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Abstract. Many potential applications exist for multi-robot systems in
various contexts related to safety and security. Terminating exploration
is a basic building block for many of these applications. It requires that
starting from a configuration where no two robots occupy the same lo-
cation, every location needs to be visited by at least one robot, with the
additional constraint that all robots eventually stop moving. We consider
weak autonomous mobile robots, i.e., the are anonymous, oblivious, dis-
oriented, and unable to (directly) communicate together. They are also
myopic, i.e., they are cannot see beyond a certain fixed distance ¢. We
consider strong myopia that is, a robot can only sense robots located at
its own and at its immediate neighboring nodes—¢ = 1. We prove that
within such settings, no deterministic exploration is possible in the semi-
synchronous model. We then address the synchronous model and show
that no deterministic exploration protocol solves the problem with less
than five robots when n > 6. We provide optimal (in terms of number of
robots) deterministic algorithms in the fully synchronous model for both
cases 3 <n <6 andn > 6.

1 Introduction

Many potential applications exist for multi-robot systems in various contexts re-
lated to safety and security, for instance patrolling in adversarial environments,
exploration of awkward environments, environmental monitoring, intelligence ac-
tivities, fighting fire in a rescue scenario, and many other risky tasks for humans.
Beyond technological challenges to overcome, it is crucial to devise distributed
algorithms capable of coordinating robots without central control [5].
Nevertheless, environmental or technological requirements may lead to per-
form these tasks using as less resources as possible. Indeed, in unsafe environ-
ment, part of the fleet may be unusable. So, it is important to know the mini-
mum number of robots that are required to accomplish a given task. However,
in a hostile environment, even using the fewest number of robots, capacities of
robots may be reduced. So, it is expected to perform certain tasks with weak-
ened robots. For instance, robots could have nothing else than vision to com-
municate together. Numerous realistic scenarios are easily deciphered such as
faulty wireless devices or robots evolving in zones where wireless communication
is scrambled or forbidden. Equipment other than the means of communication
may also be faulty, unusable, or even non-existent. This may be the case, for
instance, sensors, vision devices, and guidance systems like GPS or compass.



The above scenarios greatly motivate the design of coordination algorithms
that use the least amount of robots, themselves using the least amount of re-
sources. Furthermore, this approach offers other benefits, namely reducing man-
ufacturing costs and operating expenses.

The problem of exploring a finite discrete space by autonomous mobile robots
is a basic building block for many applications. Space to explore is partitioned
into a finite number of locations represented by a graph, where nodes represent
indivisible locations that can be sensed by the robots, and where edges represent
the possibility for a robot to move from one location to the other, e.g., a building,
a town, a factory, or a mine. We address the terminating exploration problem
which requires that starting from a configuration where no two robots occupy
the same node, every node needs to be visited by at least one robot, with the
additional constraint that all robots eventually stop moving.

We assume robots having weak capabilities: they are uniform—meaning that
all robots follow the same algorithm—, anonymous—meaning that no robot
can distinguish any two other robots—, oblivious—they have no memory of
any past behavior of themselves or any other robot—, and disoriented—they
have no labeling of direction. Furthermore, the robots have no (direct) means
of communicating with each other. However, robots are endowed with visibility
sensors enabling to see robots located on nodes.

Terminating exploration under such weak assumptions has been investigated
so far. In [3], it is shown that, in general, £2(n) robots are necessary to explore a
tree network of n nodes. In [4], it is proved that no deterministic exploration is
possible on a ring when the number of robots k£ divides the number of nodes n.
In the same paper, the authors proposed a deterministic algorithm that solves
the problem using at least 17 robots, provided that n and k are co-prime. In [2],
it is shown that no algorithm (probabilistic or deterministic) can explore a ring
with fewer than four robots. In the same paper, the authors provide a probabilis-
tic algorithm that solves the problem on a ring of size n > 8 that is optimal in
terms of number of robots. In [6], the authors reduce the gap in the deterministic
case between a large upper bound (k > 17) and a small lower bound (k > 3)
by showing that 5 robots are necessary and sufficient in the case that the size
of the ring is even, and that 5 robots are sufficient when the size of the ring is odd.

