
HAL Id: hal-00848096
https://hal.science/hal-00848096

Submitted on 25 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing applications in dynamic networks: The
Airplug Software Distribution

Bertrand Ducourthial

To cite this version:
Bertrand Ducourthial. Designing applications in dynamic networks: The Airplug Software Distribu-
tion. SAFECOMP 2013 - Workshop ASCoMS (Architecting Safety in Collaborative Mobile Systems)
of the 32nd International Conference on Computer Safety, Reliability and Security, Sep 2013, Toulouse,
France. �hal-00848096�

https://hal.science/hal-00848096
https://hal.archives-ouvertes.fr


Designing applications in dynamic networks:
The Airplug Software Distribution

(Invited Paper)

Bertrand Ducourthial⋆

UMR CNRS 7253 Heudiasyc,
Université de Technologie de Compiègne
BP 20529, 60205 Compigne Cedex, France

Bertrand.Ducourthial@utc.fr

Abstract. In a dynamic network, a communication link can only be
used for sending very few messages before disappearing. This happens
whenever the nodes mobility is high with respect to the underlying com-
munication protocol.
Starting from these conditions, we propose design rules for distributed
applications, which arises implementation rules. We then introduce the
simple yet powerful Airplug framework.
The Airplug Software Distribution includes several implementations con-
formed to the Airplug framework for prototyping, real tests or studies
by emulation. It is a convenient set of tools for designing complex appli-
cations for dynamic networks.
This approach has been validated by many applications and experiments,
mainly in the field of vehicular networks.

1 Introduction

The democratization of communicating terminals has led to new uses. As they
are more and more small and inexpensive, they are integrated into probes (wire-
less sensors), cars (connected vehicles), objects (Internet of Things) or robots.
Communication can rely on an infrastructure network, as for instance for the
so-called connected vehicles which uses 3G mobile operators to reach Internet.
Nevertheless, relying on an infrastructure network is not always convenient:

– As infrastructure networks are expensive to deploy and to exploit, a sub-
scription is required.

– Large range communication are required to reach an infrastructure access
point. Consequently, many communicating nodes compete in the same geo-
graphic area, limiting the bandwidth.

– Infrastructure networks do not offer infinite capacity while the demand will
always increase.

⋆ This work was partially carried out in the framework of the Labex MS2T, which was
funded by the French Government, through the program ” Investments for the future
managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02)



– Infrastructure networks cause a delay that can be detrimental to the system
responsiveness. For example, an emergency braking alert system on highway
should preferably rely on inter-vehicle communication instead of operating
system [12].

– By emitting at large range to reach an access point, more power is required.
This can be a drawback for the embedded battery and/or for the user.

Depending on the context, systems are more or less impacted by all these cri-
teria. We assist then to the development of autonomous networks that connect
the communicating devices themselves. Specific protocols are defined: ZigBee
(IEEE 802.15.4) for sensors, WAVE/802.11p for vehicles, Bluetooth improve-
ment (IEEE 802.15.3) for personal devices... New research area emerged, such
as WSN (Wireless Sensor Networks), VANET (Vehicular Ad hoc Network) or
cooperative robotics with fleets of robots or drones (Swarm robotics).

From an application point of view, we leave the centralized control offered by
the network infrastructure to a distributed control: instead of gathering informa-
tion on a server that calculates and returns its answer, calculations are done in
the network by the communicating devices themselves. This leads to distributed
applications with the specificity that the underlying network is highly dynamic.

At this step, we need to define what we intend by dynamic networks. Roughly
speaking a dynamic network is a network where stability does not exist for a long
time. However assuming that any communicating link disappears after δ seconds
does not give necessarily a dynamic network: this depends on the amount of
data the communicating protocol is able to forward during δ seconds. In [7], we
proposed a new metric related to the number of messages that can be sent over
a link before it disappears. Reporting work in progress in this field is out of the
scope of this paper. In the following, we assume that, in a dynamic network,
only few messages can be sent over a link before it disappears.

