
HAL Id: hal-00848043
https://hal.science/hal-00848043v1

Submitted on 25 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Content Based Routing with Directional Random Walk
for Failure Tolerance and Detection in Cooperative

Large Scale Wireless Networks
Pierre Leone, Cristina Muñoz

To cite this version:
Pierre Leone, Cristina Muñoz. Content Based Routing with Directional Random Walk for Failure
Tolerance and Detection in Cooperative Large Scale Wireless Networks. SAFECOMP 2013 - Workshop
ASCoMS (Architecting Safety in Collaborative Mobile Systems) of the 32nd International Conference
on Computer Safety, Reliability and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848043�

https://hal.science/hal-00848043v1
https://hal.archives-ouvertes.fr

Content Based Routing with Directional
Random Walk for Failure Tolerance and

Detection in Cooperative Large Scale Wireless
Networks

Pierre Leone and Cristina Muñoz

Computer Science Department, University of Geneva
Battelle Bâtiment A, route de Drize 7, 1227 Geneva , Switzerland

Abstract. In this article we develop around the idea that Failure Tole-
rant and Detection systems can be built using similar mechanisms that
the ones used to implement Publish/Subscribe systems. Then, we pro-
pose Directional Random Walks (DRW) as a heuristic mechanism to
propagate information in wireless networks in order to match publica-
tions with subscriptions. The efficiency of this heuristic is validated with
numerical experiments.

1 Introduction

Our position that motivates this article is the fact that event based mechanisms
are appropriate building tools for the implementation of Failure Tolerance and
Detection systems. We remind that Publish/Subscribe systems are used in net-
works to match the publication of information at a node with a subscription
to similar information at another node. The matching is done independently of
the network structure and should rely only on the content of publications and
subscriptions. Here, we do not delve into the description of how we represent the
information. We assume only that we have the possibility to exchange and recog-
nize this representation through message passing [5, 11]. In order to support this
position we review some well known strategies on the topics of failure tolerance
and detection and we describe how they can be implemented on the top of a
Publish/Subscribe system.

However, the implementation of classical Publish/Subscribe systems requires
to identify some particular nodes as broker nodes that are connected to each
other [12, 7, 16, 6], i.e. compose a functional subnetwork, share the information
about all the publications and subscriptions and are responsible for implement-
ing the matching process. This characteristic is an issue in large scale wireless
networks. Actually, the size and structure of the broker nodes must adapt to the
scale of the network in order to manage appropriately the demands.

Moreover, it is classical in wireless networks to minimize the energy con-
sumption and this leads to consider protocols/algorithms that balance energy
consumption [8, 9]. The identification of broker nodes leads to over-use these
nodes which is the opposite to what we aim for.

A last issue that we consider in this article is the fact that classical imple-
mentations of Publish/Subscribe systems are done on the top layer of a routing
algorithm. To illustrate this point, we mention the use of a Distributed Hash Ta-
ble (DHT). Given a piece of information and its description, the DHT translates
the description of the information as an address, typically an IP address, and
the information is stored/retrieved at the node with the closest address in the
network [14, 3, 15]. However, building a routing protocol that uses the addresses
in large scale wireless networks is a challenge. The solution of this point leads
to the development of a content based routing algorithm. Guided by these
considerations, our goal in this article is to present an efficient strategy to:

– Match publications with subscriptions. Imagine a node in the network that
publish some information and another one that is subscribed to receive such
information. Then, it is necessary to build a path in the network that links
these two nodes.

– The process must be scalable in the sense that it must not be too sensitive
to the total number of nodes in the network. Moreover, it must support
multiple publications and subscriptions, i.e. the system offers the possibility
to build groups.

– The path system that results from the process of linking nodes that are
interested in matching publications/subscriptions must share the load, i.e.
the number of publications/subscriptions managed by the nodes must be
balanced.

The algorithm to build paths targets wireless networks because the heuristic
that we use to disseminate the information in the network use the geometrical
connectivity property of the nodes, i.e. the nodes that are close-by are connected,
see below the Unit Disk Graph (UDG) model. However, we argue that the exten-
sion to more complex network topologies is realistic[4]. This could be achieved
by considering the embedding of the communication graph in a general surface
[20, 21].