In this paper, we consider terminating exploration algorithms for ring net-
works of n nodes that use k weak robots. We add another constraint: myopia. A
myopic robot has limited visibility, ¢.e., it cannot see the nodes located beyond
a certain fixed distance ¢. The stronger the myopia is, the smaller ¢ is. If ¢ = 1,
then a robot can sense robots located on its own node and at its immediate
neighboring nodes. To the best of our knowledge, all previous results for discrete
versions of the exploration problem assume unlimited visibility (¢ = o0), i.e.,
the whole graph is seen by each robot.

We consider the deterministic solubility of exploring a ring assuming ¢ =
1, i.e., a robot can only sense robots located at its own and at neighboring
nodes. Our contribution is threefold*. We first prove that assuming ¢ = 1, no
deterministic exploration is possible in the semi-synchronous model. The result

4 Detailed proofs are given in [1].



is also valid for the asynchronous model and holds for any k < n where k is the
number of robots and n is the number of nodes in the ring. Next, we address the
synchronous model and show that no deterministic exploration algorithm solves
the problem with less than 5 robots when n > 6. Finally, we provide optimal (in
terms of number of robots) deterministic algorithms in the synchronous model
for both cases 3 < n <6 and n > 6.

2 Preliminaries

We assume that the graph is a ring of n nodes, ug, . .., u,—1 —indices0...%...n—
1 are assumed to be modulo n and used for notation purposes only. The nodes
are anonymous and the ring is unoriented, i.e., given two neighboring nodes u,
v, there is no kind of explicit or implicit labeling allowing to determine whether
u is on the right or on the left of v. Zero, one, or more robots can be located on a
node. The number of robots located on a node u; at instant ¢ is called multiplic-
ity of u; and is denoted by M;(t) (or simply M;, if ¢ is understood). If M;(¢) > 1
then, we say that there is an M;(¢).tower (or simply a tower) at u; at instant .
Each robot is equipped with an abstract device allowing to measure node multi-
plicity. Since we assume no ring orientation and ¢ = 1, the view of any robot r
located on a node u; is a sequence s of 3 integers x_1,xg, 1 such that zo = M;
and either x_; = M;_y and 1 = M; 41, or x_; = M;; and 1 = M;_;. Robots
operate in three phase cycles: Look, Compute and Move (L-C-M). During the
Look phase, a robot r located u; takes a snapshot s of its environment given by
the output of its multiplicity sensors. Then, using s, r computes a destination to
move to, i.e., either w;_1, u;, or w;+1. In the last phase (move phase), r; moves
to the target destination computed in the previous phase.

A configuration is the state of the ring at a given time instant ¢. A config-
uration is said to be towerless if M; <1 for all ¢ € [0..n — 1]. A block B is any
maximal elementary sequence of nodes wu; ... u;4; (I > 0) for which each node
contains at least one robot. The size (respectively, length) of B, is the number
of robots (resp. nodes) included in B. If both the length and the size are equal
to 1, then the robot is said to be isolated.

At each step t, a non-empty subset of robots is selected by the scheduler,
which is viewed as an abstract external entity. We assume a fair scheduler, i.e.,
every robot is activated infinitely often during a computation. We consider three
computational models: (i) The semi-synchronous system, (ii) the synchronous
model, and (ii7) the asynchronous model. In the former model, at every time
instant ¢, the scheduler selects a subset of robots so that every robot that is
selected executes the full cycle L-C-M instantaneously between ¢ and ¢ 4 1. The
synchronous model is similar to the semi-synchronous model, except that the
scheduler selects all robots at each step. In the asynchronous model, cycles L-
C-M are performed asynchronously for each robot, i.e., the time between Look,
Compute, and Move operations is finite but unbounded, and is decided by the
scheduler for each action of each robot.

