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a Departamento de Análisis Económico y Finanzas, Universidad de Castilla,
La Mancha 45071 Toledo, Spain.

raquel.agueda@uclm.es

b L.R.I., Bât. 650, Université Paris-Sud 11,
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Abstract

A c-edge-coloured multigraph has each edge coloured with one of the c available
colours where no two parallel edges have the same colour. A proper Hamiltonian
path is a path that contains all the vertices of the multigraph such that no two ad-
jacent edges have the same colour. In this work we establish sufficient conditions for
a multigraph to have a proper Hamiltonian path, depending on several parameters
such as the number of edges, the rainbow degree, etc.
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1 Introduction

The study of problems modeled by edge-coloured graphs have resulted in im-
portant developments recently. For instance, the research on long coloured
cycles and paths for edge-coloured graphs has provided interesting results [3].
From a practical perspective, problems arising in molecular biology are often
modeled using coloured graphs, i.e., graphs with coloured edges and/or ver-
tices [9]. Given an edge-coloured graph, the original problems are equivalent
to extract subgraphs coloured in a specified pattern. The most natural pat-
tern in such a context is that of proper colourings, i.e., adjacent edges have
different colours.

The proper Hamiltonian path and proper Hamiltonian cycle problems are
NP -complete in the general case. It is polynomial to find a proper Hamilto-
nian path in c-edge-coloured complete graphs, c ≥ 2 [7]. It is also polynomial
to find a proper Hamiltonian cycle in 2-edge-coloured complete graphs [4]. It is
still open to determine the computational complexity for proper Hamiltonian
cycles, c ≥ 3 [5]. Many other partial results for edge-coloured multigraphs can
be found in the survey by Bang-Jensen and Gutin [2].

In this work we give sufficient conditions involving various parameters as
the number of edges, rainbow degree, etc, in order to guarantee the existence
of proper Hamiltonian paths in edge-coloured multigraphs where parallel edges
with same colours are not allowed. All of our results are tight. We remark
that this problem arises naturally since it is not reasonable to study such
conditions just for simple edge-coloured graphs. Results involving only degree
conditions can be found in [1].

Formally, let Ic = {1, 2, . . . , c} be a set of c ≥ 2 colours. Throughout
this paper, Gc denotes a c-edge-coloured multigraph such that each edge is
coloured with one colour in Ic and no two parallel edges joining the same pair
of vertices have the same colour. Let n be the number of vertices and m be
the number of edges of Gc. If H is a subgraph of Gc, then N i

H(x) denotes
the set of vertices of H adjacent to x with an edge of colour i. Whenever H
is isomorphic to Gc, we write N i(x) instead of N i

Gc(x). The coloured i-degree

of a vertex x, denoted by di(x), is the cardinality of N i(x). The rainbow

degree of a vertex x, denoted by rd(x), is the number of different colours on
the edges incident to x. The rainbow degree of a multigraph Gc, denoted by
rd(Gc), is the minimum rainbow degree among its vertices. An edge with
endpoints x and y is denoted by xy, and its colour by c(xy). A rainbow

complete multigraph is the one having all possible coloured edges between any
pair of vertices (its number of edges is therefore c

(

n

2

)

). The complement of a
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multigraph Gc denoted by Gc, is a multigraph with the same vertices as Gc

and an edge vw ∈ E(Gc) if and only if vw /∈ E(Gc). A subgraph of Gc is said
to be properly edge-coloured if any two adjacent edges in this subgraph differ
in colour. A Hamiltonian path (cycle) is a path (cycle) containing all vertices
of the multigraph. A path is said to be compatible with a given matching M
if the edges of the path are alternatively in M and not in M . We assume that
the first and the last edge of the path are in M otherwise we just remove one
(or both) of them in order to have this property. All multigraphs are assumed
to be connected.

This paper is organized as follows: In Section 2 we present some prelim-
inary results that will be useful for the rest of the paper. In Section 3 we
study proper Hamiltonian paths in 2-edge-coloured multigraphs. In Section 4
we study proper Hamiltonian paths in c-edge-coloured multigraphs, for c ≥ 3.
We remark that this division is because of proper Hamiltonian paths in 2-
edge-coloured multigraphs are just alternating paths in two colours, therefore
the results are different of those for c ≥ 3 colours. Finally, in Section 5 we
present the conclusions.

2 Preliminary results

Lemma 2.1 Let G be a connected non-coloured simple graph on n vertices,

n ≥ 9. If m ≥
(

n−2
2

)

+ 3, then G has a matching M of size |M | = ⌊n
2
⌋.

Proof. By a theorem in [6], a 2-connected graph on n ≥ 10 vertices and
m ≥

(

n−2
2

)

+ 5 edges has a Hamiltonian cycle. So if we add a new vertex v

and we join it to all the vertices of G we have that G+ {v} has m ≥
(

n−1
2

)

+5
edges. Therefore G+ {v} has a Hamiltonian cycle, i.e., G has a Hamiltonian
path and this implies that there exists a matching M in G of size |M | = ⌊n

2
⌋.✷

Lemma 2.2 ([8]) Let G be a simple non-coloured graph on n ≥ 14 vertices.