The rest of this paper is organized as follows: Section 2 discusses about
the implementation of failure tolerance and detection systems on the top of a
Publish/Subscribe layer. Section 3 provides the information related to the design
of the content based routing algorithm. Section 4 evaluates the performance of
our method. Finally, Section 5 summarizes the main characteristics and results
of the heuristic proposed.

2 Implementation of Failure Tolerance and Detection
Systems

In the following we present how we can implement failure tolerant and detection
systems using Publish/Subscribe mechanisms. Our aim in this article is to focus
on the presentation of the content based routing algorithm. Further work will
be dedicated to validate the efficiency of the protocol in the framework of failure
tolerant and detection systems.

A major tool used to implement failure tolerant systems is to duplicate the
available resources at different places in the network [18]. This requires some
coordination between the nodes to ensure the consistency property. Moreover,
it must be assured that the primitives used are the ones that make possible the
group membership management, i.e. the nodes must be able to list the members
of the group, membership must be dynamic. A simple system offering the basic
functionalities is built if all the nodes that are designed to be part of the group
send a publication or a subscription message that identify to which group they
want to be part of. The content based routing algorithm matches the subscrip-
tions with the corresponding publications and each node gets the list of all the
members of the group. Actually, a node may get the list twice: when the algo-
rithm matches the subscription of the node, i.e. the node receives the list of the
corresponding publications, and when when the algorithm matches the publica-
tion of the node, i.e. the node receives the list of the corresponding submissions.
We emphasize that besides providing the list of the corresponding nodes, the
algorithm also provides the routing paths towards the nodes.

Another way to implement failure detection is to use gossip algorithms. Nodes
that are running the critical processes gossip periodically information relative
to the process’ state. Gossip algorithms are used to disseminate the information
and make available the relevant information to the nodes that check the process’
state [19]. We argue that our content based routing algorithm can be used in-
stead of the gossip algorithm. Conceptually this is clear because both algorithms
are used to disseminate the information. From the point of view of performance,
in particular in harsh environments, it will be interesting to compare the perfor-
mance of the algorithms. The algorithm that we present here does not manage
the failure of the nodes that compose the routing path. Of course, this is a key
point of gossip algorithms and further work will be dedicated to the comparison
and investigation for merging the strategies. We mention that complex failure
detectors combine gossip algorithms with group membership algorithms [17, 13].

3 Content Based Routing Algorithm

We start by presenting our heuristic algorithm for matching publications with
subscriptions. A classical assumption in the field of wireless networks is to con-
sider that the nodes are deployed in a region that is planar or can be approxima-
ted locally by a plan. Moreover, the wireless links satisfy a proximity assumption
in the sense that nodes that are connected are supposed to be close to each others.
Of course, this is valid in a first approximation but anyway this is a classical
approximation that leads to the definition of the Unit Disk Graph (UDG). To
each node u we associate a range of communication ru and node u can trans-
mit to node v if the distance between u and v, d(u, v), satisfies d(u, v) < ru. In
general, the range of communication is uniform and denoted by r. We hope to
handle more general topologies using topological graph embeddings [1, 2].

In this setting, the heuristic algorithm tries to propagate the information
following a straight line. Because nodes are located in a plane, if the publisher

and the subscriber disseminate the information in a straight line the two lines
cross. In our research, the straight lines are approximated by Directional Ran-
dom Walks that go hop-by-hop and try to go straight. The node where the two
Directional Random Walks meet makes the correspondence between the publi-
cation with the subscription. It then stops the dissemination of information and
sends back messages to the publisher and the subscriber to notify about the
matching. We refer generically to both of them as the initiators. Along the path
of the directional Random Walks, information is stored in order to make possi-
ble sending messages back to the initiator. Indeed, a node that is visited for the
first time, memorizes the description of the information together with the ID of
the node that transmitted the information first. When messages are transmitted
back to the initiator this ID is used, i.e. while a node receives a piece of infor-
mation to route, it checks in its routing table the ID that it has associated to
the information. The use of this method ensures that the path that goes back
to the initiator is loop-erased.

