do not hold, we may have a very different behavior, see the stable case in Section 7.

Proof. Let η, λ ≥ 0, s ∈ (0, min(1/2, 1/(4βη 2 ))) and ρ > max(λ, η)/2 √ βs. We deduce from Proposition 6.3 that:

(26) E exp -ρZ -s - λ √ βs (Z 0 -Z -s ) - η √ βs (βsM s -Z -s ) = exp -2 ∞ 0 µ(dθ) log 1 + σ 2θ + Λ s (θ) , with σ = ρ -(λ 2 + λη + η 2 2 ), Λ s (θ) = λ(λ + η) 2θ 1 - ∆ θ s βs + ρλ √ βs 2θ ∆ θ s βs + η 2θ √ βs A(η βs, 2βθs),
and

A(x, y) = 1 -e -x x y e y -1 -1 + x 2 •
We have for y > 0 and x ∈ (0, 1/2):

-min(1, y) ≤ 1 - x 2 y e y -1 -1 ≤ A(x, y) ≤ x 2 6 •
Recall that for x ≥ 0, we have xx 2 /2 ≤ 1e -x ≤ x. We deduce that:

(27) Λ s (θ) ≤ λ(λ + η) 2θ min(1, βθs) + ρλ √ βs 2θ + η 3 √ βs 12θ ≤ λ(λ + η) + (ρλ + η 3 ) √ β 2θ •
We also have:

(28) Λ s (θ) ≥ - η 2θ √ βs min(1, 2βθs) ≥ -η min 1 2θ
√ βs , βs .

In particular, we have:

(29) lim s→0 Λ s (θ) = 0.
Let M 0 > 0 large, ε 0 > 0 small, and s 0 > 0 small enough such that

ε 0 -M 2 0 √ βs 0 > 0 and M 0 √ βs 0 < 1/2. Set I 0 = [0, M 0 ] 3 {ρ -(λ 2 + λη + (η 2 /2)) > ε 0 }. Notice that Λ s (θ) is analytic in (ρ, λ, η). We deduce that the integral F s (ρ, λ, η) = ∞ 0 µ(dθ) log 1 + σ 2θ + Λ s (θ)
is well defined in (ρ, λ, η) ∈ I 0 for all s ∈ (0, s 0 ]. For fixed ρ > ε 0 > 0, it is not difficult to check that there exists s 1 > 0 smaller than s 0 such that for s ∈ (0, s 1 ], F s (ρ, λ, η) is also analytic in (λ, η) such that λ 2 + λη + η 2 /2 < ρε 0 . We deduce that ( 26) is valid for ρ > λ 2 + λη + (η 2 /2) and s small (and not only for ρ > max(λ, η)/2 √ βs).

If η = 0, we have 0 ≤ Λ s (θ) ≤ λ(λ + ρ √ β)/(2θ). By dominated convergence, we get, using [START_REF] Li | Measure-valued branching Markov processes[END_REF], that for ρ > λ 2 :

lim s→0 ∞ 0 µ(dθ) log 1 + ρ -λ 2 2θ + Λ s (θ) = ∞ 0 µ(dθ) log 1 + ρ -λ 2 2θ .
Thanks to [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF], we obtain that for ρ > λ 2 :

lim s→0 E e -ρZ -s -λ √ βs (Z 0 -Z -s ) = e -2 ∞ 0 µ(dθ) log 1+ ρ-λ 2 2θ = E[e -ρZ 0 -λ √ 2Z 0 G ], .
with G a standard Gaussian random variable independent of Z 0 . This implies the convergence in distribution of the sequence ((Z -s , (Z 0 -Z -s )/ √ βs), s ≥ 0) towards (Z 0 , √ 2Z 0 G). Then use that Z is continuous to get the first part of the Theorem.