If m ≥
(

n−3
2

)

+ 4 and for every vertex x, d(x) ≥ 1, then G has a matching M
of size |M | ≥ ⌈n−2

2
⌉.

Lemma 2.3 Let Gc be a 2-edge-coloured multigraph on n ≥ 14 vertices. Sup-

pose that for every vertex x in Gc, rd(x) = 2. If m ≥
(

n

2

)

+
(

n−3
2

)

+4, then Gc

has two matchings M r and M b of colours red and blue respectively, such that

|M r| = ⌊n
2
⌋ and |M b| ≥ ⌈n−2

2
⌉.

Proof. Let us denote Er and Eb as the set of edges coloured in red and blue,
of sizes |Er| = mr and |Eb| = mb respectively. Observe that, as for every

3



vertex x in Gc, rd(x) = 2, we have that di(x) ≥ 1 for i ∈ {r, b}. Observe
also that mi ≥

(

n−3
2

)

+ 4 for i ∈ {r, b}, since this threshold is tight when the
multigraph is complete on one of the colours.

First, if n is odd, by Lemma 2.2 there exist two matchings M r and M b,
each one of size n−1

2
, so the result follows straightforward. Second, if n is even,

suppose without lose of generality that mr ≥ mb. Then mr ≥ (
(

n

2

)

+
(

n−3
2

)

+

4)/2 >
(

n−2
2

)

+ 3. It is sufficient to show that Gr has a matching of size ⌊n
2
⌋

because Gb has one of size ⌈n−2
2
⌉ by Lemma 2.2. Now, since δ(Gr) ≥ 1, Gr is

connected. Lemma 2.1 implies that Gr has a matching of size ⌊n
2
⌋ as desired.

✷

Lemma 2.4 Let Gc be a connected c-edge-coloured multigraph, c ≥ 2. Sup-

pose that Gc contains a proper path P = x1y1x2y2 . . . xpyp, p ≥ 3, such that

each edge xiyi is red. If Gc does not contain a proper cycle C such that

V (C) = V (P ) then there are at least (c− 1)(2p− 2) missing edges in Gc.

Proof. Let blue be any other colour different from red. The blue edge x1yp
cannot be in Gc otherwise x1y1 . . . xpypx1 is a proper cycle. Suppose that
the blue edges x1xi are present in Gc for i = 2, . . . , p. Then the blue edges
yi−1yp cannot be in Gc otherwise we have the proper cycle x1xi . . . ypyi−1 . . . x1

contradicting our hypothesis. Therefore for each edge yi−1xi in the path, either
the blue edge x1xi or the blue edge yi−1yp is missing. So there are p− 1 blue
missing edges. Now suppose that the blue edges x1yi are present in Gc, for
i = 3, . . . , p− 2. Then the blue edges xi+1yp cannot be in Gc at same time as
the blue edges xiyi+1, yi−1xi+2 or yi−1yi+1, xixi+2, otherwise we have the proper
cycles x1yixiyi+1xi+1yp . . . xi+2yi−1 . . . x1 or x1yixixi+2 . . . ypxi+1yi+1yi−1 . . . x1.
Then for each edge yixi+1 in the path, the minimum in this case corresponds
to one missing edge among xi+1yp, x1yi for i = 2, . . . , p − 1. Therefore there
are p− 3 blue missing edges.

For the moment we have 2p − 3 blue missing edges. To obtain the last
missing edge suppose that the blue edge x2yp is present in Gc. Then, it cannot
be at the same time with the blue edges x1y2, y1x3 or x1x3, y1y2, otherwise we
obtain the proper cycles x1y2 . . . x2yp . . . x3y1x1 or x1x3 . . . ypx2 . . . y2y1x1. The
minimum in this case corresponds to one missing edge x2yp. We remark that
the blue edges x2yp, y1y2 and y1x3 were not counted before. The edges x1x3

and x1y2 were supposed to exist, otherwise, to obtain the last missing edge we
consider the symmetric case, i.e., using the blue edge yp−1x1 (if it exists).

In total there are 2p−2 blue missing edges in Gc. As we have c−1 colours
different from red, that gives (c − 1)(2p − 2) missing edges as desired. Note
that this number of missing edges is the same as in the simplest case, that is,
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if all edges different from red x1xi and x1yi, for i = 2, . . . , p are not present in
Gc. ✷

Lemma 2.5 Let Gc be a connected c-edge-coloured multigraph, c ≥ 2. Let

M be a matching of Gc in one colour, say red, of size |M | ≥ ⌈n−2
2
⌉. Let

P = x1y1x2y2 . . . xpyp, p ≥ 3, be a longest proper path compatible with M .

Then the following holds:

• (1) n is even, |M | = n
2
and 2p < n.

· (1a) If there is no proper cycle C such that V (C) = V (P ), then there are

at least (n − 2 + pn − 2p2)(c − 1) missing edges in Gc different from red

and the minimum value of this function is (2n− 4)(c− 1), for p = n−2
2
.

· (1b) If there is a proper cycle C such that V (C) = V (P ), then there are

at least (2pn− 4p2)(c− 1) missing edges in Gc different from red and the

minimum value of this function is (2n− 4)(c− 1), for p = n−2
2
.