Assuming this constraint, how designing distributed applications for such
networks? Many attentions has been given on communicating protocols (e.g.,
IEEE 802.11p for vehicles), few for the new challenges in distributed algorithms,
still less on the implementation. Our paper deals with this last point. We begin
by sketching design rules for applications. Then, we analyze what a framework
should offer to implement distributed applications in such a context. Finally we
present our solution, namely the Airplug Software Distribution.

2 Design rules

In this section, we give several design rules for applications dedicated to dynamic
networks. These reflections will guide the implementation.

Topology. As the links only allow sending few messages before disappearing, the
topology is unstable. Hence a distributed algorithm should not assume any char-
acteristic regarding the topology. In some cases, distributed algorithms assume
the existence of a virtual structure on which they rely, such as spanning trees or
clusters of nodes.



However, maintaining such a virtual structure requires some control over-
heads, which consumes the bandwidth. In a dynamic network, the structure
would never be usable while consuming too much messages. Except in some
particular cases (e.g., regular convoy of vehicles), virtual structures should be
avoided.

Note that several algorithms designed for MANET (Mobile Ad hoc Networks)
assume an acyclic underlying network (mainly to avoid any loop), requiring then
a spanning tree. This is certainly a strong difference with dynamic networks.

Note also that algorithms assuming particular topology patterns to run prop-
erly need to monitor the network to check whether the pattern appears or not.

Non-local knowledge. Some algorithms may require at some point in their exe-
cution a non-local information, either qualitative (e.g., the presence of a specific
node such as a gateway) or quantitative (e.g., the distance to a specific node).

Obtaining such a remote information requires to send at least one request
by means of multi-hop communication and then to obtain the answer, still by
using multi-hop communication. However, as links disappear rapidly, there is no
guarantee that a return path will exist. Moreover, when the answer reaches the
initial node, it could be false because the remote situation would have change.
For instance, the gateway node is no more in the same connected component
of the dynamic network. We address this problem in [11]. The same problem
arises with any knowledge requiring remote information, including obviously
global information: a distributed application on dynamic networks should avoid
relying on varying non-local information.

Addresses. A network address includes generally the name of the node as well as
its position in a given frame of reference such that it points to a unique node. Ad-
dresses are used for routing messages. Most common frames of reference are the
topology (topology based routing protocols) or the geographic map (georouting).

However in a dynamic network, the node’s positions vary and this part of the
address is never stable. We address this problem in [10, 11]. When addressing a
message to a remote node, the senders must know its address. This implies that
it must know its position in the network, which is a non-local information. This is
generally done using a location service [16], which requires much communication
for searching nodes. Such a search in a dynamic network would consume too
many resources and return an outdated information.

Hence, while nodes identifiers can still be considered, network addresses, to
the contrary, should not be used in dynamic networks.

Neighborhood discovery. When routing a message, the next hop can be decided
either on the sender side or on the receiver side. We address this problem in [8].

In a sender side scheme, each time a node receives a message to be forwarded,
it has to determine which node will be the next hop. To the contrary, in the
receiver side scheme, the node broadcasts the message in its vicinity and nodes
receiving it have to determine whether they retransmit it or not.



Note that wireless communication relies on local broadcast. With the receiver
side scheme, the decision is taken later than in the sender side scheme. However
several nodes could decide simultaneously to retransmit the message. But this
can efficiently be solved with contention algorithms.

The sender side scheme needs to learn about the neighbors and their char-
acteristics (e.g., geographic position, move direction...). This requires periodic
communication which consumes the bandwidth. Moreover, the selected relay
node could disappear before receiving the message to be forwarded or its char-
acteristics may have change so that it is no more the good choice.

Hence, as the neighborhood is unstable, it is preferable to rely on receiver
side scheme in dynamic networks.

Conclusion. When communication links allow to send only few messages before
disappearing, it is vain to rely on any non local knowledge. Remote node posi-
tion or neighborhood are example of such non local knowledge. The more the
dynamic increases, the more the cost (in messages) increases while the precise-
ness decreases. This can be summarized as follows:

Dynamic ր ⇒
cost ր
preciseness ց

⇒ usefulness ց

3 Implementation requirements

In this section, we give requirements for a programming framework dedicated to
dynamic networks.