We assume η > 0. Let (ρ, λ, η) ∈ I 0 . Set

F 0 (ρ, λ, η) = ∞ 0 µ(dθ) log 1 + σ 2θ .
We shall prove that under [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF], we have lim s→0 F s (ρ, λ, η) = F 0 (ρ, λ, η). Notice that σ > ε 0 > 0. We have:

H s = |F s (ρ, λ, η) -F 0 (ρ, λ, η)| ≤ ∞ 0 µ(dθ) log 1 + 2θΛ s (θ) σ + 2θ .
We shall denote by C k for k ∈ N some finite positive constants which depend only on M 0 , ε 0 and s 0 . We deduce from ( 27) and ( 28) that for all (ρ, λ, η) ∈ I 0 and s ∈ (0, s 0 ]:

|Λ s (θ)| ≤ C 1 √ s θ + min 1 θ √ s , √ s .
Thus, there exists s 1 > 0 small enough and less than s 0 such that for all (ρ, λ, η) ∈ I 0 and s ∈ (0, s 1 ]:

log 1 + 2θΛ s (θ) σ + 2θ ≤ C 2 √ s1 [0,1/s] (θ) + C 3 1 θ √ s 1 [1/s,+∞) (θ).
Then, we deduce from [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF] that lim s→0 H s = 0. This implies that:

lim s→0 E e -ρZ -s -λ √ βs (Z 0 -Z -s )-η √ βs (βsMs-Z -s ) = e -2 ∞ 0 µ(dθ) log(1+ σ 2θ ) = E e -σZ 0 = E e -(ρ-(λ 2 +λη+ η 2 2 ))Z 0 = E e -ρZ 0 -λ √ Z 0 G-(λ+η) √ Z 0 G ′ ,
with G ′ distributed as G and independent of Z 0 and G. This gives the second part of the Theorem.

We have the following representation of the limit in Theorem 6.6.

Lemma 6.7. Let G be a standard Gaussian random variable independent of Z 0 . We have that √ Z 0 G is distributed as Z ′ 0 -Z ′′ 0 , with Z ′ 0 and Z ′′ 0 independent and distributed as Z 0 with mutation rate measure µ ′ defined by µ ′ , ϕ = ∞ 0 µ(dθ)ϕ(θ 2 ). Proof. Assume first there exists θ 0 > 0 such that µ((0, θ 0 ]) = 0. Then, we deduce from [START_REF] Bi | Time to MRCA for stationary CBI-processes[END_REF] that Z 0 has positive exponential moments, that is (9) holds for λ ≥ -θ 0 . We obtain for |λ| ≤ θ 0 :

E[e -λ(Z ′ 0 -Z ′′ 0 ) ] = exp -2 ∞ 0 µ ′ (dθ) log 1 - λ 2 4θ 2 = E[e -λ √ Z 0 G ].
To conclude, use that Z 0 is the limit in distribution of Z 0 with mutation rate measure 1 {θ≥θ 0 } µ(dθ) as θ 0 goes down to 0.

Stable mutation rate measure

Let c > 0 and α ∈ (0, 1). In this Section, we will consider the stable mutation rate:

µ(dθ) = cθ α-1 1 {θ>0} dθ.
Notice that µ satisfies conditions [START_REF] Bertoin | A limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process[END_REF]. In addition, notice that E[Z 0 ] = +∞ and that µ, 1 = +∞ which in turn implies that {t; Z t = 0} = ∅ a.s. thanks to Proposition 3.5. 7.1. Bottleneck effect. We present a drastic bottleneck effect which was not observed in [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF].

Lemma 7.1. We have E[Z A ] = +∞ if α ∈ (0, 1/2] and E[Z A ] < +∞ if α ∈ (1/2, 1).
In the case α ∈ (1/2, 1), we observe a drastic bottleneck effect as E[Z A ]/E[Z 0 ] = 0.

Proof. By ( 21), we have:

E[Z A ] = 2βc 2 ∞ 0 dt ∞ 0 2θ α e 2βθt -1 dθ ∞ 0 1 -e -2βθ ′ t θ ′2-α dθ ′ e 2c ∞ 0 log(1-e -2βθ ′′ t )θ ′′α-1 dθ ′′ .
We get:

2βc 2 ∞ 0 2θ α e 2βθt -1 dθ = C 1 t -1-α with C 1 = 4βc 2 ∞ 0 x α e 2βx -1 dx, 2βc 2 ∞ 0 1 -e -2βθ ′ t θ ′2-α dθ ′ = C 2 t 1-α with C 2 = 2βc 2 ∞ 0 1 -e -2βx
x 2-α dx, and (30)

2c ∞ 0 log(1 -e -2βθ ′′ t )θ ′′α-1 dθ ′′ = -C 3 t -α with C 3 = -2c ∞ 0 log(1 -e -2βx )x α-1 dx.
Notice that C 1 , C 2 and C 2 are positive finite constants. We deduce that:

E[Z A ] = C 1 C 2 ∞ 0 dt t -2α e -C 3 t -α = C 1 C 2 α ∞ 0 dr r 1-1 α e -C 3 r .