• (2) n is odd, |M | = n−1
2

and 2p < n− 1.
· (2a) If there is no proper cycle C such that V (C) = V (P ), then there are

at least (n−3−p+pn−2p2)(c−1) missing edges in Gc different from red

and the minimum value of this function is (2n− 6)(c− 1), for p = n−3
2
.

· (2b) If there is a proper cycle C such that V (C) = V (P ), then there are

at least (2pn− 2p− 4p2)(c− 1) missing edges in Gc different from red and

the minimum value of this function is (2n− 6)(c− 1), for p = n−3
2
.

• (3) n is even, |M | = n−2
2

and 2p < n− 2.
· (3a) If there is no proper cycle C such that V (C) = V (P ), then there

are at least (n − 4 − 2p + pn − 2p2)(c − 1) missing edges in Gc different

from red and the minimum value of this function is (2n − 8)(c − 1), for
p = n−4

2
.

· (3b) If there is a proper cycle C such that V (C) = V (P ), then there are

at least (2pn− 4p− 4p2)(c− 1) missing edges in Gc different from red and

the minimum value of this function is (2n− 8)(c− 1), for p = n−4
2
.

Proof. Suppose first that n is even and 2p < n. Since M has size n
2
there are

n−2p
2

red edges outside P . Let us denote these edges by ei for i = 1, . . . , n−2p
2

.
Suppose there is no proper C cycle such that V (C) = V (P ). Let blue denote
any other colour different from red. By Lemma 2.4 there are (2p − 2) blue
missing edges. As the path is maximum, we cannot extend P having an edge
ei neither at the beginning nor at the end of it. Then, there are no blue edges
between the vertices x1, yp and the edges ei. Thus, there are 2(n − 2p) blue
missing edges. Finally, as we cannot add any edge ei in-between the path,
there are at most two blue edges between the edges ei and the edges yixi+1,
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i = 1, . . . , p − 1. So, there are (n−2p)(2p−2)
2

blue missing edges. Adding up
and simplifying all these numbers and having c− 1 colours different from red,
we arrive to (n − 2 + pn − 2p2)(c − 1) missing edges in Gc. If we search the
minimum value of this function we obtain (2n−4)(c−1) for p = n−2

2
and case

(1a) holds. Now if there is a proper cycle C such that V (C) = V (P ) then
there cannot exist any edge at all different from red between all vertices of C
and the edges ei. Therefore there are (2pn−4p2)(c−1) missing edges. Again,
by minimizing the function we obtain the same result as above and case (1b)
holds.

Suppose now that n is odd, M = n−1
2

and 2p < n−1, or n is even, M = n−2
2

and 2p < n − 2. In both cases the same arguments listed above apply just
replacing n with n− 1 or n− 2 respectively, in the number of missing edges.
This is because we have n− 1 matched vertices and one non-matched vertex
for the first case and n− 2 matched vertices and two non-matched vertices for
the second one. ✷

3 2-edge-coloured multigraphs

In this section we study the existence of proper Hamiltonian paths in 2-edge-
coloured multigraphs. We present two main results. The first one involves
just the number of edges. The second one involves the number of edges and
the rainbow degree. Both results are tight.

Theorem 3.1 Let Gc be a 2-edge-coloured multigraph on n ≥ 8 vertices

coloured with {r, b}. If m ≥
(

n

2

)

+
(

n−2
2

)

+ 1, then Gc has a proper Hamil-

tonian path.

For the extremal example, n ≥ 8, consider a rainbow complete 2-edge-
coloured multigraph on n − 2 vertices, n odd. Add two new vertices x1 and
x2. Then add a red edge x1x2 and all red edges between {x1, x2} and the
complete graph. Although the resulting graph has

(

n

2

)

+
(

n−2
2

)

edges, it has
no proper Hamiltonian path, since there is no blue matching of size (n− 1)/2.

Proof. The proof is by induction on n. For n = 8, 9 by inspection the result
can be shown. Suppose now that n ≥ 10. Observe that |E(Gc)| ≤ 2n− 4. By
a theorem in [1], if every vertex v ∈ Gc has dr(v) ≥

⌈

n+1
2

⌉

and db(v) ≥
⌈

n+1
2

⌉

,
then Gc has a proper Hamiltonian path. Thus, we can assume that there
exists a vertex v such that dr(v) ≤ ⌈n+1

2
⌉ − 1, otherwise there is nothing to

prove.

Suppose first that there exist two neighbours u, w of v such that c(vu) = r
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and c(vw) = b. We then construct a new multigraph G′c by replacing the
vertices v, u and w with a new vertex z such that N r(z) = N r

Gc−{v,u}(w) and

N b(z) = N b
Gc−{v,w}(u). We remark that N r

Gc−{v,u}(w) and N b
Gc−{v,w}(u) cannot

both be empty at the same time otherwise |E(Gc)| ≥ 3n−5−⌈n+1
2
⌉ > 2n−4,

which is a contradiction in the total number of edges. So by this we remove
at most n − 1 blue edges and ⌈n+1

2
⌉ − 1 red edges from v, n − 3 red edges

from u, n− 3 blue edges from w, and one red and one blue between u and w.
Therefore G′c has at least (n− 2)(n− 3)− n+ 4− ⌈n+1

2
⌉ ≥

(

n−2
2

)

+
(

n−4
2

)

+ 1
edges, i.e., the number of edges required to have a proper Hamiltonian path
in a multigraph on n − 2 vertices. By the inductive hypothesis, G′c has a
proper Hamiltonian path P . Finally, as we have chosen the appropriate edges
to remove at u and w it is easy to extend P to a proper Hamiltonian path for
Gc.