Hardware, OS and language agnosticism. Dynamic networks appear each time
the communication protocol and the nodes mobility leads to the fact that only
few messages can be sent over a link before it disappears. This is a general defini-
tion accepting many applications: vehicular networks, wireless sensor networks,
drone or robot networks... The programming environment should then be usable
on a large variety of communicating terminals; it should be hardware agnostic.

Moreover, it should also be language independent because the variety of
situations will be better tackled if specific languages can be used.

Similarly, embedded devices often use specific operating systems; the less
there are some constraints on them, the more the programming environment will
be deployed. Moreover, still to increase the portability, the framework should not
require any modification of the kernel itself.

Note that a framework that remains independent from any hardware, OS and
even language requirement is able to take benefit of any novelty or improvement
in these third fields.

Process-based architecture. In a process-based architecture, each task is imple-
mented in an independent process. Designing a programming framework using
a process-based architecture offers several interesting properties, compared for



instance to a single multi-threaded process. Efficiency is not affected as long as
there are not many tasks creations during the execution. This can be done by
launching all the tasks at the beginning of the execution, even if some of them
are sleeping.

Modern operating systems offer many tools for controlling processes, to the
contrary of (user) threads. Resource allocation, tasks scheduling and real time
management can be delegated to the OS. This allows to avoid any redundancy
with OS and to take benefit of the continuous improvements in operating systems
developments.

When installing several third party applications, robustness will be better
ensured if each of them is implemented in independent processes. Indeed, when
a task fails or has a hieratic behavior, the rest of the system will continue to work.
The more the tasks are independent, the more the robustness can be ensured.

Communication-based conventions. The framework should rely on a reduce set
of conventions to ease the portability and the implementation of several concur-
rent but interoperable frameworks. A solution consists in focusing on message
format only, limiting requirement for programs themselves. This will lead to light
frameworks; robustness will be better ensured and verified.

Regarding the communications, they will appear between local and remote
processes. When two local tasks exchange messages, any inter-process commu-
nication (IPC) tool could be used, providing it is available on any language and
any OS.

Communication between remote tasks should not depend on a specific com-
munication protocol. Moreover, as explained above, no network address should
be required (nor any location service). Note that wireless communication proto-
cols generally allow local broadcast.

A protection against unwanted messages is wished because unwanted mes-
sages could be generated by a deficient third party application or by a malicious
user on a neighbor node.

4 The Airplug framework

In this section we present the Airplug framework, which satisfies the previously
listed requirements. We discuss some of its implementations in the next section.

Main idea. According to the previous section, we assume that applications are
implemented using independent processes on top of a POSIX/Linux operating
system. A local application is composed of local process(es) while a distributed
application is composed of one process per node.

We prone a message oriented framework for communication between local
and remote processes. To remain language agnostic, communications are done
using standard input and output of each processes. Indeed any language is able
to read its standard input (stdin) and to write on its standard output (stdout).
Standard error output (stderr) is used for printing information when necessary
(information, warning, errors).



In order to manage both internal activity (including GUI events if any) and
reading on stdin, it is important to avoid blocking reading of stdin. A common
way is to implement asynchronous reading of the standard input. Note that even
shell-scripting languages are able to implement this.

An implementation of the framework will have in charge to route the messages
from the sending process to the receiving processes, either locally or remotely.

Message format. We prone ASCII text messages for portability. In case binary
data have to be sent, they are encoded. Using yencode only adds 3% overhead.

A message will contain several fields. To be more flexible, the field size is not
specified. For instance, in a UAV squadron, a one-character-wide identifier field
is sufficient while it should be larger for vehicles. Fields are then separated by a
specific character. As few fields are required, this technique saves space.

The field delimiter character is forbidden inside a field. Then it should be
preferable to be able to change it dynamically in case of conflict for some mes-
sages. For this purpose each message begins by its field delimiter character. At
the reception, the first step consists in reading the first character. Then the fields
are retrieved by splitting the message according to this delimiter.

