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Dibenzophosphapentaphenes: Exploiting P-chemistry for gap fine-tuning and coordination-driven assembly of planar polycyclic aromatics hydrocarbons

A synthetic route to planar P-modified polycylic aromatic hydrocarbons (PAHs) is described. The presence of a reactive  3 , 3 -P-moiety within the sp 2 -carbon atom scaffold allows the preparation of a new family of PAHs displaying tunable optical and redox properties. Their frontier MO's are derived from the corresponding phosphole MO's and show extended conjugation with the entire π-framework. The coordination ability of the P-center allows coordinationdriven assembly of two molecular PAHs 5 onto a Au I ion.

Polycyclic aromatic hydrocarbons (PAHs), like benzocoronenes or nanographenes, are of great potential in molecular electronics for the development of efficient opto-electronic devices (solar cells, field-effect transistors…). 1 The possibility of performing molecular engineering of PAHs using the power of organic chemistry is a key towards these applications. Indeed, PAHs' HOMO-LUMO gap and supramolecular assembly can be controlled through size-modification of the conjugated system or/and by the proper choice of lateral aliphatic substituents. 2 An alternative appealing strategy involves the incorporation of heteroatoms (N, 3 O, 4 S, 5 B 6 ) within the conjugated sp 2 -carbon backbones of PAHs. Surprisingly, no fully planarized P-containing PAHs have been described yet, [START_REF] Hatakeyama | A curved-extended triarylphosphine was recently described[END_REF] although  3 , 3 -P-derivatives have proven to be powerful platforms for -conjugated scaffold molecular engineering. For example, both HOMO-LUMO gap and supramolecular organization of phosphole-modified -systems can be readily controlled using the versatile reactivity (nucleophilicity, coordination ability) of the  3 , 3 -P-centers. 8 Herein, we report that this approach based on P-chemistry can be extended to planar Pmodified PAHs, with the synthesis of dibenzophosphapentaphenes. Of particular interest, exploiting the reactivity of the P-center allows a straightforward gap fine-tuning of this novel family of PAH derivatives. Furthermore, these compounds can be coordinated to metal ions, offering an unprecedented way of assembling PAHs using coordination chemistry.

The synthesis of P-containing PAHs using classical approaches (Scholl reaction, thermolysis…) 1a with pentaphenylphosphole derivatives failed due to the presence of the reactive phosphorus heterocycle. Only photocyclization appeared to be a suitable synthetic method, [START_REF] Fadhel | [END_REF] and the fused biphenyl [b,d]thioxophosphole 1 10 (Scheme 1) was finally de-signed as a key precursor following numerous unsuccessful tries. For example, the choice of the P=S function was crucial since this P-moiety is less prone to react with in-situ generated protic acid than the corresponding P=O function. [START_REF]Protonation of the strongly polarized P=O function is the first step towards decomposition of the phosphole ring[END_REF] Derivative 1 ( 31 P NMR: = +58.7 ppm) was obtained using the classic Fagan-Nugent heterole route 12 followed by sulfurization. Photocyclization of 1 during twenty hours using the Katzmodified method, 13 afforded a mixture of the mono-cyclized derivative 2 and the fully-cyclized target dibenzophosphapentaphene 3 (Scheme 1). Increasing the reaction time did not improve the yield of 3. Both compounds are air stable, soluble in usual organic solvents (THF, CH 2 Cl 2 ), and were isolated in pure form (yields: 2, 50%; 3, 20%) after purification by chromatography. The two products were fully characterized by NMR spectroscopy and high-resolution mass spectrometry (HRMS). Their 31 P chemical shifts are typical for thioxophosphole derivatives ( 31 P NMR: 2, δ = +51.6 ppm; 3, δ = +46.0 ppm), and the simplicity of the 1 H NMR spectrum of 3 is consistent with a highly symmetric skeleton (See SI).

