
HAL Id: hal-00848091
https://hal.science/hal-00848091

Submitted on 25 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven development of critical perception
components using Simulink

Tino Brade, Sebastian Zug, Jörg Kaiser

To cite this version:
Tino Brade, Sebastian Zug, Jörg Kaiser. Model-driven development of critical perception components
using Simulink. SAFECOMP 2013 - Workshop ASCoMS (Architecting Safety in Collaborative Mobile
Systems) of the 32nd International Conference on Computer Safety, Reliability and Security, Sep 2013,
Toulouse, France. �hal-00848091�

https://hal.science/hal-00848091
https://hal.archives-ouvertes.fr

Model-driven development of critical perception
components using Simulink

(Invited Paper)

Tino Brade, Sebastian Zug, Jörg Kaiser

Department of Distributed Systems (IVS)
Otto-von-Guericke-University Magdeburg

(brade,zug,kaiser)@ivs.cs.uni-magdeburg.de

Abstract. Modern sensor-actuator applications combine a large num-
ber of components (sensing devices, processing nodes, networks) and
implementing complex interactions between them. Due to failures and
other sensor inherent insufficiencies the intended control function is ad-
versely affected. This cannot be tolerated in safety critical applications.
In some cases replication and voting may be possible. But this is no
general solution. Many sensors cannot be replicated because of cost or
their operating principles. This demands other failure detection and han-
dling mechanisms to meet application requirements. Model-driven devel-
opment techniques can be exploited here to adjust the failure handling
to the needs of the application. In this paper, we propose a Simulink
framework that supports the entire development chain. This includes a
new description technique, design verification using regular expressions in
combination with a model generator. In contrast to existing approaches,
our scheme applies one modeling concept and one development environ-
ment throughout the entire process.

1 Introduction

Electronic devices that are embedded in vehicles like cars or airplanes need to
fulfill a varying degree of safety requirements. For cars, safety has emerged to one
of the main issues because cars include more and more assistance systems that
are taking over control of the car in critical situations. Because these critical
situations occur in the physical environment of the car and are perceived by
the car’s sensor system, the reliability of the computational chain from the raw
sensors to the provision of application defined high level environment information
is crucial. A similar situation occurs in avioncs when moving from ”see and avoid”
to ”sense and avoid” [1]. When sensors are affected by a failure, the subsequent
filters and evaluators may become unstable.

Detecting such failures is therefore a basic need. The problem with detecting
sensor failures comes from the nature of sensor data. Sensor failures may change
the sensor data is many subtle ways and are called failures in ”continuously
valued” data [2]. This means that any value may be valid. Schemes that can
handle such failures are based on replicating sensors. This however is not always

possible because of costs and also because of sensor characteristics, e.g. active
sensors like radar, laser scanners or even simple infrared or ultrasound distance
measurement devices cannot be operated by simple replication.

We propose a scheme that provides failure detection on the basis of analyzing
the data provided by a sensor. This data-centric approach [3] tries to identify the
error in sensor data rather than diagnosing the fault that led to the erroneous
data. We provide a number of detectors, each tailored for a specific (potential)
sensor failure. Basically, we follow a model driven approach and suggest to model
the individual behavior of a sensor under the respective failure conditions. We
aim at providing a description that can be evaluated in the design process to gen-
erate interfaces for checking compatibility with the filter and detection stages,
to estimate the effort in error detection for guaranteeing an adequate level of
reliability and also provide hooks for fault injection to test the respective de-
tection components. Thus we try to identify and estimate the impact of sensor
failures early in the design process and also to provide the information needed
to estimate the confidence in the sensor data during operation.

To achieve the goals, we make intensive use of specification and simulation
techniques. Our primary tool is Matlab/Simulink to describe the behavior of
sensors and the computational components that filter and evaluate the sensor
data. This paper presents our framework for model-driven development of safety-
related components and how it is integrated in Simulink.

The paper is organized as the following. First present the main objectives
derived from the introduction. The framework for model-driven development is
presented in the subsequent section. Then, we briefly discuss the state of the art.
Finally, we conclude the presented framework and give an outlook of our work.