Suppose now that there does not exist two neighbours of v such that
c(vu) = r and c(vw) = b. So we have two possible cases. In the first case v
has one only neighbour w in both colours. It is easy to observe that Gc −{v}
has (n− 1)(n− 2) edges, i.e., it is a rainbow complete multigraph. Therefore,
we have every possible proper Hamiltonian path, in particular, one that starts
at w. Then we easily extend the path to Gc. For the second case, v has
neighbours in just one colour, say b. Observe that for every vertex w 6= v,
w has a red neighbour. Otherwise if there is a vertex w without red neigh-
bours, we have |E(Gc)| ≥ 2n − 3 > 2n − 4, which is a contradiction. Now
suppose first that v has at most n− 2 blue neighbours. Consider a neighbour
w of v and remove all its blue incident edges. Then remove v from Gc and
call this multigraph G′c. In G′c, w is monochromatic in red and G′c has at
least

(

n−1
2

)

+
(

n−3
2

)

+ 1, i.e., the number of edges required to have a proper
Hamiltonian path in a multigraph on n − 1 vertices. Then by the inductive
hypothesis in G′c we obtain a proper Hamiltonian path that starts at w since
it was monochromatic. So we have a proper Hamiltonian path for Gc. Finally
v has n− 1 blue neighbours. If one neighbour w of v has at most n− 3 blue
neighbours, then we proceed exactly as before. Otherwise every vertex w has
n− 2 blue neighbours, i.e., the multigraph Gc −{v} = G′c is complete in blue
and has at least n2 − 4n + 5 edges. By the inductive hypothesis we have a
proper Hamiltonian path in G′c. Now if n − 1 is odd, one of the endpoints
of the path is red and we can trivially add v to the path. If n − 1 is even,
both endpoints have the same colour. If they are red we are done. Otherwise
remove all the blue edges from G′c. This new (red) graph has n − 1 vertices
and at least

(

n−2
2

)

+ 1 edges. Therefore by a theorem in [6], it has a Hamilto-
nian path P . Now since G′c is complete in blue, we can use those blue edges
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along with P to form a proper Hamiltonian P ′ for G′c that starts and ends
with colour red. Finally, we can trivially add v to P ′.

Since we covered all cases, the proof is finished. ✷

Theorem 3.2 Let Gc be a 2-edge-coloured multigraph on n ≥ 14 vertices

coloured with {r, b}. Suppose that for every vertex x in Gc, rd(x) = 2. If

m ≥
(

n

2

)

+
(

n−3
2

)

+ 4, then Gc has a proper Hamiltonian path.

For the extremal example, n ≥ 14 odd, consider a complete blue graph, say
A, on n−3 vertices. Add three new vertices v1, v2, v3 and join them to a same
vertex v in A with blue edges. Finally, superpose the obtained graph with
a complete red graph on n vertices. Although the resulting 2-edge-coloured
multigraph has

(

n

2

)

+
(

n−3
2

)

+3 edges, it has no proper Hamiltonian path since
one of the vertices v1, v2, v3 cannot belong to such a path.

Proof. Let us suppose that Gc does not have a proper Hamiltonian path. We
will show that Gc has more than 3n − 10 edges, i.e., Gc has less than

(

n

2

)

+
(

n−3
2

)

+ 4 edges, contradicting the hypothesis of the theorem. We distinguish
between two cases depending on the parity of n.

Case A: n is even. By Lemma 2.3 Gc has two matchings M r, M b such that
|M r| = n

2
and |M b| ≥ n−2

2
. Take the longest proper paths P = x1y1x2y2 . . . xpyp

and P ′ = x′
1y

′
1x

′
2y

′
2 . . . x

′
p′y

′
p′ compatibles with M r and M b, respectively.

Notice now that if 2p = n or 2p′ = n then we are finished. In addition, if
2p < n− 2 or 2p′ < n− 2, then by Lemma 2.5 there are at least 2n− 4 blue
missing edges and 2n − 8 red ones. This gives a total of 4n − 12 > 3n − 10
missing edges, which is a contradiction. Consequently, in what follows we may
suppose that 2p = 2p′ = n− 2.

Suppose first that there exists a proper cycle C in Gc such that V (C) =
V (P ). Let e be the red edge of M r −C. If there exists a blue edge e′ between
an endpoint of e and C, we can easily obtain a proper Hamiltonian path
considering e, e′ and a segment of C in the appropriate direction. Otherwise
as the multigraph is connected, all edges between the endpoints of e and C
are red. Now as rd(Gc) = 2, there must exist a blue edge e′′ parallel to e and
therefore we can obtain a proper Hamiltonian path just as before but starting
with e′′.