Pub/sub matching

P

P

S

S

Fig. 1. Illustration of the heuristic leading to disseminate the information using Direc-
tional Random Walks. On the top of the Figure, the two nodes P and S corresponding
to the publisher and subscriber of the information are shown. The information is disse-
minated in a straight line. At the node where the two lines intersect (the Rendez-vous
point) the node matches the publication with the subscription. Messages are sent back
to P and S to inform about the matching. The intermediate nodes memorize the trace
of the information to route data subsequently. At the bottom of the Figure, an example
of a Directional Random Walk, an approximation of a straight line.

To propagate the information following a straight line, we use the fact that
the communication graph is approximated with a Unit Disk Graph. Assume that
a node x propagates the information to node y that must choose a subsequent

x
y

Fig. 2. Local construction of the Directional Random Walk. Node y received the in-
formation to disseminate from node x. Node y selects a subsequent node by favoring
the nodes located in the hatched region. Computationally, this is done by selecting the
node z with the less 2-hops paths from x to z.

node that is close to the straight line xy, see Figure 2. We assume that node
y knows the two hops neighborhood. Formally, we denote N (y) as the nodes
that are connected to y, i.e. N (y) = {z | d(y, z) < r} and y knows the set of
nodes ∪z∈N (y)N (z). On Figure 2, we represent the nodes x, y and 4 unlabeled
nodes that are neighboring nodes of x. The heuristic to force y to propagate the
information following a straight line is that y chooses a next node that is not
a neighboring node of x and that has as few as possible neighboring nodes in
common with x. This amounts to choose a node that belongs to the hatched
area.

Unfortunately it can be that this area does not contain any node. To handle
this situation, node y considers all the nodes z ∈ N (y) and counts the number
of 2-hops paths from x to z, denoted ny

xz.

ny
xz =| {v | v ∈ N (x) ∩N (z)} |

Node y selects as next node to disseminate the information the neighboring
nodes z ∈ N (y) with minimal ny

xz. It breaks the ties with uniform probability.
This mechanism is complemented with two heuristic mechanisms that favor the
propagation in straight line and make sure that the Directional Random Walk
eventually visits all the nodes. The pseudo code of the algorithm proposed is
presented on Figure 3. The first mechanism is to increase the weight of the
variable ny

xz if z ∈ N (x) to force the information to get away from x, see the
initialization on Figure 3. The second one is that after node y transmits to z,
the variable ny

xz is incremented to make possible the selection of another path
if the data come back to y through x again, see line 4. This ensures that the
Directional Random Walk eventually visits all the nodes.

The properties of the Directional Random Walk are the following:

———————————————————————————————————–
Construction of the Directional Random Walk using the 2-hops
neighboring nodes
Initialization : Each node y initializes a variable
ny
xz =| N (x) ∩N (z) | +deg(x) ∗ 1z∈N (x), for x, z ∈ N (y)

———————————————————————————————————–
1. The initiator x selects a random node y uniformly in N (x) .
2. if y is visited by the directional Random Walk the first time then y sets a
pointer back = x and associates the description of the information.
3. y selects z ∈ N (y) with minimal ny

xz, breaks the ties with uniform probability.
4. y updates ny

xz = ny
xz + rand, with rand ∈ [0, deg(x)].

5. x = y, y = z, go to 2.

Fig. 3. Pseudo code for building a Directional random walk. The pseudo code here is
a centralized version of the algorithm. The distributed reactive implementation follows
straightforwardly.

– The Directional Random Walk eventually visits all the nodes in the network.
– The backward path is loop-erased. This means that there is a direct path

between publishers and subscribers.