2 Objectives

The components involved in critical perception tasks are typically sensors, de-
tectors and filters. Within the model-driven development, these devices are en-
capsulated as component. We consider failures in these components to increase
the overall safety of control. For the model-driven development it is indispen-
sible to provide an appropriate model and description of typical failures. This
knowledge can be exploited in many ways in the the model-driven development.
It is used to configure the failure injection procedures, analyze the failure prop-
agation checking and allows to check whether application requirements match
the provided level data validity. These advantages can only be achieved due
to the additional knowledge about the component interaction. The interaction
lists each link between components combined with constrains. The interaction
in combination with the description specifies the anticipated set of failures that
an application has to cope with. By using model-driven development either the
processing chain of the perception can be shaped to meet application require-
ments or the application can be refined to cope with the perception quality.
Failure injection techniques and mixed-reality systems support this adjustment.
The following objectives summarize the mentioned steps.

1. Specification and description of component characteristics
2. Definition and verification of component interaction
3. Mixed-reality and multi-target support
4. Seamless integration of failure injection techniques

3 Concept

The concept is structured into three parts according to the defined objectives:
description, combination, and execution. First, we present a description form en-
compassing the component characteristics. The subsequent part deals with the
combining and linking components based on model-driven development tech-
niques. The advantages resulting from this part are the verification of the linked
components and the specification of an anticipated set of failures. In contrast
to usual solutions, these features are provided without on-line knowledge . So
far, the online-knowledge is obtained by exhaustive simulations runs. The last
development step, the execution, combines the description and the proven link-
age of components in order to support mixed-reality and multi-target systems.
Further, a model generator embedded in the execution phase automatically in-
tegrates failure injection techniques. The main objective of failure injection is
to estimate the effect of failures in realistic simulation runs rather than just
analyzing these effects [4, 5].

3.1 Description

The description informs about interfaces and characteristics of a component.
This includes the input and the output interfaces of a component. A unique
set of interface parameters enrich the interface description. Interface parameter
specify the operational condition under which a component will work for certain.
In a later development phase named design phase, those interface parameters
will be configured and checked. To achieve this checking, the set of interface
parameters have to be structured identically. In fact this is due to mathematical
foundations, where operands can only be compared if they belong to the same
type. In Fig. 1, the intersection of exemplary interface parameters is shown. In

0 2 4 6 8 10

Amplitude level [Voltage]

Intersection

Comp B

Comp A

(a) partly intersecting ranges

0 2 4 6 8 10

Amplitude level [Voltage]

Intersection

Comp B

Comp A

(b) no intersection

Fig. 1: Interface parameter checking

this example, the linked interfaces of component A and component B are checked
against each other. In the first example the interface parameters are compatible
due to intersection, which is highlighted by the red beam depicted in Fig. 1a. The
second example presents incompatible interface parameters as shown in Fig. 1b.
We underline that the presented approach for parameter checking is not limited
to voltage ranges.

Regarding characteristics, the description consist of a functional part and a
non-functional part. Access to the behavior of a component is provided by the
functional part. All functionalities in Simulink are represented by blocks. Such
a block might perform a simple unary operation like a summation or a complex
algorithm to analyze wavelets. So, the complexity of a single block varies heav-
ily and supports interfaces as well as function calls to cover the behavior of a
component. Because of this importance, we refer to Simulink blocks within the
function description. In detail, a referred Simulink block could be part of the
Simulink library, a customized s-function or a Simulink model. Within the func-
tional description, at least one Simulink block needs to be referred. Otherwise,
this component would have no behavior. Considering the frequently used exe-
cution context in model-driven development processes, the simulation, Software
in the Loop (SIL), Hardware in the Loop (HIL) or final target request for a re-
spective functional description. The set of functional descriptions will be used to
automatically switch the execution context depended on development demand.

The non-functional part of the description instructs about the deviation of a
component from the nominal operation behavior. Such a deviation might lead to
a non-negligible impact on the behavior of following components. As a result, the
assured safety integrity level of the entire system might be threatened. In order to
identify such discrepancies, the non-functional characteristics of each component
are described. The potential benefit for the model-driven development are the
configuration of failure injection procedures, the failure propagation checking
and the requirement fulfillment checking. First, the configured failure injection
leads to more precise simulation and SIL results due to the consideration of
deviations. Second, the failure propagation checking assesses the usefulness of
failure handling in advance. For instance, a sensor shows outlier failures and
the following failure handling is not dealing with this particular failure, it can
be assumed that the resulting information set will also contain outlier failures.
Third, the knowledge about the non-functional characteristics could be exploited
to estimate the possibility to fulfill requirements.