Scheme 1. Synthesis of  3 , 3 -dibenzophosphapentaphene 5

The definitive proof for the proposed structure was given by an X-ray diffraction study performed on single crystals of 3 (Figure 1). The sp 2 -carbon atoms framework is planar (maximum deviation from the mean C-sp 2 plane, 0.15 Å) and the Patom lies within the sp 2 -C plane (Figure 1b). The C-C bond lengths range from 1.35 Å to 1.49 Å, as observed in prototype benzocoronene derivatives, 14 and the valence angles around the sp 2 -C atoms vary from 114.3° to 125.5°. The  4 , 5phosphorus atom has a pyramidal shape (Figure 1b) with usual valence angles, and the C-C and C-P bond lengths within the phosphole ring are classic. 8a This solid state structure shows that 3 possesses all the characteristic structural features of both PAH and phosphole derivatives. In the solid state, 3 forms discrete head-to-tail -dimers (Figure 1a) with an intermolecular distance (3.45 Å), [START_REF]The - distances were obtained measuring the distances between the mean planes including all the C and P atoms of the planar scaffold of two neighboring molecules[END_REF] similar to that observed in other benzocoronenes or in graphite. Having constructed the P-modified PAH backbone, the next step was to desulfurize 16 the phosphole ring to obtain a functionalisable  3 , 3 -P-dibenzophosphapentaphene. Treatment of thioxophosphole 3 with methyltriflate afforded phospholium 4 ( 31 P NMR,  = +50.1 ppm), which was isolated as a purple solid in 60% yield (Scheme 1). Derivative 4, which is the first isolated phospholium ion bearing a P-S bond, is remarkably air and moisture stable in solution and in the solid state. The solid state structure of this cationic dibenzophosphapentaphene 4 (Figure S12) is superimposable to that of its neutral precursor 3, showing that chemical modifications of the Pmoiety do not alter the planar sp 2 -carbon backbone. Phospholium 4 was then converted into its  3 , 3 -analog 5 by treatment with the nucleophilic P(NMe 2 ) 3 phosphane (Scheme 1). This  3 , 3 -dibenzophosphapentaphene 5 was isolated in 50% yield as an air stable yellow powder moderately soluble in THF or CH 2 Cl 2 . Its 31 P NMR chemical shift ( = -2.9 ppm) is an usual value for phosphole derivatives 8a and the proposed structure is consistent with its NMR and MS data (see SI).

The P-center of compound 5 retains a versatile reactivity as illustrated by its transformations into oxidized phospholes (thiooxophosphole 3, oxophosphole 6), phospholiums 4 and 7, and neutral Au I -complex 8 in almost quantitative yields (Scheme 2). These compounds exhibit the expected multinuclear NMR and MS data (see SI). Overall, a family of neutral and cationic dibenzophosphapentaphenes derivatives 3-8 has been prepared (Scheme 2). This nicely illustrates that introducing a reactive  3 , 3 -P-center within the PAH framework allows a molecular engineering to be readily performed.

Scheme

2.

Chemical derivatization of  3 , 3dibenzophosphapentaphene 5.

In order to evaluate the impact of the P-modifications on the electronic properties of these PAHs, the optical and electrochemical properties of dibenzophosphapentaphenes 3-8 were investigated in CH 2 Cl 2 . The absorption spectrum of dibenzophosphapentaphene 5 consists in a large and structured band in the visible range ( max = 472 nm, Table 1), that displays the typical PAHs-like hyperfine structure (Figure 2a). 1a Neutral  4 -P derivatives 3, 6 and 8 (Scheme 2) exhibit redshifted absorption spectra with similar shape and absorption maxima (Table 1, Figure 2a). A larger bathochromic shift is observed with P-alkyl and P-S phospholium salts 7 and 4 (Table 1). Remarkably, the absorption spectra of this family of dibenzophosphapentaphenes 3-8 (Scheme 2), having the same polycyclic aromatic C-skeleton but different P-moiety, vary over a wide range covering almost the entire visible spectrum (Figure 2a). All these dibenzophosphapentaphenes are fluorescent in solution with a gradual red-shift of  em in the series 5/3/7/4 (Table 1, Figure 2b). The Stokes shifts are reasonably small for these rigid structures (5,  = 737 cm -1 ; 3,  = 1072 cm -1 ; 7,  = 1355 cm -1 ) and the emission bands are structured suggesting a small rearrangement of these molecules upon photoexcitation. Therefore, their quantum yields are relatively high (> 20%, Table 1). In contrast, derivative 4 presents a larger Stokes shift ( = 2875 cm -1 ) accompanied by a decrease of the fluorescence quantum yield (3%).