4 Evaluation of the efficiency of the directional Random
Walk (DRW)

The communication networks that we use for our numerical evaluations of the
Directional Random Walk (DRW hereafter) are obtained by placing the nodes
randomly and uniformly in a squared area of unit area. The communication
model is defined by the range of communication r. Two nodes that are closer than
the range of communication can communicate. The graph we obtain in this way
is the Unit Disc Graph (UDG). We conduct numerical validation for 1500, 2000,
2500, 3000 nodes with a range of communication r=0.04. The average number of
neighbors is 7.5, 10, 12.5, 15. Notice that before starting the simulations we check
that the communication graph is connected, if not, we redraw a random graph.
Notice that, under these conditions, it is hard to obtain connected networks
with less than 1500 nodes. To evaluate the performance of the construction of
the DRW, we consider different measures:

– Time to intersection. Two nodes are chosen randomly and uniformly and
each one initiates a DRW. We measure the time to intersection of the two
DRW. The two DRWs are progressing at the same speed.

– Impact of asynchrony, i.e. the two DRW do not progress at the same
speed. This measures the efficiency of the collaboration to build the path
system, i.e. one path executes 1 step while the other one k steps with k =
1, 10, 100.

– Nodes load. We consider the basic problem of routing a permutation, i.e. to
each node we select randomly and uniformly another node in the network.

Each such pair of nodes initiate two DRW (one as a publisher, one as a
subscriber, this is pure convention). We measure for each node in the network
the total number of paths that go through it to route the permutation.

Fig. 4. An example of the building of a path. The nodes that are circled start to build
two paths independently. At the intersection point the loop-erased path linking the
two nodes is built and displayed in the figure. We can observe that on this figure that
the DRW continues the exploration of the space.

4.1 Time to intersection

To measure the time to intersection we selected two nodes randomly and uni-
formly. The two nodes start the construction of a DRW synchronously, i.e. The
two paths are constructed at the same speed, progressing step-by-step syn-
chronously. In order to compare our strategy, we proceed to the same expe-
riments but using (pure) Random Walks instead of the DRWs. To build a path
a Random Walk selects as subsequent node any neighboring node of the current
node with uniform probability.

The results with DRW are shown on the left of Figure 5 while the results
with the Random Walk are shown on the right. The comparison between the
two sets of results show clearly that the DRW improves the time to intersection.
The median and mean are smaller with a multiplicative factor of 6-10. It is also
relevant that the results obtained with the DRW are much more concentrated
than the ones obtained using a Random Walk.

We conclude that directionality decreases the time to intersection.
It is relevant to notice that the results on Figure 5 show that the time to

intersection seems to converge as we increase the density. An explanation for
the occurrence of this phenomenon can be that the length of the steps decreases

Fig. 5. Boxplots of the results of the numerical measure of the time to intersection.
The number of nodes is 1500, 2000, 2500, 3000, 3500 and 4000. In the y-axis the time
to intersection is the total number of steps before the intersection of the two paths.
For each boxplot we generated 100 random networks and for each network we measure
the time to intersection for 100 pairs of nodes chosen randomly and uniformly. On the
left the results with the Directional Random Walk and on the right with the Random
Walk.

in average for both Random Walks. Then as the density increases the time to
intersection tends towards a limit that corresponds to a ’continuous’ case (in
average). The exact values can be read on Figure 6 in the column corresponding
to ratio = 1.

4.2 The impact of asynchrony

The next set of experiments measures the efficiency of the collaboration of the
publisher and subscriber in building the path between them. We then measure
the time to intersection under the same conditions than in section 4.1 and we
introduce asynchrony. More precisely, while one path grows of one step, the other
one grows of k steps. We measure the total number of steps before intersection
with k = 1, 10, 100. The results are presented in Figure 6 by using the DRW and
the Random Walk. The numerical results show clearly that making the two path
progressing simultaneously decreases the time to intersection, i.e. we measure the
smallest time to intersection with k = 1 . We observe this independence on the
way the path is built. We emphasize that the numbers reported here are the
total number of steps.

We conclude that the cooperation between the publisher and subscriber
decreases the time to intersection.

4.3 Efficiency of the path system

We run a set of experiments and consider three different ways of building the
paths: Directional Random Walk (DRW), (pure) Random Walk and shortest
path.To consider a complete path system we route a permutation, i.e. to each
node we assign a destination chosen uniformly among the set of nodes and a

node is selected only in one pair. In a pair, each node plays the role of publisher
and subscriber, this means that with n nodes we build n paths (two paths per
pair). The results are presented in Tables 7, 8 and in Figure 9.