In detail, probable failures are described by the non-functional characteris-
tics. This set of failures could be elaborated by either an analytical breakdown
or an empirical research. Each elaborated failure type is listed in the descrip-
tion in combination with an occurrence probability and a deviation distribution
function. The likelihood of a failure is described by the occurrence probability.
The deviation distribution function contains the severity of a failure. In fact, to
provide suitable non-functional characteristics the elaboration must be carefully
determined. Fig. 2 shows a statistical model of the occurrence probability of an
exemplary set of failures. This example respects the failure-free (F), outlier fail-

Fstart

N O

0.92

0.07

0.96

0.04

1

0.01

(a) Markov model representing failure types

 0.92 0.07 0.01

0.96 0 0.04

1 0 0

 = prob

(b) Corresponding transfer
matrix (prob)

Fig. 2: Statically modelled non-functional characteristics considering failure
types (failure free (F), outlier (O), noise(N))

0 20 40

0

10

20

Amplitude level

C
o
u
n
ts

(a) Characteristic of the error amplitude
for outliers

0 20 40

0

10

20

Amplitude level

C
o
u
n
ts

(b) Characteristic of the error amplitude
for noise

Fig. 3: Error level of two examplary error types

ure (O) and noise (N) state. In Fig. 2a,we visualize a markov chain representing
the statistical behavior of this set of failures. The corresponding non-functional
description is given in Fig. 2b as a transfer matrix (prob). In order to illustrate
the severity of the mentioned set of failures, we plot the deviation distribution
function in Fig. 3.

A general description of non-functional characteristics regarding sensor com-
ponents could not be made. Because the set of elaborated failures depend heav-
ily from the applied sensor. Several sensors show more frequent sporadic failures
like outlier like depicted in Fig 3a. On the other side sensors suffer under noise
failures as shown in Fig 3b. Therefore the concrete set of failures needs to be
individually evaluated [6]. Considering detection components the set of failures
consist only of false positives and false negatives [7]. In this case false positives

describe erroneously detected failures by the detection component. In contrast,
false negatives describe not detected failures even though failures are present.
Filter components can best be described [8] by failure impact parameters, which
define the failure transfer to be static, proportional or lead to an elimination of
a failure.

3.2 Design

The design phase is prepended to the general development phase and models
the interaction between components. First of all, components are selected and
linked together via interfaces. Then, the interface parameters of the linked in-
terfaces are configured. To guarantee a compatible design, the interfaces and the
interface parameters are checked. By using a regular grammar, the composition
of components are checked. This is facilitated by uniquely defined components.
In detail, we distinguish between sensor (S), detection (V), filter (V), applica-
tion (P) and communication (C) components. Smart sensor designs are verified
by the regular expression shown in equation 1. This expression could generate
combinations of sensors (S) connected with detection or filter components (V),
followed by exactly one application (P) and ending by a communication com-
ponent (C). Moreover, the equation 2 specifies the regular expression to verify
smart transducer designs, where communication components are accepted to be
an input.

(S|(SV)) + P (C)+ (1)

(S|C|(SV)|(CV)) + P (C)+ (2)

The checking of interface parameters is based on mathematical expressions.
Interface parameters of two components must intersect each other to be com-
patible. An interaction between components is stated to be compatible if the
design could be built with the regular grammar and the configured interface
parameters match each other. Compatible interfaces lead to a valid working
set of components, which are recorded in a specification description inspired by
EAST-ADL2 [9].

The second purpose of the design phase is to check non-functional character-
istics. Because the previously described interface checking guarantees only the
ability of components to work together, but nothing have been done to account
on failures. At this point, the non-functional characteristics gets important and
informs about failures. By exploiting that knowledge, the failure handling is
traced and the fulfillment of requirements is checked. To trace the failure han-
dling, the propagation of failures through the processing chain is determined.
The processing chain is given by the defined interaction of the components,
as described above. In order to determine the propagation, the non-functional
characteristics are mapped to mathematical terms. These mathematical terms
are formed to an expression by the usage of tailored operators defined in [8].
The resulting value of this expression reflect the anticipated set of failures an

application has to cope with. In addition to the trace of failure handling, the
result is also used to check the fulfillment of requirements in advance. All of the
mentioned features are achieved without execution of the model, which support
the compatibility of the design and the fulfillment of requirement in very early
development stage.

