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Our work is concerned with the reliability analysis of a 1of-n selection algorithm with the aim of solving the problem of reaching to an agreement among n processes in presence of unrestricted communication failures. We show the use of probabilistic model checking as a technique to calculate the probability of reaching to an outcome (e.g., disagreement). We describe how we used PRISM model checker to build and verify a model of a 1-of-n selection algorithm. We also discuss how the performance of PRISM scales for different number of processes and rounds.

Introduction

The use of cooperative transport systems that rely on wireless networks to communicate and take safety-critical decisions is growing in automotive and aeronautics domains. Examples are systems for improving traffic safety and fuelefficiency of road vehicles, such as vehicle platooning, virtual traffic lights 1 and coordinated lane change [START_REF] Coelingh | All aboard the robotic road train[END_REF].

One of the new challenges raised by these systems is the ability of reaching agreement among the cooperating vehicles (processes), in the presence of unrestricted communication failures. Previous works [START_REF] Santoro | Time is not a healer[END_REF][START_REF] Schmid | How to model link failures: A perception-based fault model[END_REF] shows that it is impossible to construct an algorithm that guarantees deterministic consensus if we consider no restrictions on the number, timing or pattern of the lost messages.

Based on these important impossibility results, in our previous works, we investigated different practical decision criteria for round-based synchronous consensus protocols that aim at solving the 1-of-n selection problem, where each process (in a system of n processes) proposes a value and then all processes must either select the same value, or decide to abort. Disagreement occurs if some processes decide to select a value, while the remaining nodes decide to abort.

In this paper we focus on the use of the probabilistic model checking tool PRISM [START_REF] Kwiatkowska | Prism: probabilistic model checking for performance and reliability analysis[END_REF] to perform a reliability analysis of the consensus algorithm and determine the probability of disagreement among cooperating units under different system configurations. We also discuss how the performance of PRISM scales for different number of processes and rounds.

The remainder of the paper is organized as follows. In Section 2 we describe briefly the 1-of-n selection algorithm. Using a simple system of three processes as an example in Section 3 we explain a PRISM model in detail. In Section 4 we show and discuss some of our probabilistic model checking results. Finally we conclude and give some directions of our future work in Section 5.

Protocol Description

Previously we investigated a 1-of-n selection algorithm with three decision criteria called the optimistic, pessimistic and the moderately pessimistic decision criterion. In this paper our focus is on the optimistic decision criterion. For more details on other decision criteria we refer the reader to our previous work in [START_REF] Fathollahnejad | On reliability analysis of leader election protocols for virtual traffic lights[END_REF] and [START_REF] Fathollahnejad | Probabilistic analysis of disagreement in synchronous consensus protocols[END_REF]. We model our system by adopting the classical round-based computational model as in [START_REF] Charron-Bost | The heard-of model: computing in distributed systems with benign faults[END_REF] that considers a synchronous system of n processes indexed respectively with their identifiers as: Π = {p 1 , . . . , p n }. We assume that processes are fully connected to one another via wireless broadcast links and execute the 1-of-n selection algorithm in R rounds of message exchange. The aim of the protocol is that processes reach to a consensus on a value among n proposed values by n processes. Without the loss of generality we assume that processes are to select the highest value. Each process p i ∈ Π initially proposes a value and Algorithm 1 The 1-of-n selection algorithm run by (p i ) for r = 1 to R do begin round send to all(msgi); receive from all(); compute(msgi); end round end for if vi is complete then pi selects the highest proposed value; else abort; end if constructs a message (msg i ) that contains its proposed value (proposed i ) and a bit-vector (v i ) of length n which represents the view of p i of the system. Initially, v i [j] = 0 for all j = i (p i has not received any message from other processes), and v i [i] = 1. v i [j] = 1 means that process p i has received the information from p j either directly from p j or by relaying information from other processes. Each process iterates three phases for R rounds including first to send a message to all, second to receive messages from all and third to compute (See Algorithm 2). In the compute phase each process updates its proposed value and view vector according to the received messages. Process p i updates proposed i to the highest value among its current value and the received values. It also updates v i as follows: for all v i [k] = 0, if it receives a message from p k or from a process as p j with v j [k] = 1, then p i updates v i [k] to 1. After R rounds, each process executes the decision algorithm. For this purpose, we define v i as complete if all elements of this vector are set to 1. If the view of a process p i is complete by the end of round R, it decides to select the highest proposed value. Indeed a process with a complete view optimistically assumes that all the other processes have also complete views and select a value. A process with an incomplete view by the end of round R decides to abort.