Basically, the fields are the following: sending host, sending application, re-
ceiving host, receiving application, action field, control field, payload. However,
not all messages require all these fields. For instance, local messages do not need
host fields. Moreover in some cases it is possible to drastically reduce the number
of fields and implementations could propose this functionality both for efficiency
and simplicity purpose. Indeed, when prototyping a new protocol, working only
with the payload is very interesting.

Addressing scheme. Applications are denoted by their name which should be
locally unique. A distributed application is composed of one instance (of the
same name) on each involved node. Hence, an application instance is uniquely
determined by its host name and application name.

Messages can be addressed to a given application or to all, using the keyword
ALL: in case Application A sends a message to ALL, then only applications which
previously subscribed to messages published by A will receive it.

Hosts can be designated by any identifier (including addresses or logical
names). At the reception of a message sent by a remote application, the frame-
work drops messages that does not contain the local host identifier. However, as
explained in the previous section, inter-node communications will mainly rely
on broadcast in the neighborhood. Hence, three keywords are provided for the
host: AIR for broadcasting to all neighbor nodes, LCH (standing for localhost) for
sending to local application(s) and ALL for both local and remote communication.

For protecting the node against spams, an Application A should subscribe
to the remote Application B for receiving its messages, even if they are sent to
Application A only (remote direct message B→A). However, an application will
receive the messages addressed to itself if the sender is a local application. This
principle of relative confidence locally and no confidence remotely is due to the



fact that a local application can easily be controlled to the contrary of a remote
application, that may be launched by a malicious user.

5 The Airplug Software Distribution

In this section, we describe the Airplug Software Distribution, which provides
several implementations of the Airplug framework. These different implementa-
tions (called mode) are complementary (lab study, road tests...) and compatible:
an application can indifferently be used in any of these modes.

5.1 Airplug-term: the terminal mode

As the Airplug framework relies on standard IO for inter-process communica-
tion, it is worth noting that UNIX shell offers a (limited) implementation of
the Airplug framework. For instance, a communication between processes alpha
and beta is simply done by ./alpha | ./beta. Bidirectional communication
can be implemented thanks to named piped (command mkfifo) and multiple
receivers thanks to the tee command. Any topology can then be drawn using
shell facilities.

Based on this principle, the Airplug-term is an implementation of the Airplug
framework to be used in a UNIX terminal. It is well adapted for rapid prototyping
and proposes many features through some libraries.

Currently these libraries are dedicated to Tcl/Tk programs but they could
easily be extended to other languages. Note that Tcl/Tk proposes high level
data structures, many optional libraries and allows rapid GUI design (useful
when prototyping). This language is also used by ns-2 [15] and the adaptation
of an Airplug application for this network simulator is easy using the Airplug-ns
mode, a set of ns-2 add-ons [13]. An Airplug-term option allows to switch from
graphical programs using Tk to Tcl programs only, for embedded screen-less
computers without graphical libraries.

The Airplug-term mode proposes an implementation of the extensible mes-
sage format through three messages types. With the what type, only the payload
is sent. This is used for instance for prototyping a distributed application (e.g.,
a distributed data collection application). As there is a single application per
node, the messages can only contain the payload: each process launched from
the terminal represents a node.

With the whatwho type, only the payload and the sending and receiving
applications are sent. This is useful when designing a distributed application that
needs to interact to another one. For instance to design a geographic protocol
named GEO which requires geographic positions provided by a local application
named GPS, one needs to distinguish between GEO ↔ GEO communication
and GPS → GEO communication.

The whatwhowhere message type includes the host field (where) and repre-
sents the complete message format. It is used when a distributed application



relies on the result of another one. For instance, a distributed vocal chat appli-
cation could use a distributed group membership service.

Note that, when an application designed with a given message type is used in
another scenario, Airplug-term proposes an automatic adaption of the messages
so that in almost all cases it is not necessary to modify the application.

5.2 Airplug-emu: the emulation mode

Using the shell facilities, any network topology can be drawn, even dynamic ones.
Indeed some named pipes can be removed and others can be added according to
nodes mobility.

The Airplug-emu mode automatizes this principle [1]. This tool is a network

emulator : all the upper layers are identical to real experiments while the low
layers (wireless communication) are artificially reproduced using shell facilities.