After the design phase satisfies the compatibility and the requirements, the
execution phase is ready to perform.

3.3 Execution

In general, the execution phase corresponds to the originally way of model-
driven development, where the behavior of an application is modeled and later
on transformed to an executable program. This transformation process is com-
monly done by a code generator. But due to development, design, debug, test
or verification reasons, the target is variable instead of static wherefore the code
generation was initially designed. In this case, the modeled application needs
continuously adjusted in order to support simulation, SIL, HIL or a final tar-
gets. By only using the code generation approach, the interfaces, compiler sets
and device drivers needs to be manually switched. Those switches are error-prone
and might threaten the correctness of the generated code. In the best case, the
compiler reveals an incompatibility. Otherwise the engineer is responsible to
avoid safety-critical situations.

The described situation could be avoided by a more general approach. Instead
of adjusting interfaces, data structures and compiler sets manually, we propose
a model generator take care of these error-prone issues. The merit of this au-
tomatism lies in the description and in the design phase. Without the functional
characteristics given by description, an automatized target switch would be im-
possible. Because functional characteristics inform about the required Simulink
block to employ the respective component within the desired execution context
(simulation, SIL, HIL). Moreover, the design description includes a proven set
of interface parameters needed to configure the Simulink block.

The generation and configuration of functional characteristics is only part of
the solution. Regarding simulations, SIL and HIL, failure injection techniques
need to be considered in order to keep the model execution as realistic as possible.
Without failure injection techniques, an application is feed by a set of generated
sensor information, which correspond to an ideal observation and those do not
belong to a set of sensor information from real sensors. This loss of realism leads
to simulation results showing the application behavior under ideal conditions. In
this case, the application might show the intended behavior within simulation
runs. But those results are not valid for sensor information, which are obtained
from a real sensor and are superimposed by failures.

To employ failure injection procedures, the knowledge about the set of failures
is needed. Moreover how often those failures should appear and which impact
a respective failure should have. All of these information are hold by the non-
functional description of each component. For failure injection purpose, the set
of failures is taken together with their respective occurrence probabilities. To

determine which failure should be injected, the failure probabilities are mapped
to ranges of a distribution function. These ranges have to correlate to the oc-
currence probabilities of the set of failures. Then a random number is taken, a
particular failure will be injected if the random number falls into a range corre-
sponding to that failure. This approach could be compared to a bag filled with
items. The items inside the bag are marked that they belong to a certain failure
type. The quote of marked items correspond to the occurrence probability. Af-
ter the failure injection is triggered, the same approach is invoked to assign the
severity of the failure.

Simulink tool chain

SardaS

Start

Sensor Target
Com-
muni-
cation

1

Data
sheet

selection

2

Specification

?Input Output

Consistency check

3

Application
skeleton

1
1+sT

Input Output
4

Complete
application

Simulation xPC-Target µController

Consistency check

5

Executable
image

t

y

Fig. 4: Structure of our Simulink based framework

3.4 Summary

The explained model-driven development process is summarized in Fig. 4. First,
for each component the description needs to be characterized. For the sake of
clarity, we only consider sensor, target and communication components. The
respective description is used to generate interfaces, which will be linked by an
engineer. Afterwards, the Simulink framework checks interfaces for compatibility
reasons and performs failure propagation checking. In the third step, an appli-
cation skeleton including configured device drivers, compiler settings and data
structures is generated. An application is linked against the generated function-
alities depicted as step 4. Multiple execution contexts are supported due to the
functional description. In this example, we consider simulation loops, HIL using
an x-PC and microcontroller targets. Failure injection techniques are added to
simulation and HIL context in order to feed the application with realistic input.
Even the seamless integrated failure injection makes model-driven development
feasible for critical perception.

4 State of the art

The state of the art is subdivided into four parts related to the defined objectives.

Specification and description of component characteristics - The characteristics
of safety-related components can be determined either by an analytical break-
down or an empirical evaluation. Regarding the analytical approach, sensors
could be analyzed this way as shown in [10]. Given a transfer function a filter
component is clearly characterized as indicated in [11]. Salicone [12] proposed
a way to trace the uncertainty of an application using random-fuzzy variables.
Concerning empirical research, uncertainty values specify sensor components
as shown in [13]. Confidence intervals are used to define bounds on the sen-
sor data [14]. An empirical approach exists characterizing detection components
along the terms false positive, false negative, true positive and true negative [15].