Next suppose that there exists no proper cycle C in Gc such that V (C) =
V (P ). By Lemma 2.5 there are at least 2n− 4 blue missing edges. Consider
now the path P ′ and let v1, w1 be the vertices in Gc − P ′. It is clear that if
there exists a blue edge joining v1 and w1, then by symmetry on the colours
there are at least 2n−4 red missing edges. This gives a total of 4n−8 missing

8



edges, a contradiction. Otherwise, assume that there is no blue edge between
v1 and w1. In this case we will count the red missing edges assuming that we
cannot extend P ′ to a proper Hamiltonian path. If there exists no cycle C ′ in
Gc such that V (C ′) = V (P ′) then by Lemma 2.4 there are 2p′ − 2 = n − 4
red missing edges. By summing up we obtain 3n− 8 > 3n− 10 missing edges,
which is a contradiction. Finally, assume that there exists a proper cycle C ′

in Gc such that V (C ′) = V (P ′). Set C = c1c2 . . . c2p′c1 where c(cici+1) = r for
i = 1, 3, . . . , 2p′−1. If there are three or more red edges between {v1, w1} and
{ci, ci+1}, for some i = 1, 3, . . . , 2p′ − 1, then either the edges v1ci and w1ci+1,
or v1ci+1 and w1ci are red. Suppose v1ci and w1ci+1 are red. In this case,
the path v1cici−1 . . . c1c2p′ . . . ci+1w1 is a proper Hamiltonian one. Otherwise,
if there are not three or more red edges between {v1, w1} and {ci, ci+1}, for
all i = 1, 3, . . . , 2p′ − 1, then there are 2p′ − 2 = n − 4 red missing edges. If
we sum up we obtain a total of 3n − 8 > 3n − 10 missing edges, which is a
contradiction.

Case B: n is odd. By Lemma 2.3 Gc has two matchings M r, M b such that
|M r| = |M b| = n−1

2
. As in Case A, we consider the longest proper paths

P and P ′ compatibles with the matchings M r and M b respectively. Suppose
first that 2p < n− 1 and 2p′ < n− 1. By Lemma 2.5 there are at least 2n− 6
blue missing edges and 2n−6 red ones. We obtain a total of 4n−12 > 3n−10
missing edges, which is a contradiction.

Suppose next 2p = 2p′ = n−1 (the cases where 2p < n−1 and 2p′ = n−1,
or 2p = n− 1 and 2p′ < n− 1 are similar). In the rest of the proof because of
symmetry, we will consider only the path P since the same arguments may be
applied for P ′. In this case we will count the blue missing edges assuming that
we cannot extend P to a proper Hamiltonian path. Now let v be the unique
vertex in Gc − P . It is clear that if there is a proper cycle C in Gc such that
V (C) = V (P ), we can trivially obtain a proper Hamiltonian path since the
multigraph is connected. Then, as there is no proper cycle C in Gc such that
V (C) = V (P ), we have by Lemma 2.4 that there are 2p−2 = n−3 blue missing
edges. If there exists a blue edge between x1 and xi, for some i = 2, . . . , p,
then the blue edge vyi−1 cannot exist, otherwise we would obtain the proper
Hamiltonian path vyi−1 . . . x1xi . . . yp. We can complete the argument in a
similar way if both edges ypyi and vxi+1, i = 1, . . . , p − 1 exist in Gc and are
on colour blue. Note that since there is no proper cycle C in Gc such that
V (C) = V (P ), we cannot have the blue edges x1xi and ypyi−1, i = 2, . . . , p
at the same time. Therefore there are p − 1 = n−3

2
blue missing edges. If we

make the sum and multiply it by two (since the same number of red missing
edges is obtained with P ′), we conclude that there are 3n − 9 missing edges,

9



which is a contradiction.

Since we covered all the cases, the theorem is proved. ✷

4 c-edge-coloured multigraphs, c ≥ 3

In this section we study the existence of proper Hamiltonian paths in c-edge-
coloured multigraphs, for c ≥ 3. We present three main results that involve:
(1) the total number of edges, (2) the total number of edges and the connec-
tivity of the multigraph, (3) the total number of edges and the rainbow degree.
All results are tight. First, we present a key result that reduces the case c ≥ 4
just to the case c = 3.

Lemma 4.1 Let Gc be a c-edge-coloured connected multigraph on n vertices,

c ≥ 4 and m ≥ c f(n) + 1 edges. There exists one colour cj such that if we

colour its edges with another used colour and we delete parallel edges with the

same colour, then the resulting (c − 1)-edge-coloured multigraph is connected

and has m′ ≥ (c−1) f(n)+1 edges, such that if Gc−1 has a proper Hamiltonian

path then Gc has one too. Moreover, if rd(Gc) = k, then rd(Gc−1) = k− 1 for

1 ≤ k ≤ c.