An XML file allows to describe the scenario: applications running on each
node, movements of each node, and so one. Then, by analyzing the nodes posi-
tion, Airplug-emu modifies the connections between processes. It is possible to
dynamically modify the range and the reliability of the communication, the loss
rate or the delay. Airplug-emu can download maps (Open Street Map) to display
the moving nodes along the roads for instance.

Several kind of mobility patterns can be used, including GPS log files ob-
tained during road tests for instance or ns-2 traces. Moves can be accelerated
or slowed down dynamically. Obviously Airplug-emu can also be used for non
moving nodes (e.g., wireless sensor networks).

This network emulator allows to prepare real experiment as well as to replay
them while varying some parameters. This is very convenient to save time. We
showed that, when injecting delays and loss rates measures saved during a real
test, then very accurate results are reproduced in the lab by Airplug-emu [1].

Airplug-emu can also be used with imaginary scenarios, and can be used to
test critical situations or scalability of a protocol. The limit in terms of scenario
complexity is given by the capacity of the computer to manage processes. For
instance, for a scenario including two convoys of 5 vehicles crossing each other
with one alert application and one multi-hop protocol per vehicle [3], about 100
processes are used (including communications). Such a scenario runs easily on
a Linux laptop. Note that Linux kernel is generally able to manage up to 32000
processes and can run on powerful servers.

Finally, Airplug-emu can be extended to multiple computers using the Airplug-
rmt mode. This mode allows remote execution of some applications: they are
connected by sockets to a specific application named RMT that relay their mes-
sages between computers. Besides extending the capacity of the emulator, it
also allows to include real wireless connection inside the emulation, leading to
an hybrid emulation.



5.3 Airplug-live: the experiment mode

For real use, an efficient implementation of the Airplug framework is proposed,
named Airplug-live. It is composed of a core program in C managing both local
and inter-nodes communications [5]. This program allows to reuse the applica-
tions prototyped using Airplug-term and studied using Airplug-emu without any
modification. It acts as a middleware between the applications and the network
interfaces, while still running on user mode on top of a Linux OS.

The Airplug core program launches itself the local applications running as
independent processes. For each of them, standard IO are redirected from and
to the core program. Then, each time a local application writes on its standard
output, the Airplug core program receives the data, and reciprocally. This pro-
gram is also in charge of the remote communication using networking facilities
available on the node.

The Airplug core program scrutinizes the links from the local applications
as well as the network interfaces and forwards the message to the appropriate
destination, following the Airplug addressing scheme. A careful attention has
been paid on its robustness. The program relies only on the standard libc

library and is compiled with gcc. The executable is less than 40KB. The source
code has less than 3300 lines for 177KB. This implementation of the Airplug
framework is light, robust and portable.

6 Validation

Validation concerns both the implementation and the overall framework pro-
posal.

A complete framework. After analyzing the consequences of the dynamic net-
works on the distributed applications (Section 2), we drawn some implementa-
tion rules in Section 3. We then proposed the Airplug framework in Section 4.

In the previous section, three implementations of the Airplug framework have
been introduced: the prototyping mode Airplug-term relying on the shell facili-
ties, the studying mode Airplug-emu providing a dynamic network emulation and
the real use mode Airplug-live running on communicating terminals or PC. This
indicates that a process based framework running on top of operating systems
and relying on light messages conventions is convenient for reusing existing tools
(e.g., shell) and to be compliant to any programming language and paradigm.

An application designing for one of this mode can be used for all the others
without modification. Additionally, Airplug-ns is a mode composed with add-on
for Network Simulator [15] and Airplug-rmt is a mode allowing remote execu-
tion. Hence the Airplug Software Distribution offers a complete set of tools for
designing applications for dynamic networks, including rapid prototyping, in-lab
tests, real tests, replay of the test and scalability studies by emulation.

Airplug-live has been compiled for several architectures, including ARM. It
has been used in vehicles, road side unit (RSU) or unmanned aerial vehicle
(UAV). This shows that the Airplug framework is light and portable.