Sensor ML [16] is an approach that may be used to describe the considered
components. This techniques sacrifices the interoperability showing large flex-
ibility to describe interactions. But particularly interoperability is a need for
model-driven development. IEEE 1451 [17] satisfies the interoperability needs
but is limited to sensor components. OMG STI [18] also provides interoperability
but it is only applicable to communication components. A description technique
encompassing all components by providing the interoperability cannot be found.

Definition and verification of interacting components - A technique to define
the interaction between components is known as EAST-ADL2 [9]. Autosar [19]
also provides the relations and interactions between components in combination
with a late binding of the used interfaces. After the linkage between components
has been established, potential failures can be traced by FEMA [5] and FTA [4]
techniques.

Seamless integration of failure injection techniques - Failures can be injected
either in hardware, software or in models-based designs. Pin-probes [20] or
customized sockets establish a physical connection to inject failures in hard-
ware. A common contactless techniques uses radiation and electromagnetic in-
ferences [21]. VHDL could be exploited to reconfigure logic cells in FPGA de-
signs [22]. Regarding software-based failure injection, the memory map could
be switched. Further, exception-based mechanisms and debugging interfaces [23]
are also known as software-based failure injection. A comprehensive model-based
failure injection framework is introduced in [24]. The referred failure injection
techniques come with respective pros and cons regarding failure injection proper-
ties like reachability, controllability, repeatability, etc. For further classifications,
the interested reader is directed to [24].

Mixed-reality and multi-target support - The generation of 3D-robotic environ-
ments out of textual descriptions is given by [25]. Model-driven architecture [26]
provide transformation techniques for multi-target support. A code generation
support for model-driven development processes is known as target language
compiler (TLC) embedded in [27]. The translation of graphical programming
techniques to executable code is presented in [28]. A standardized architecture
called Autosar [19] achieves multi-target support by a component-based design
model.

Table 1: Covered objectives by the state of the art

S
en

so
rM

L

IE
E

E
1
4
5
1

O
M

G
S
T

IS

S
im

u
li
n
k

L
a
b
V

ie
w

A
u
to

sa
r

M
o
d
ifi

F
M

E
A

/
F

T
A

E
A

S
T

-A
D

L
2

1 Specification and description of
component characteristics

X X X X X

2 Definition and verification of in-
teracting components

X X X

3 Seamless integration of failure
injection techniques

X

4 Mixed-reality and multi-target
support

X X X X

5 Conclusion

We proposed a framework to develop systems that deal with perception in safety
critical applications. We introduce a new description technique to deal with the

specific properties of the computational components involved in the perception
task. The well-defined and described knowledge about the components serves
as a base for model-driven development techniques. Further, these techniques
are enhanced by a model generator to support failure injection. Our technique
is suited for supporting mixed-reality systems as well as multi-target scenarios.
Regular expressions verify the presented automatisms. The early evaluation of
anticipated failures without model execution is a feature. That so far, is not
available in similar frameworks. None of them is able to manage all objectives.
Of course, the considered objectives could be mastered manually. But this error-
prone adjustments are not verified and might therefore threaten the safety of
the system.

Acknowledgment

This work has been supported by the EU under the FP7-ICT programme,
through project 288195 “Kernel-based ARchitecture for safetY-critical cONtrol”
(KARYON).

References

1. C. Geyer, S. Singh, and L. Chamberlain, “Avoiding collisions between aircraft:
State of the art and requirements for uavs operating in civilian airspace,” Robotics
Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-08-03, 2008.

2. K. Marzullo, “Tolerating failures of continuous-valued sensors,” ACM Transactions
on Computer Systems (TOCS), vol. 8, no. 4, pp. 284–304, 1990.

3. K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault
types,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, p. 25, 2009.

4. W. E. Vesely and N. Roberts, Fault tree handbook. Nuclear Regulatory Commis-
sion, 1987.

5. D. H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Execu-
tion, 2nd ed. ASQ Quality Press, 4 2003.

6. S. Zug, A. Dietrich, and J. Kaiser, “An architecture for a dependable distributed
sensor system,” IEEE Transactions on Instrumentation and Measurement, vol. 60
Issue 2, pp. 408 – 419, 2 2011.