Each rule in the algorithm is presented in the following manner: < Label >
< Guard > :: < Statement >. The guard is a possible sequence s = x_1, xg, T1
provided by the sensor of a robot r. The statement describes the action to be



performed by r;. There are only two possible actions: (i) —, meaning that r
moves towards the node u;41, (i1) <, meaning that r moves towards the node
u;—1. Note that when the view of r is symmetric, the scheduler chooses the action
to be performed. In this case, we write the statement as follows: < V —.

3 Negative Results

Semi-Synchronous System. Clearly, if n = k, then the exploration is trivially
solved with the empty algorithm &£, i.e., no robot moves. So, in the following,
we assume that 0 < k < n. In this section, we assume that the robots know k
and n. Let us borrow the following result from [4]:

Theorem 1 ([4]). Let k < n. If k|n, then the exploration of an n-node ring
with k robots is not possible.

The proof of Theorem 1 is also trivially valid for any ¢ < n. Therefore, in
the following we consider that a deterministic semi-synchronous algorithm P
solves the exploration problem provided that 2 < k < n and k does not divide
n. Let II be the class of deterministic semi-synchronous algorithms that solve
the exploration problem assuming a fair scheduler with ¢ =1 and 2 < k < n.
In the following, g refers to an initial configuration. Recall that -y is towerless,
i.e., the multiplicity of any node of the ring is less than or equal to 1. So, block
size and block length are equivalent in 7. Since robots are able to sense only at
distance 1, only the four following rules are possible in ~y:

Rsg1:0(1)0 =2 = V = Rout: 0(1)1 =

Rin: 0(1)1 =2 — Rsup: 1(1)1 2 = V <

Lemma 1. For any 2 < k <n, no algorithm exists in II such that every robot
is isolated in .

The above lemma is simply proven by contradiction, assuming that the scheduler
behaves synchronously. It shows that even assuming that 2 < k < n and k does
not divide n, there are initial configurations from which the problem is not
solvable. In other words, if such an algorithm exists, then it works starting from
some particular configurations. In particular, they contain at least one block of
length 2 and k must be strictly greater than | % |. The next lemma is shown by
contradiction, considering all possible moves in vp:

Lemma 2. For every P € II, P includes Rip and does not include nei-
ther Rsup nor Rout-

Let us call a symmetric x.tower sequence (an S®-sequence for short), a se-
quence of occupied nodes such that the extremities of the sequence contain an
x.tower. Observe that a tower containing at least 2 robots (by definition), = is
greater than or equal to 2. Also, since the robots can only see at distance 1, the
tower is only seen by its neighboring robots.

Lemma 3. For every P € II, for every k (5 < k < n), there exist executions of
P leading to a configuration containing S*-sequences, isolated robots and blocks
of size strictly smaller than 5.



Consider robots being located at the border of a block. Let x > 1 be the
number of robots located on the border node and the following generic rules:

Ta(z): 0(z)1 TB(z): 0(x)1 :: —

Ty(z): z(1)1 = To(z): (1)1 = —

Remark that Rule Rj, corresponds to Rule 73(1). Also, note that since
x robots are located on the border node of a block, the local configuration for
both T+(x) and T4(z) is 0x11. Similarly, define the generic rule Tgg1 (y) (y = 2)
as follow: 0(y)0 ::+= V —. Again by considering every execution starting from
configurations containing S2-sequences:

Lemma 4. For every P € II, for every x > 1, P includes T B(x) only.

It follows from Lemma 4 that P cannot ensure both progression and termi-
nation properties. Hence:

Theorem 2 (II = 0). No deterministic exploration algorithm ezists in the
semi-synchronous model for g =1, n>1, and 1 < k < n.

Corollary 1. No deterministic exploration algorithm exists in the asynchronous
model for g =1, n>1, and 1 <k < n.

Synchronous System. Remark that Lemma 1 still holds in synchronous settings.
So, in the initial configuration 7y, there exists at least one block of size greater
than or equal to 2. We show the following theorem by contradiction over k:

Theorem 3. Let P be a synchronous exploration algorithm for ¢ =1 and 2 <
k <n. If n > 7, then, k must be greater than or equal to 5.