Analysis of the cyclic voltammetry (CV) shows that the chemical modification performed on the P-center of 5 leads to a gradual increase of the oxidation and reduction potentials in the series 5/3/7/4 (Table 1). The variation is even more pronounced for the reduction potential revealing that phospholium salts 4 and 7 display rather high electron affinity. It is noteworthy that 3, 6, 7 and 8 show reversible reduction waves, indicating sufficient stability in their reduced state under the measurement conditions (Table 1). Note that the evolution of the Redox potentials within the 5/3/7/4 series is consistent with the decrease of the optical gap (Figure 2a). To get more insights into the electronic properties of these novel P-modified PAHs, time-dependent DFT calculations (B3LYP/6-31+G* level of theory) [START_REF] Jacquemin | A systematic study showed that TD-DFT with the B3LYP functional provides good results for vertical excitation energies of organic molecules[END_REF] were performed. [START_REF] Frisch | The MO-s were visualized by the MOLDEN program[END_REF] This theoretical study shows that the long-wavelength UV-Vis absorption of PAHs 3-7 mainly results from the HOMO-LUMO transition. 19 These frontier orbitals are similar throughout the series 5-7 (5, Figure 2c-d; 3-7, Figure S14). These π-MOs are highly delocalized on the sp 2 -carbon skeletons with a significant contribution of the respective phosphole ring orbitals (Figure S15). 20 The HOMO, which has a nodal plane on the phosphorus atom, is influenced by the inductive effects of the P-substituents. This explains why the shape of these orbitals is unaltered upon modifying the P-moiety (Figure S14). The LUMO is subjected to the negative hyperconjugative interaction between the σ* PSubstituent MO and the MOs of sp 2 -carbon atoms framework. This results in the stabilization of this empty level for σ 4 -P containing neutral and cationic systems, increasing also the antiaromatic character of these heteroles. 8h,21 This influence of the P-substituent can be nicely seen through the increasing weight of the P-atom in the LUMO (Figure S14), especially for cationic systems 4 and 7, which exhibit the highest reduction potentials (Table 1). It is interesting to note that the effect of P-substitution on the electronic properties and frontier orbitals of these P-modified PAHs follows the same trend than the parent phosphole. 20 Overall, these experimental and theoretical data show that local chemical modification of the P-moiety of dibenzophosphapentaphenes is a powerful mean to fine-tune the gap of these novel family of planar PAH derivatives. The reactive P-center of 5 also offers an unprecedented way of organizing PAHs using coordination chemistry, as illustrated by the assembly of two  3 , 3 -dibenzophosphapentaphenes 5 on an Au I ion (Figure 3). Complex 8 (Scheme 2) was reacted with AgOTf 22 and free ligand 5, affording the new complex 9 ( 31 P NMR,  = +40.8 ppm). An X-ray diffraction study confirmed the unique structure of complex 9 in which two PAHs are coordinated to a metal ion (Figure 3). [START_REF]A 'squeeze' treatment was necessary to remove the scattering contribution of highly disorder CH2Cl2 molecules and CF3SO3counterions that could not be satisfactory modeled[END_REF] The P-Au-P fragment is linear (P-Au-P, 180.0°) and the two highly planar Cskeletons of 5 exhibit an anti-conformation with to P-Au-P moiety (Figure 3). Interestingly, the packing of 9 is deeply modified compared to derivatives 3 or 4. Intermolecu-lar - interactions between coordinated dibenzophosphapentaphenes take place (- distances, 3.50 Å) affording infinite columns of -stacked complex 9 (Figure 3). [START_REF]The - distances were obtained measuring the distances between the mean planes including all the C and P atoms of the planar scaffold of two neighboring molecules[END_REF] Considering the rich coordination chemistry of phosphole derivatives, 8a the fact that 5 behaves as a classic two-electrons P-donor toward metal centers opens an avenue for coordination-driven assembly of phosphorus-modified PAHs. In conclusion, the synthetic route to the first planar  3 , 3 -Pmodified PAH is described. The presence of a reactive Pmoiety within the C-skeleton allows a facile synthesis of a new family of PAHs with tunable optical and electrochemical properties using a single precursor. This molecular engineering of PAHs based on P-chemistry and their assembly using coordination chemistry shows the potential of modifying planar -extended frameworks by organophosphorus fragments.
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Figure 1 .

 1 Figure 1. X-ray crystallographic structure of 3 with the view of the discrete dimers observed in the packing(a) view of 3 perpendicular to the sp 2 -C plane (b).Having constructed the P-modified PAH backbone, the next step was to desulfurize 16 the phosphole ring to obtain a func-

Figure 2 .

 2 Figure 2. UV-Vis absorption and TD-DFT simulated spectra (vertical lines) (a); normalized emission (b) of 3 (blue), 4 (purple), 5 (red) and 7 (green) in CH 2 Cl 2 (10 -5 M); Frontiers Kohn-Sham MOs (HOMO, c; LUMO, d) of 5.

Figure 3 .

 3 Figure 3. X-ray crystallographic structure of Au I -complex 9 and view of the infinite columns along the crystallographic b axis.

Table 1 . Photophysical and Electrochemical Data

 1 Measured relative to fluoresceine (NaOH, 0.1 M), ref= 0.9. c In CH2Cl2 with Bu4N + PF6 -(0.2 M) at a scan rate of 100 mVs -1 . Potentials vs ferrocene/ferrocenium. d reversible process

		absorption a	fluorescence a	redox potentials c
	Compd	λabs [nm]	log ε	λem [nm]	ΦF b	E ox 1[V]	E red	1[V]
	3	514	4.04	544	0.21	0.71	-1.70 d
	4	569	3.95	669	0.03	1.01	-1.04
	5	472	4.34	489	0.80	0.44	<-2.10
	6	524	4.11	549	0.52	0.77	-1.71 d
	7	554	4.00	599	0.19	0.97	-1.31 d
	8	508	4.14	537	0.08	0.75	-1.67 d
	a In CH2Cl2 (10 -5 M).						
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