Modelling the Consensus Protocol in PRISM

In this section we present a PRISM model of a 1-of-3 selection algorithm as an example of a simple system of three processes subject to unrestricted asymmetric communication failures. We define Q as the probability of losing a message. In order to model the protocol we use discrete time Markov chains (dtmc).

In Fig. 1 we present the conceptual model of a process as p i . From the initial state (State 1), the process sends its message (transition T 1). In the sequence, T 2 and T 3 are probabilistic transitions that model the choice between receiving (with probability 1 -Q) or losing (with probability Q) the messages from the other two processes. At any round except the last one, the compute phase is performed by transition T 4. In the last round, T 5 fires instead of T 4 and performs both the round computation and the decision making. Then the process moves to the final state (State 0). In PRISM each process is defined as a module. Following we explain each section of our PRISM model in detail (See Listing. 1.1). The first line of the model declares its class (dtmc). Then, we declare constants and global variable. Two constants define the configurations of the system under modelling: number of rounds (RN ) and the probability of losing a message (Q). vi ini store the initial value of process p i . N i associates an identity number to each process p i . We use global variables to model the message exchange among processes. Variable vi ext stores the last value sent by process p i , while Boolean variables wi vj e xt store the view that process p i has of the value of process p j (i, j ∈ [1, 3], i = j). The global variable round stores the current round of the protocol, while token is used to synchronize the modules. It receives its value within the range of [1..3] and indicates the process that must perform the next transition. Following, we define three formulas to be used by process p 1 in the compute phase: v1 new computes the new proposed value of p 1 by comparing the current value with the values received from other processes, while w1 v2 new and w1 v3 new compute the view that process p 1 has of p 2 and p 3 , respectively.

The description of the module that corresponds to process p 1 is composed of two parts: declaration of internal variables and transitions. In order to represent the structure of the dtmc given in Fig. 1, we define the internal variable s1 (state of process p 1 ). The current value of p 1 is stored in v1, while the Boolean variables w1 v2 and w1 v3 stores the current view that p 1 has of p 2 and p 3 values. Boolean variables n1 nf 2 and n1 nf 3 register which messages are received and lost by p 1 at each round. The final decision of process p 1 is stored in the Boolean variable d1. Internal variables are followed by the description of the transitions T 1 to T 6. In PRISM, a transition is composed of a guard and an action ([]guard-> action). In the case of probabilistic transitions, the action is composed of a set of possible actions with the corresponding probabilities. Transition T 1 copies the value and view of p 1 to the global variables. T 2 and T 3 defines the messages that are received and lost by p 1 by attributing true or false to n1 nf 2 and n1 nf 3. Transitions T 4 and T 5 implement the compute phase. Additionally, transition T 5 makes a decision and attributes a value to d1: d1 = true means that process p 1 decided on the proposed value, while d1 = f alse indicates a decision to abort. The synchronization of the modules is achieved using the global variable token. A process p i receives the token when token = N i. It passes it to the next process after one of the following transitions: T 1, T 4, T 5. Finally, processes p 2 and p 3 are defined as a copy of process p 1 .