A powerful framework. The framework could be complete and portable while not
being really useful and this point is the most important. We show the usefulness
of the framework through applications.

About fifty prototypes have been designed for Airplug. Some applications
are dedicated to local devices such as GPS, Bluetooth or ZigBee. Some of them
are user centric applications such as distributed games or chat. They rely on
distributed services.

As the Airplug framework has been used for studying dynamic networks,
dedicated applications have been designed, mainly for vehicular networks (an
emblematic case of dynamic networks): neighborhood analyzing, reliable diffu-
sion, multi-hop communications, gateway discovering, unicast communication,
performance analyzing [12]... In particular, we implemented a powerful one-to-
many multi-hop communication protocol relying on conditions instead of ad-
dresses [8]. It can route alert messages according to trajectory correlation, GPS
position, date and many other logical conditions. We also proposed an oppor-
tunistic vehicle to infrastructure architecture, exploiting any road side unit, close
vehicles equipped with 3G or public WiFi hot-spot [10]. We also implemented a
unicast private communication between phones in distant vehicles relying only
on neighbor-to-neighbor communications [11].

Some complex applications provide distributed services besides the dynamic
of the network: dynamic group membership [9], distributed data collect [2], dis-
tributed data fusion [6]... All these algorithms are self-stabilizing meaning that
they can support transient failures. Some of them still guarantee a continuity of
services between failures.

Most of these applications have been tested on the road and studied by
emulation. The reader can be seen some animated screenshot captures as well
road-tests movies in the Airplug Software Distribution web site [4]. These exam-
ples show that, while simple, the framework allows to design robust complex and
varied applications, without any requirements on the programming language.

7 Related work

Many message passing frameworks already exist, such as ONC RPC, CORBA,
Java RMI, DCOM, SOAP, .NET Remoting... The main interest is to specify
nothing internally: only the interfaces have to be specified. However, such frame-
works are not dedicated to dynamic networks and they implement many services
not pertinent in this specific context. To the contrary the Airplug framework is
very light and portable, does not rely on TCP/IP and can work even when the
network is highly dynamic.

Popular frameworks generally limits the languages and the programming
paradigm. For instance, the OSGi framework relies on modules, a more advanced
concept than processes, but is dedicated to Java and requires then a JVM in-
stalled. To the contrary, the Airplug framework remains language agnostic.



The subscription mechanism in Airplug is used for one-to-many diffusion
and also for protection against spams that may generated by malicious users or
deficient equipments. Similar mechanisms can be found in JMS for instance.

The Airplug message format is based on fields separated by a delimiter char-
acter announced at the beginning of the message. This allows adaption to the
number of hosts while saving space. By comparison, IPv4 uses 32 bits for ad-
dresses, which appeared to be too short for Internet and too much for small and
close testbeds.

The application naming convention in the Airplug framework is close to the
Provider Service Identifier (PSID) used in the IEEE WAVE architecture [14].

The opportunistic communication paradigm is proposed in WAVE through
the WAVE Short Message Protocol. A node can announce some services and
also broadcasts some messages to close neighbors that may be interested [14].
However the Airplug framework should not be compared with WAVE. Instead,
it should be seen as a distributed framework able to efficiently run on top of the
WAVE stack.

Finally the main drawback of Airplug is certainly to not be compatible with
other existing frameworks nor to provide as many services as them. However,
this can be solved by implementing stubs for compatibility. The fact that any
application reading on stdin and writing on stdout can be used with Airplug
allows many complementary usages. Moreover, new services could also be added
in Airplug, providing their are realistic in dynamic networks. A common way for
this would be to design a new application offering the wishing service.

8 Conclusion

In dynamic networks, a communication link can be used for sending very few
successive messages before disappearing. These strong conditions are challeng-
ing for designing distributed applications and protocols. They appear when the
nodes mobility is high or the capacity of the communication protocol is low
(or both), which can happen in vehicular networks, robot networks and more
generally in any scenario with communicating and moving terminals.

Many works have been done in the protocols, less in distributed algorithms
and very few regarding implementation. Popular frameworks are generally based
on TCP/IP and admit limitations in dynamic networks. Still, they often impose
constraints that may limit their deployment on target (embedded) computers.