We observe that the Random Walk is the best strategy to balance the load,
the mean and median are very close in all situations. The DRW is also good
at balancing the load, we remind that the time to intersection is incomparably
better. While with the shortest path, which is centralized and not realistic but
included for comparison, we obtain that few nodes are over-used and route close
to half of the traffic.

We conclude that the DRW is good at balancing the load.

DRW Random Walk

Number of

nodes\Ratio
1 10 100 1 10 100

1500 192/265 267/364 431/602 1267/1842 1700/2579 2668/4264

2000 144/188 192/260 314/433 956/1327 1319/1897 2018/3061

2500 116/155 160/213 279/364 830/1156 1099/1604 1762/2599

3000 102/130 143/186 227/301 756/1056 1077/1508 1647/2447

Fig. 6. Impact of asynchronicity (difference of speeds) on the time to intersection.
The values in the table are Median/Mean time to intersection. We run experiments
with networks of 1500, 2000, 2500 and 3000 nodes, communication range r = 0.04
and k = 1, 10, 100. In each configuration, we generated 100 connected networks and
on the top of each network we selected 100 pairs of nodes for measuring the time to
intersection.

With this set of experiments, our goal is to measure the efficiency of the
path system obtained with our algorithm in terms of the node’s load, i.e. the
number of paths that go through a node. We remind that when we construct
paths a back pointer and the description of the information are associated and
memorized by the node but just the first time that the node is selected for the
path. It is then crucial that the number of paths through a node stays reasonable
and accordingly to the memory constraints.

5 Conclusion and Further work

In this paper we sketch how publish/subscribe systems can be used to imple-
ment failure tolerance and detection. Then, we propose a heuristic to build such
systems in wireless networks using Directional Random Walks. Our numerical
findings reflect that Directional Random Walks decrease the time to intersection
of the traces compared to classical random Walks. In addition to this, the coope-
ration of publishers and subscribers decreases the time to intersection. Finally, it

Total number of

Nodes
1500 2000 2500 3000 3500

Shortest path 3/73 2/66 2/65 2/65 2/60

DRW 54/62 56/63 56/64 55/63 54/63

Random Walk 62/65 72/73 79/79 85/84 91/89

Fig. 7. Median/Mean Nodes load for routing a permutation

Total number of

Nodes
1500 2000 2500 3000 3500

Shortest path 899/2 1068/2 1348/2 1725/2 1861/2

DRW 366/2 330/2 364/2 463/2 453/2

Random Walk 253/2 201/2 205/2 200/2 221/2

Fig. 8. Max/Min Nodes load for routing a permutation

has been shown that Directional Random Walks balance the nodes load almost
as efficiently as pure Random Walks.

Furthermore, we suspect the existence of a limit process, as the density in-
creases, that provides a lower bound to the time to intersection. The investigation
of this limit process is of real practical interest. Indeed, such a lower bound pro-
vides an efficient criteria to decide when to stop the path because the fact that
no intersection occurs means that there are no events to match in the network.
Actually, the problem of stopping the Directional Random walk is not addressed
in this paper that is focused on proving the efficiency of the heuristic. Further
papers are planed to compare the algorithm with classical techniques. In parti-
cular, it is tempting to think merging the Directional Random walk with gossip
mechanisms in order to manage node failures or mobility efficiently as well as
improving the gossiping techniques. In this direction see for instance [10] that
makes use of a kind of learning algorithm for gossiping. To conclude, it must be
said that further work will be done in order to handle more general topologies
using topological graph embeddings.

Nodes load Shortest path Nodes load RandomWalk Nodes load DRW

Fig. 9. Comparison of the nodes load for the three different algorithms to build the
path system: shortest path, Directional Random Walk and pure Random Walk. We
consider networks of 1500, 2000, 2500 and 3000 nodes. The range of communication is
r = 0.04. For each configuration we generated 10 connected networks and on the top
of each connected network we measured the nodes load for 10 different permutations.
We built a total of more than 150.000 paths per configuration.