This implies that E[Z

A ] = +∞ if α ∈ (0, 1/2] and that E[Z A ] < +∞ if α ∈ (1/2, 1).
7.2. Type of the MRCA and type of a random individual. Recall from Section 2 that a CB process Y θ has type θ and that Y θ is stochastically larger than Y q if θ ≤ q. We shall say that the type (or mutation) θ is more advantageous than the type q. The following proposition states that the type of the MRCA is (stochastically) more advantageous than the type of an individual taken at random at the current time.

Recall from Section 3 that the type of an individual in family Y i is θ i . We define the type Θ * of an individual taken at random at time 0 as follows: conditionally on Z, Θ * is equal to θ i with probability Y i -t i /Z 0 . Proposition 7.2. We have that Θ is stochastically smaller than Θ * : for all q ≥ 0, P(Θ * ≤ q) ≤ P(Θ ≤ q). Proof. Firstly, we give the distribution of Θ. We have for θ > 0:

P(Θ ∈ dθ) dθ = cθ α-1 ∞ 0 dt 4βθ e 2βθt -1 exp 2c ∞ 0 log(1 -e -2βqt ) q α-1 dq = 2cθ α-1 ∞ 0 ds e s -1 e -2c a 1 θ α s -α ,
where we used [START_REF] Delmas | A Williams' decomposition for spatially dependent superprocesses[END_REF] for the first equality, the change of variables r = 2βqt (t fixed) and s = 2βθt as well as

a 1 = - ∞ 0 log 1 -e -r r α-1 dr
for the second equality. Set Q = 2c Θ α so that for q > 0:

P(Q ∈ dq) dq = 1 αa 1 ∞ 0 s α ds e s -1 a 1 s -α e -a 1 s -α q .
Then we deduce that Q is distributed as ES α /a 1 , where E is an exponential random variable with mean 1 independent of the random variable S whose density is:

f (s) = 1 αa 1 s α e s -1 1 {s>0} .
Secondly, we give the distribution of Θ * . Let F be a non-negative measurable function, we have:

E [F (Θ * )] = E i∈I Y i -t i Z 0 F (θ i ) = ∞ 0 dλ E i∈I F (θ i )Y i -t i e -λY i -t i e -λ j∈I\{i} Y j -t j = 2cβ ∞ 0 dλ ∞ 0 dt ∞ 0 θ α-1 dθ F (θ)N ψ θ Y t e -λYt E e -λZ 0 = 2cβ ∞ 0 dλ ∞ 0 dt ∞ 0 θ α-1 dθ F (θ) e -2βθt 1 + λ∆ θ t 2 e -2c ∞ 0 log 1+ λ 2q q α-1 dq ,
where we used the definition of Θ * for the first equality, the PPM properties for the third equality, (2) and ( 9) for the fourth equality. Set

a 2 = ∞ 0 log 1 + 1 2q q α-1 dq
and use the change of variables q = λr (λ fixed), u = 1e -2βθt (θ fixed) and s = aθ/λ (θ fixed) with a α = a 1 /a 2 and b = 2/a to get:

E [F (Θ * )] = 2c ∞ 0 θ α-1 dθ F (θ) ∞ 0 ds s(1 + bs) e -2c a 1 s -α θ α .
Set Q * = 2c Θ α * and we deduce that:

P(Q * ∈ dq) dq = 1 αa 1 ∞ 0 s α ds s(1 + bs) a 1 s -α e -a 1 s -α q .
Then similarly Q * is distributed as ES α * /a 1 with S * a random variable independent of E and with density:

f * (s) = 1 αa 1 s α s(1 + bs) 1 {s>0} .
Thirdly, define

h(s) = f * (s) f (s) = e s -1 s(1 + bs) 1 {s>0} , so that E[H(S * )] = E[H(S)h(S)].
A study of the continuous function h and the condition that E[h(S)] = 1 yield that h(0) = 1, lim s→+∞ h(s) = +∞ and there exists s 0 such that h ≤ 1 on [0, s 0 ] and h ≥ 1 on [s 0 , +∞). We deduce that P(S * ≤ s) ≤ P(S ≤ s) for all s ≥ 0, that is S * is stochastically larger than S. This implies that Q * (resp. Θ * ) is stochastically larger than Q (resp. Θ).

7.3. Number of families. We compare the number of families with the neutral case (quadratic and stable branching mechanism). Recall Λ(s) defined in [START_REF] Fearnhead | Perfect simulation from nonneutral population genetic models: variable population size and population sub-division[END_REF]. We deduce from (30) that Λ(s) = C 3 s -α . Lemma 6.1 implies that a.s.:

(31) lim

s→0+ s α N s = C 3 .
We can compare [START_REF] Neuhauser | The genealogy of samples in models with selection[END_REF] with the stationary stable case with immigration, see [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF], that is ψ(λ) = λ a + bλ with 1 < a ≤ 2 and b > 0. According to Section 6 in [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF], we have that the number N * s of families alive at time -s which are still alive at time 0 is a.s. equivalent, as s goes down to 0, to Λ * defined by [START_REF] Neuhauser | The genealogy of samples in models with selection[END_REF] in [START_REF] Chen | Smaller population size at the MRCA time for stationary branching processes[END_REF]. Using that: Therefore the number of families for stable case with neutral mutation is much smaller than that of CB process with non-neutral mutations (that is with stable rate of mutation).

c(r) = e -br
7.4. Fluctuations of the number of ancestors. We consider the fluctuations of the number of ancestors. Recall notations from Theorem 6.6. If α < 1/2, then conditions (25) hold and the fluctuations of M s are given in Theorem 6.6. For α ≥ 1/2, conditions [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF] do not hold and the fluctuations of M s are given in the next Proposition. We define for α ≥ 1/2:

h(α) = c2 1-α ∞ 0 dq q 2-α
e q -1q e q -1 • Proposition 7.3. Let α ∈ [1/2, 1). We have the following convergence in distribution of ((Z 0 , (βs) α-1 (βsM s -Z -s ), s ≥ 0) towards (Z 0 , √ Z 0 Gh(1/2)) if α = 1/2 and towards (Z 0 , -h(α)) if α ∈ (1/2, 1), with G a standard Gaussian random variable independent of Z 0 .

We explain the contribution of -h(α) as a law of large number effect produced by the large number of (small) populations with large parameter θ. This effect is negligible if conditions [START_REF] Foucart | Stable continuous branching processes with immigration and Beta-Fleming-Viot processes with immigration[END_REF] hold that is α ∈ (0, 1/2) but is significant for α ∈ [1/2, 1).

Proof. Mimicking the first part of the proof of Theorem 6.6, we get that for η ≥ 0, ρ > η 2 /2 (or ρ > 0 if α > 1/2) and s > 0 small: E exp -ρZ -sη(βs) α-1 (βsM s -Z -s ) = e -2 1-α cB(βs) , with B defined for t small by:

B(t) = 2 α ∞ 0 dθ θ 1-α log 1 + ρ 2θ + ηt α 2θt
1e -ηt α ηt α 2θt e 2θt -1 -1 .

Use q = 2θt to get:

B(t) = ∞ 0
dq q 1-α D(q, t) with D(q, t) = t -α log 1 + ρt q + ηt α q 1e -ηt α ηt α q e q -1 -1 .

Notice that B(t) is well defined for η > 0, ρ > η 2 1 {α=1/2} /2 and t > 0 small (depending on ρ, η).

Let ε > 0 be small and a ∈ (0, ε) such that for all q ∈ (0, a], we have:

(32) 1 q q e q -1 -

1 + 1 2 < ε 4 •
We first consider q ≥ a. For t small enough (depending on ρ, η, ε, a), we have for all q ≥ a:

|D(q, t)| < 4(η + 1) q .