In this paper, we analyzed the requirements for programming distributed
applications in dynamic networks. We then proposed the Airplug framework.
This light message passing framework relies on simple conventions regarding the
message format and the specific addressing. We showed that it can easily be
implemented on user-space on top of standard POSIX operating systems. It is
very portable and accepts any programming paradigm and any language.

The Airplug Software Distribution is a convenient set of tools (and applica-
tions) for designing and deploying complex scenarios in dynamic networks from
scratch. It includes several implementations of the Airplug framework, for rapid



prototyping, real tests or in-lab studies using network emulation. An Airplug
application can run indifferently on all these implementations.

Many developments and experiments validate our framework specification as
well as the efficiency of its implementations, for communication, data manage-
ment, nodes control, end-user entertainment... Airplug is also used for teaching
distributed computing and dynamic networks.

Future work will concern stubs development for compatibility with other
frameworks and experiments with IEEE WSMP and other ITS protocols.

Acknowledgment. Some of the mentioned applications have been studied
with my students since 2004. Road testbeds have been done with the help of the
Heudiasyc engineers and colleagues. Many thanks to all of them.

References

1. A. Buisset, B. Ducourthial, F. El Ali, and S. Khalfallah. Vehicular networks emu-
lation. In IEEE ICCCN’10, Zurich, Switzerland, August 2010.

2. Y. Dieudonné, B. Ducourthial, and S.-M. Senouci. COL: A data collection protocol
for VANET. In IEEE Intelligent Vehicles Symposium (IV 2012), June 2012.

3. https://www.hds.utc.fr/airplug/doku.php?id=en:doc:movies:start.
4. https://www.hds.utc.fr/airplug.
5. B. Ducourthial. About efficiency in wireless communication frameworks on vehic-

ular networks (invited paper). In ACM WIN-ITS workshop, Vancouver, 2007.
6. B. Ducourthial, V. Cherfaoui, and T. Denoeux. Self-stabilizing distributed data-

fusion. In SSS’12, Toronto, October 2012.
7. B. Ducourthial and F. El Ali. Characterizing dynamic networks. Lab. Heudiasyc,

Université de Technologie de Compiègne, France, 2013. submitted.
8. B. Ducourthial, Y. Khaled, and M. Shawky. Conditional transmissions: a com-

munication strategy for highly dynamic vehicular ad hoc networks. IEEE TVT,
56(6):3348–3357, November 2007.

9. B. Ducourthial, S. Khalfallah, and F. Petit. Best-effort group service in dynamic
networks. In 22nd ACM SPAA’10, Greece, June 2010.

10. F. El Ali and B. Ducourthial. A light architecture for opportunistic vehicle-to-
infrastructure communications. In 8th ACM International Symposium on Mobility
Management and Wireless Access (Mobiwac 2010), Bodrum, Turkey, 2010.

11. F. El Ali and B. Ducourthial. A distributed algorithm for path maintaining in
dynamic networks. In International Workshop on Dynamicity (DYNAM’11), col-
located with (OPODIS’11), Toulouse, France, December 2011.

12. F. El Ali, B. Ducourthial, and S.-M. Senouci. On the capacity of communications
in a convoy of vehicles. In 73rd IEEE VTC-Spring, Budapest, Hungary, May 2011.

13. S. Khalfallah and B. Ducourthial. Bridging the Gap between Simulation and Ex-
perimentation in Vehicular Networks. In 72nd IEEE VTC-Fall, Ottawa, Canada,
September 2O1O.

14. Vehicular Environments (WAVE) Working Group of the Intelligent Transport Sys-
tems (ITS) Committee. IEEE P1609.3/D7.0: Draft standard for wireless access in
vehicular environments (wave) - networking services, June 2010.

15. Network simulator. http://www.isi.edu/nsnam/ns.
16. H. Saleet, R. Langar, O. Basir, and R. Boutaba. Proposal and analysis of region-

based location service management protocol for VANETs. In IEEE Globecom’08,
2008.