6 Acknowledgment

This work has been developed as part of the POPWiN project (Parallel Object
Remote Programming for Heterogeneous Wireless Networks over IPv6) that is
financially supported by the Hasler Foundation in its SmartWorld - Information
and Communication Technology for a Better World 2020 program.

References

1. Maia Fraser. Local routing on tori. Ad Hoc & Sensor Wireless Networks, 6(3-
4):179–196, 2008.

2. Maia Fraser. Local routing in graphs embedded on surfaces of arbitrary genus.
CoRR, abs/1202.6109, 2012.

3. Abhishek Ghose, Jens Grossklags, and John Chuang. Resilient data-centric storage
in wireless sensor networks. IEEE Distributed Systems Online, 4(11), 2003.

4. Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Wiley-
Interscience, New York, NY, USA, 1987.

5. S. Helmer, A. Poulovassilis, and F. Xhafa. Reasoning in Event-Based Distributed
Systems. Studies in Computational Intelligence Studies in Computation. Springer,
2011.

6. Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe tree construction
in wireless ad-hoc networks. In Proceedings of the 4th International Conference

on Mobile Data Management, MDM ’03, pages 122–140, London, UK, UK, 2003.
Springer-Verlag.

7. Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. Mqtt-s - a pub-
lish/subscribe protocol for wireless sensor networks. In COMSWARE, pages 791–
798, 2008.

8. Pierre Leone, Aubin Jarry, Sotiris E. Nikoletseas, and José D. P. Rolim. Optimal
data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc
Networks, 9(6):1036–1048, 2011.

9. Pierre Leone, Sotiris E. Nikoletseas, and José D. P. Rolim. Stochastic models and
adaptive algorithms for energy balance in sensor networks. Theory Comput. Syst.,
47(2):433–453, 2010.

10. Meng Lin and Keith Marzullo. Directional gossip: Gossip in a wide area network.
Technical report, La Jolla, CA, USA, 1999.

11. Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed event-based systems.
Springer, 2006.

12. Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based middleware
architecture. In Proceedings of the 22nd International Conference on Distributed
Computing Systems, ICDCSW ’02, pages 611–618, Washington, DC, USA, 2002.
IEEE Computer Society.

13. Sridharan Ranganathan, Alan D. George, Robert W. Todd, and Matthew C.
Chidester. Gossip-style failure detection and distributed consensus for scalable
heterogeneous clusters. Cluster Computing, 4(3):197–209, July 2001.

14. Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin, Ramesh Govindan,
Li Yin, and Fang Yu. Data-centric storage in sensornets with ght, a geographic
hash table. MONET, 8(4):427–442, 2003.

15. Karim Seada and Ahmed Helmy. Geographic rendezvous-based architectures for
emergency data dissemination. Wireless Communications and Mobile Computing,
10(9):1221–1237, 2010.

16. Eduardo Souto, Germano Guimarães, Glauco Vasconcelos, Mardoqueu
Vieira, Nelson Rosa, Carlos Ferraz, and Judith Kelner. Mires: a publish/subscribe
middleware for sensor networks. Personal Ubiquitous Comput., 10(1):37–44, De-
cember 2005.

17. Ann T. Tai, Kam S. Tso, and William H. Sanders. Cluster-based failure detection
service for large-scale ad hoc wireless network applications. In Proceedings of the
2004 International Conference on Dependable Systems and Networks, DSN ’04,
pages 805–, Washington, DC, USA, 2004. IEEE Computer Society.

18. Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles
and paradigms (2. ed.). Pearson Education, 2007.

19. Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style failure de-
tection service. In Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Middleware ’98, pages 55–70,
London, UK, UK, 1998. Springer-Verlag.

20. Xiaokang Yu, Xiaotian Yin, Wei Han, Jie Gao, and Xianfeng Gu. Scalable routing
in 3d high genus sensor networks using graph embedding. In INFOCOM, pages
2681–2685, 2012.

21. Fenghui Zhang, Hao Li, Anxiao Jiang, Jianer Chen, and Ping Luo. Face tracing
based geographic routing in nonplanar wireless networks. In INFOCOM, pages
2243–2251, 2007.