In order to compute the probability that the protocol results in an outcome (agreement, abort or disagreement), we specify properties in Probabilistic Computation Tree Logic (P CT L), the specification language used by PRISM. As an example, we present the query for the probability of disagreement, which means what is the probability that eventually (operator F ) the system reaches a state where all the processes are in the final state which is and have reached different decisions:

P =?[F (s1 = 0)&(s2 = 0)&(s3 = 0)&((d1! = d2)|(d2! = d3)|(d3! = d4))]
We introduced some simplifications in the PRISM model to reduce the number of states of the model. The choice of the initial value of each process is not This simplification is adopted because a process only makes a decision with a complete view, which means that, no matter the number of lost messages, a process never decides on a wrong value and the initial values have no impact on the protocol's outcome (agreement, abort and disagreement). Furthermore, the processes execute the protocol in a predefined sequence (p 1 , p 2 and p 3 ), not in a random order. Again, this simplification is adopted because the order does not affect the results, a process only updates its value and view at the end of the sending and receiving phases of the consensus protocol.

Another important observation about the PRISM model is that although we can easily increase the number of rounds or change the probability of message loss, we cannot use the same model for systems with different number of processes because, in a PRISM model, all variables must individually be named. In order to increase the number of process, we have to: add the corresponding constants and variables; add new transitions to the module of process p 1 ; update formulas, transitions, and definitions of existing modules; and add the definition of the modules for the new processes.

Results and Discussion

In this section we present some results showing the probability of disagreement calculated by PRISM. We show how the number of states produced by the PRISM model varies for different configurations of a system. Fig. 2 presents the probability of disagreement as a function of the probability of message loss (Q), assuming R = 2, 3, 4 and n = 3, 4, 5. As we can see, with a fixed number of processes, when we increase the number of rounds, the peak of the probability of disagreement moves to the right side of the x-axis. However, it does not show a significant reduction in the maximum value of the probability of disagreement. On the other hand, when we increase the number of processes with fixed R, the maximum value of the probability of disagreement significantly increases, reaching values as high as 0.8 for n = 5. For a more detailed discussion and analyses of the behaviour of the 1-of-n selection algorithm we refer the reader to our previous works [START_REF] Fathollahnejad | On reliability analysis of leader election protocols for virtual traffic lights[END_REF] and [START_REF] Fathollahnejad | Probabilistic analysis of disagreement in synchronous consensus protocols[END_REF]. The results in Fig. 2 are obtained using probabilistic simulation for n = 4, 5. This is because with increasing the number of processes (n > 3), the number of reachable states of the model increases considerably which makes the verification process infeasible. This concerns with one of the most important challenging problems in model checking, the state space explosion. This problem arises when it is computationally too expensive for a model checker as PRISM to examine the entire reachable state-space. In Table 1 we show the number of states of the PRISM model with n = 3 and n = 4. We see that with increasing R the number of states grows linearly with R. However with increasing R, the number of different combinations of lost and sent messages for a system of n processes, which is 2 n•(n-1)•R , increases exponentially. The reason is that state space is limited by the possible values that the variables can assume and different scenarios converge to common states.

Conclusion and Future Work

In this paper we are concerned with the problem of reaching agreement among cooperating units of a safety-critical system where the underlying communication links among processes are unreliable. We showed using a simple example how we used a probabilistic model checking tool to analyse the reliability of a consensus protocol with unrestricted communication failures. We present how to build and verify a model of a 1-of-n selection algorithm with optimistic decision criterion using PRISM. We also show some analyses of the problem of state space explosion when we vary the system parameters. Due to the limitations imposed by this problem, as future work we will try to find the close-form expressions that can be used to configure the protocol at run time, according to the quality of communication channels.
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 1 Fig. 1. Conceptual model of a process.
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 1 Number of states of PRISM models.

	R	n = 3	n = 4
	2	13846	3268746
	3	18053	10717177
	4	22260	18666673
	5	26467	26616169
	6	30674	34565665

In a virtual traffic light, road vehicles approaching an intersection interact via wireless communication to form a virtual, or imaginary, traffic light.
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