Proof. Let ci denote the colour i, for i = 1, . . . , c, in Gc, and denote by |ci|
the number of edges with colour i. Let cj be the colour with the less number
of edges. Colour the edges on colour cj with another used colour, say cl,
and delete (if necessary) parallel edges with that colour. Call this multigraph
Gc−1. By this, we delete at most |cj| edges. It is clear that this multigraph
is connected since we deleted just parallel edges. Also if Gc−1 has a proper
Hamiltonian path, then this path is also proper Hamiltonian in Gc but perhaps
with some edges on colour cj (in the case that they have been recoloured with
cl). Observe also that if rd(Gc) = k then rd(Gc−1) = k − 1 since only the
colour cj disappeared. We will show now that m′ ≥ (c− 1) f(n)+1. We have
two cases. First, if |cj| > f(n), then clearly m′ ≥ (c− 1) f(n) + 1 edges since
for all i, |ci| > f(n). For the second case, we have that |cj| ≤ f(n). Now,
m =

∑c

i=1 |ci| ≥ c f(n) + 1 and therefore
∑c

i=1,i 6=j |ci| ≥ c f(n) − |cj| + 1 =
(c − 1) f(n) + f(n) − |cj| + 1. This last expression is greater than or equal
to (c − 1) f(n) + 1 since f(n) − |cj| ≥ 0. Finally, we have that Gc−1 has
m′ ≥ (c− 1) f(n) + 1 edges as desired. ✷

Theorem 4.2 Let Gc be a c-edge-coloured multigraph on n vertices, n ≥ 2
and c ≥ 3. If m ≥ c

(

n−1
2

)

+ 1, then Gc has a proper Hamiltonian path.

For the extremal graph consider a rainbow complete multigraph on n− 1
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vertices with c colours and add a new isolated vertex x. Although the resulting
multigraph has c

(

n−1
2

)

edges, it contains no proper Hamiltonian path since it
is not connected.

Proof. By Lemma 4.1 we can assume that c = 3 and m ≥ 3
(

n−1
2

)

+ 1.
Furthermore, cases n ≤ 7 can be checked by exhaustive methods. Assume
n ≥ 8. Since there exists one colour, say red, such that the number of red
edges are at least

(

n−1
2

)

+1, then by a theorem in [6] there is a Hamiltonian red
path and therefore a perfect or almost perfect matching M r. Take the longest
proper path P = x1y1x2y2 . . . xpyp compatible with M r. As m ≥ 3

(

n−1
2

)

+ 1,

|E(Gc)| ≤ 3n − 4. Now we will distinguish between two cases depending on
the parity of n.

Case A: n even. Clearly |M r| = n
2
. By contradiction suppose that 2p < n

otherwise we are finished. Now in both cases, if there exists a proper cycle
C in Gc such that V (P ) = V (C) or if it does not, we have by Lemma 2.5 a
contradiction with the number of edges of Gc for n ≥ 8.

Case B: n odd. Clearly |M r| = n−1
2
. First if 2p < n − 1 we obtain a

contradiction in both cases exactly as before by Lemma 2.5. Second if 2p =
n−1 and there is a proper cycle C in Gc such that V (P ) = V (C) we can obtain
a proper Hamiltonian path by taking any edge between the unique vertex
outside C and C and then following the cycle in the appropriate direction.
Finally suppose that 2p = n − 1 and there is no proper cycle C in Gc such
that V (P ) = V (C). Let v be the unique vertex of Gc − P . We have the
following cases depending on the degree and neighbours of v.

Subcase B1: All edges incident to v have the same colour, say red.

Suppose first that d(v) ≤ n− 2. Consider the multigraph Gc − {v} = G′c

and delete from a neighbour w of v all the edges in two colours in order to
have w monochromatic in any colour but red. Observe that we can always do
this since it is impossible to have two monochromatic vertices. By this, we
delete at most 3n − 6 edges. We can see that the multigraph G′c on n − 1
vertices has at least 3

(

n−2
2

)

+1 edges. Then by the even case, we have a proper
Hamiltonian path P ′ in G′c and since w is monochromatic we easily add v to
P ′.

Suppose finally that d(v) = n−1. Therefore the multigraph Gc−{v} = G′c

on n− 1 vertices has at least 3
(

n−1
2

)

+ 1− (n− 1) ≥ 3
(

n−2
2

)

+ 1 edges and it
has a proper Hamiltonian path P ′. Now if the path either starts or ends with
a colour different from red, we are done. If not, both of them are red. Now,
if we can take any parallel edge either to the start or to the end of the path
without losing the property of being properly coloured we can, once again,
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easily add v to the path. Otherwise the degree in some colour of the first (or
last) vertex of the path is at most n − 3. Thus we are in the same case as
before.

Subcase B2: There exist two distinct edges vx and vy such that c(vx) = c1 6=
c2 = c(vy).

Assume first that x = y. This case is similar to the previous one just taking
the multigraph Gc−{v} and deleting from x the edges in the appropriate two
colours in order to have it monochromatic.