7. T. Brade, J. Kaiser, and S. Zug, “Expressing validity estimates in smart sensor
applications,” ARCS 2013, 2013.

8. S. Zug, T. Brade, J. Kaiser, and S. Potluri, “An approach supporting fault-
propagation analysis for smart sensor systems,” in Computer Safety, Reliability,
and Security. Springer, 2012, pp. 162–173.

9. A. Sandberg, D. Chen, H. Lönn, R. Johansson, L. Feng, M. Törngren, S. Torchiaro,
R. Tavakoli-Kolagari, and A. Abele, “Model-based safety engineering of interde-
pendent functions in automotive vehicles using east-adl2,” in Computer Safety,
Reliability, and Security. Springer, 2010, pp. 332–346.

10. Y. Huang, J. Gertler, and T. J. McAvoy, “Sensor and actuator fault isolation
by structured partial pca with nonlinear extensions,” Journal of Process Control,
vol. 10, no. 5, pp. 459–469, 2000.

11. R. Isermann, Digital control systems: vol. 2: stochastic control, multivariable con-
trol, adaptive control, applications. Springer-Verlag New York, Inc., 1991.

12. S. Salicone, Measurement Uncertainty: An Approach Via the Mathematical The-
ory of Evidence, ser. Springer Series in Reliability Engineering. Springer Sci-
ence+Business Media, LLC, 2007.

13. R. Moffat, “Contributions to the theory of single-sample uncertainty analysis,”
ASME, Transactions, Journal of Fluids Engineering, vol. 104, pp. 250–258, 1982.

14. H. Kopetz, M. Holzmann, and W. Elmenreich, “A universal smart transducer inter-
face: Ttp/a,” in Object-Oriented Real-Time Distributed Computing, 2000.(ISORC
2000) Proceedings. Third IEEE International Symposium on. IEEE, 2000, pp.
16–23.

15. J. Davis and M. Goadrich, “The relationship between precision-recall and roc
curves,” in Proceedings of the 23rd international conference on Machine learning.
ACM, 2006, pp. 233–240.

16. Open Geospatial Consorium Inc., OpenGIS Sensor Model Language (SensorML)
Implementation Specification Version 1.0.0, 2007.

17. IEEE Standards Association, IEEE Standard for a Smart Transducer Interface
for Sensors and Actuators (IEEE 1451.2), 1997. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/standards.jsp?findtitle=1451&letter=1451

18. Object Managment Group (OMG), Smart Transducer Interface Specification, 7
2003.

19. Autosar Consortium, “Standard Specifications,” 2013. [Online]. Available:
\url{http://www.autosar.org/index.php?p=3&up=1&uup=1&uuup=0}

20. J. Arlat, Y. Crouzet, and J.-C. Laprie, “Fault injection for dependability validation
of fault-tolerant computing systems,” in Fault-Tolerant Computing, 1989. FTCS-
19. Digest of Papers., Nineteenth International Symposium on. IEEE, 1989, pp.
348–355.

21. F. Vargas, D. Cavalcante, E. Gatti, D. Prestes, and D. Lupi, “On the proposition
of an emi-based fault injection approach,” in On-Line Testing Symposium, 2005.
IOLTS 2005. 11th IEEE International. IEEE, 2005, pp. 207–208.

22. E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection into vhdl
models: the mefisto tool,” in Fault-Tolerant Computing, 1994. FTCS-24. Digest of
Papers., Twenty-Fourth International Symposium on. IEEE, 1994, pp. 66–75.

23. M. Portela-Garcia, C. López-Ongil, M. Garćıa-Valderas, and L. Entrena, “A rapid
fault injection approach for measuring seu sensitivity in complex processors,” in
On-Line Testing Symposium, 2007. IOLTS 07. 13th IEEE International. IEEE,
2007, pp. 101–106.

24. R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “Modifi: a model-
implemented fault injection tool,” in Computer Safety, Reliability, and Security.
Springer, 2010, pp. 210–222.

25. R. Diankov, T. Adviser-Kanade, and J. Adviser-Kuffner, Automated construction
of robotic manipulation programs. Carnegie Mellon University, 2010.

26. R. Soley et al., “Model driven architecture,” OMG white paper, vol. 308, p. 308,
2000.

27. The Mathworks, “Simulink - Webseite,” 2011. [Online]. Available: \url{http:
//www.mathworks.de/products/simulink/}

28. National Instruments, “LabVIEW 2009 - Herstellerwebseite,” 2009, verfügbar
unter http://www.ni.com/labview/d/ am 20.02.2011.