Since lim t→0 D(q, t) = -η(e q -1q)/q(e q -1), we deduce by dominated convergence that:

(33) lim t→0+ ∞ a dq q 1-α D(q, t) = -η ∞ a dq q 2-α e q -1q e q -1 •

Secondly, we consider q ∈ (0, a). Notice that: D(q, t) = t -α log 1 + E(q, t) + F (q, t) q , with E(q, t) = ηt α 1e -ηt α ηt α 1 q q e q -1 -1 and F (q, t) = ρt + ηt α 1e -ηt α ηt α -1 .

We get that for t small enough (depending on ρ, η, ε) and q ∈ (0, a):

(34) ρt - η 2 2 t 2α (1 + ε) ≤ F (q, t) ≤ ρt - η 2 2 t 2α (1 -ε)
as well as, using [START_REF] Stephens | Ancestral inference in population genetics models with selection (with discussion)[END_REF],

- ηt α 2 (1 + ε) ≤ E(q, t) ≤ - ηt α 2 (1 -ε).
This implies that:

(35) D +ε (q, t) ≤ D(q, t) ≤ D -ε (q, t), with for given z and t small (depending on ρ, η, z): D z (q, t) = t -α log 1 -ηt α 2 (1 + z) + ρt -η 2 2 t 2α (1 + z) q .

Since a 0 dq q 1-α log 1a 1 + a 2 q = log (1a 1 )

a 0 dq q 1-α + a α 2 (1 -a 1 ) α (1-a 1 )
a 2 a 0 dq q 1-α log 1 + 1 q , we deduce that for z ∈ {+ε, -ε}: lim t→0 a 0 dq q 1-α D z (q, t)

= - η 2 (1 + z) a 0 dq q 1-α + ρ - η 2 2 (1 + z)1 {α=1/2} α ∞ 0 dq q 1-α log 1 + 1 q = - η 2 (1 + z) a 0 dq q 1-α + ∞ 0 dq q 1-α log 1 + ρ -η 2 2 (1 + z)1 {α=1/2} q .
Since ε can be arbitrarily small and that a < ε, we deduce from ( 33), (35) and the previous convergence that:

lim t→0 B(t) = lim t→0 ∞ 0 dq q 1-α D(q, t) = - ηh(α) c2 1-α + ∞ 0 dq q 1-α log 1 + ρ -η 2 2 1 {α=1/2} q .
This implies that:

lim s→0 E exp -ρZ -s -η(βs) α-1 (βsM s -Z -s ) = E exp -ρ - η 2 2 1 {α=1/2} Z 0 + h(α)η .
This and the continuity of Z give the result.

6. 3 .

 3 Asymptotics for the number of ancestors. Let a > 0 and (H k , k ∈ K a ) be the excursions of H above level a. It is well known that k∈Ka δ H k is underN ψ θ conditionally on (Y r , r ∈ [0, a]) a PPM with intensity Y a N ψ θ [dH]. Let b > a > 0. We define the numberR a,b of ancestors at time a of the population living at time b as the number of excursions above level a which reach level b: R a,b = k∈Ka 1 {max(H k )≥b-a} . To emphasize the dependence of Y and R in H, we may write Y a (H) and R a,b (H). We give the joint distribution of (Y a , Y b , R a,b ).

[b - 1 ( 1 -

 11 e -(a-1)br )]

1 a- 1 ,

 1 see Example 3.1 in Li[START_REF] Li | Measure-valued branching Markov processes[END_REF], it is easy to get that:Λ * (s) = -a a -1 log(1e -(a-1)bs ).Notice that Λ * (s) is equivalent to (a/a -1)| log(s)| as s goes down to 0. This implies that a.s. lims→0+ | log(s)| -1 N * s = a -1 a •

  H θ (t) = 0} be the duration of the excursionH θ under N ψ θ [dH θ ]. We recall that (L r ζ (H θ ), r ∈ R + ) under N ψ θ is distributed as Y θ under N ψ θ .From now on we shall identify Y θ with (L r

be the local time of H θ at time t and level x. Let ζ = inf{t > 0;
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