Assume next that x 6= y. We will prove the result by induction. If we
cannot attach v to the path P we have four missing edges in colours different
from red between v and the vertices x1, yp. We also have at most two edges
different from red between v and the endpoints of the edges yixi+1 of the path.
Therefore there are n − 3 missing edges. Adding up all this, we conclude
that the degree of v in colours different from red is at most n + 1. Now we
contract v, x, y to a new vertex v′ such that N c1(v′) = N c1

Gc−{v,x}(y), N
c2(v′) =

N c2
Gc−{v,y}(x) and N c3(v′) = N c3

Gc−{v,y}(x) ∩ N c3
Gc−{v,x}(y). By this we delete at

most 5n− 6 edges. We can see that this new 3-edge-coloured multigraph G′c

on n − 2 vertices has at least 3
(

n−1
2

)

+ 1 − (5n − 6) ≥ 3
(

n−3
2

)

+ 1 edges, for
n ≥ 9. Thus, by the inductive hypothesis we have a proper Hamiltonian path
P ′ in G′c. Because of the way that we have chosen the edges to delete at x
and y, it is easy to obtain from P ′ a proper Hamiltonian path for Gc.

Since we covered all the cases, the theorem is proved. ✷

Notice that in the above theorem there is no condition guaranteeing the
connectivity of the underlying graph. The next result will add this condition.

Theorem 4.3 Let Gc be a connected c-edge-coloured multigraph on n vertices,

n ≥ 9 and c ≥ 3. If m ≥ c
(

n−2
2

)

+ n, then Gc has a proper Hamiltonian path.

For the extremal example, n ≥ 9, consider a rainbow complete multigraph
on n− 2 vertices with c colours and add two new vertices x and y. Now add
the edge xy and all edges between y and the complete multigraph, all on the
same colour. The resulting multigraph, although it has c

(

n−2
2

)

+ n− 1 edges,
contains no proper Hamiltonian path, as x cannot belong to such a path.

Proof. By Lemma 4.1 it is enough to prove the theorem for c = 3. The proof
is by induction on n. For n = 9, 10 it can be shown by case analysis that
the result holds. Now we have two cases depending on whether Gc contains a
monochromatic vertex or not.

Case A: There exists a monochromatic vertex x ∈ Gc. Let y be a neighbour
of x. If y is also monochromatic then the multigraph Gc − {x, y} has n − 2
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vertices and at least 3
(

n−2
2

)

− n+ 3 edges, i.e., it is almost rainbow complete
and therefore it has a proper Hamiltonian cycle. Then it is easy to add x and
y to the cycle to obtain a proper Hamiltonian path in Gc. Otherwise we would
have a contradiction in the total number of edges. Suppose then that y is not
monochromatic and c(xy) = b. Let us contract x and y to a new vertex z
such that N b(z) = N r(z) = ∅ and N g(z) = N g(y) (or N b(z) = N g(z) = ∅ and
N r(z) = N r(y)). Observe that if the resulting multigraph on n− 1 vertices is
connected (we will show this later) and we delete at most 3n − 8 edges then
the induction hypothesis would hold. Therefore it would contain a proper
Hamiltonian path with z as an endpoint (z is monochromatic).

Let us now consider db(x). Observe that if db(x) ≤ n − 4, we delete at
most 3n− 8 edges from x and any selected neighbour y of x and we are done.
Further, from a theorem in [1], if di(z) ≥

⌈

n
2

⌉

∀z ∈ Gc − {x}, i ∈ {r, g, b},
then Gc − {x} has a proper Hamiltonian cycle. This would imply a proper
Hamiltonian path in G. Thus, we may assume that there exists some vertex
w ∈ Gc − {x} such that di(w) <

⌈

n
2

⌉

for some i ∈ {r, g, b}. We have the
remaining cases:

Subcase A1: db(x) = n − 1. Observe that w ∈ N b(x). In this case, the
contraction process deletes n − 1 edges from x, and at most n + n

2
− 3 from

w, which is much less than 3n− 8 for n > 10.

Subcase A2: db(x) = n − 2. If there is a vertex y adjacent to x such
that dr,b

Gc−{x}(y) ≤ 2n − 6 or db,g
Gc−{x}(y) ≤ 2n − 6 then we just take x and

y for the contraction process. Otherwise for all y adjacent to x we have
dr,b
Gc−{x}(y) ≥ 2n − 5 and db,g

Gc−{x}(y) ≥ 2n − 5. Therefore the multigraph

Gc − {x} is almost rainbow complete and has a proper Hamiltonian cycle.
Finally, we can trivially add x to the cycle to obtain a proper Hamiltonian
path for Gc.

Subcase A3: db(x) = n− 3. This case is similar to the last one but finding a
vertex y adjacent to x such that dr,b

Gc−{x}(y) ≤ 2n− 5 or db,g
Gc−{x}(y) ≤ 2n− 5.

Otherwise the multigraph Gc − {x} is rainbow complete and we easily obtain
a proper Hamiltonian path.

Case B: There is no monochromatic vertex in Gc.

First suppose that there exists a vertex x such that |N(x)| = 1. Pick x
and its unique neighbour y for the contraction. We delete at most three edges
at x and 2n− 4 at y, which guarantees the induction hypothesis and leaves y
monochromatic.

In what follows we suppose that |N(x)| ≥ 2 for all x ∈ Gc. Consider a
vertex x and y, z ∈ N(x). Suppose that c(xy) = b and c(xz) = r 6= c(xy). We
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will contract x, y and z to a new vertex s as in Theorem 4.2. We can delete at
most 6n − 19 edges, which is necessary for the induction hypothesis to hold.
Since we delete at most 3n− 6 edges incident to y and z in Gc − {x}, we will
show that either the degree of x is at most 3n − 13 or there exist x,y,z such
that number of deleted edges is less than or equal to 6n− 19.