4 Synchronous Algorithms

In the following, we present two optimal deterministic algorithms that solve the
exploration problem in the synchronous model. The former is a general algorithm
that uses 5 robots and works on any ring of size n > 7. The latter works for
small rings (3 < n < 6) using (n — 1) robots, except for the case n = 6 that
needs 4 robots only.

General Algorithm for k =5 and n > 7. The idea of Algorithm 1 is as follow:

Algorithm 1 Synchronous Exploration for n > 7

1A1: 0(1)1 = — // Towards occupied neighbor
1A2: 2(1)2 : = V « // Towards any neighbor
1A3: 0(2)1 == // Towards empty neighbor
2A4: 2(1)0 :: + // Towards the tower

The robots that are at the border of the block are the only ones that are
allowed to move in the initial configuration, v9. They move on their adjacent oc-
cupied node—Rule 141, refer to Figure 1, (a). Since the system is synchronous,



the next configuration, 77, contains a single robot surrounded by two 2.towers.
In the next step, the towers move in the opposite direction of the single robot
(Rule 1A43) and the single robot moves towards one of the two towers—Rule 142,
Figure 1, (b). Note that the resulting configuration yo—Figure 1, (¢)—provides
an orientation of the ring. From there, the single 2.tower are the landmark al-
lowing to detect termination and the three other robots explore the ring syn-
chronously. After n — 4 steps, n — 4 nodes are visited by the 3 robots and the
system reaches 7, _». Finally, by performing Rule 244, the single robot create a
3.tower—Figure 1, (d). This marks the end of the exploration in 7,1 in which
each robot is awake of the termination.

(a) (b) (c) (d)
Fig. 1. Overview of Algorithm 1 (n > 7).

Specific Algorithm for 3 < n < 6. The formal description of the algorithm is
given in Algorithm 2. Instances for each value of n are given in Figure 2. The
robots in this case detect the end of the exploration task if they are either
part of a 2.tower or neighbors of a 2.tower. The idea of the algorithm is the
following: For the cases where

3<n <5, k=n-—1robots

are necessary to perform the

exploration task. The robots

that are at the extremities of g ﬁ
the block are the ones allowed

to move. Since k = n — 1, )n=3. yn=4.
once they move, a 2.tower is
created. If the reached con- ‘ @ @)

figuration contains an isolated {%

robot (the case where n = 4)

then, this robot is the only )n="6 (k=4).
one allowed to move. Its des-
tination is one of its adjacent Fig. 2. Specific Algorithm for 3 < n < 6.

empty nodes. Once it moves

it becomes neighbor of the

2.tower. If n = 6, the same algorithm works with 4 robots assuming that they
belong to the same block.



Algorithm 2 Synchronous Exploration for 3 <n <6

1A’1: 0(1)1 =2 «— // Towards empty neighbor
1A°2: 0(1)0 :: « V = // Towards any neighbor

5 Conclusion

We studied the terminating exploration of anonymous, unoriented rings by a
team of oblivious robots. The assumptions of unlimited visibility made in previ-
ous works allow to focus on overcoming the computational weaknesses of robots.
In this paper, we added one more weakness: Myopia. We consider strong myopia
that is, a robot cannot sense farther than its immediate neighboring nodes. We
studied the problem for both asynchronous and synchronous settings. We proved
that deterministic exploration is possible if the system is synchronous only. Next,
we provided deterministic algorithms for synchronous systems that are optimal
in terms of number of robots.

The reader should have noticed that the algorithm proposed in Section 4 for
n > 7 can easily be generalized to any odd number k > 5 of robots. Indeed,
the exploration works by replacing 2 by L%J in the guards of Action 142 to
Action 244 of Algorithm 1, where the parenthesis now means “any positif integer
smaller than or equal to Lg] — 17. The guard of Action 1A1 must be replaced

by 0(1..|%] — 1)1. The case where k is even is more sophisticated and requires a
specific algorithm [1].
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