Let Ei be the set of edges in colour i and suppose that the colour b max-
imizes |Ei|. The monochromatic subgraph in colour b has at least mb ≥
(

n−2
2

)

+ ⌈n
3
⌉ edges. If this subgraph is connected, then by Lemma 2.1 there

is a perfect matching for n even and an almost perfect matching for n odd.
Otherwise there is a matching of size n−2

2
for n even and n−1

2
if n is odd. Let

M b be a maximum matching in Eb.

Suppose n is even (for n odd, similar arguments can be used). Let P =
x1y1x2y2 . . . xpyp be the longest proper path compatible with M b. Let us
suppose that there is no proper cycle C such that V (C) = V (P ) (the case
where a proper cycle exists is similar and even easier). By Lemma 2.5 we can
check that |P | ≥ n− 4. Consider the following cases:

(i) |M b| = n
2
. If P is Hamiltonian we are done. Otherwise there is at least

one edge in M b − P . Clearly there are no edges in colour r and g from
the endpoints of P to the edges in M b − P . Further, for each each edge
in M b − P there are at most four edges between their endpoints and the
endpoints of the edges yixi+1, otherwise we would obtain a longer path.
Therefore taking the vertex x outside P with minimum degree, we have
dr,g(x) ≤ n, for |P | = n− 4, and dr,g(x) ≤ n− 2, for |P | = n− 2. In both
cases, if we consider db(x) = n− 1 we get d(x) ≤ 3n− 13.

(ii) |M b| = n−2
2
. For |P | = n − 4 the proof is similar as the previous case.

Suppose then that |P | = n− 2. Let v, w be the unmatched vertices. We
try to add these vertices to the path either at the endpoints or between
the vertices yi and xi+1. Suppose first that we cannot add any of them.
Then dr,g(v) ≤ n − 2. Summing this up with at most n − 2 blue edges,
we obtain d(v) ≤ 2n − 4 < 3n − 13 and we take v for the contraction.
Suppose last that we can add v but we cannot add w. If v was added at
one endpoint of the path we obtain that d(w) ≤ 2n − 5 < 3n − 13. If v
was added in-between the path we have d(w) ≤ 2n − 6 < 3n − 13. In
both cases we take w for the contraction.

Since we covered all cases, we can always find three appropriate vertices to
make the contraction process. We now check the connectivity of the resulting
multigraph after the contraction of two or three vertices.

Connectivity: Assume that we contract two vertices x, y to a vertex s and
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the multigraph is disconnected. It can be easily shown that the graph has two
components with one vertex and n−2 vertices respectively. Observe first that
the isolated vertex cannot be s unless x and y are both monochromatic, but
this case has been solved independently. Suppose now that a vertex z 6= s is
the isolated vertex.

Suppose first the case where x is monochromatic and consider the orig-
inal multigraph. There are at least 2(n − 1) missing edges at x since it is
monochromatic and 3(n− 3) missing edges at z since z is isolated in the con-
tracted multigraph. Further, there are two more missing edges between y and
z since we have the choice of which colours to delete at y. This gives us a total
of 5n − 9 = |E(Gc)| missing edges. Therefore, if there is one more missing
edge, we would have a contradiction with the total number of edges. Suppose
now that there is another vertex y′ 6= y adjacent to x and take x,y′ for the
contraction. If the contracted multigraph is connected we are done. Other-
wise we have more new missing edges and therefore a contradiction. Finally
if there is no other vertex than y adjacent to x we obtain more missing edges
at x and again a contradiction.

Suppose last that x is not monochromatic. In this case x has y as its
unique neighbour. So, there are 3(n − 2) missing edges at x and 3(n − 3)
missing edges at z since z is isolated in the contracted multigraph. This gives
us a total of 6n− 15 missing edges and this is greater than |E(Gc)| = 5n− 9
which is a contradiction.

Assume now that we contract three vertices x, y, z where c(xy) = b and
c(xz) = r to a vertex s and the multigraph is disconnected. This multigraph
has exactly two components with one vertex u and n− 3 vertices respectively.

Suppose first that u 6= s. In the original multigraph u must have at least
two different neighbours in two different colours among the vertices x, y, z.
Otherwise we would be in the case where either u is monochromatic or u has
one unique neighbour. Let y′ and z′ be two neighbours of u among x, y, z such
that c(uy′) 6= c(uz′). Now we contract the vertices u, y′, z′ as before. Observe
that at u we delete only six edges since u has only x, y, z as neighbours, and
the red edge uy, the blue edge uz and at least one green edge among uy, uz
are missing. At y′ and z′ we delete 3(n − 3) + 3 edges as usual. With this
contraction we delete in total 3n edges and therefore the contracted multigraph
on n− 2 vertices has at least 3

(

n−3
2

)

+ n− 9 edges which guarantees not only
the inductive hypothesis but also the connectivity for n ≥ 10.

Suppose last that u = s. Then there are no red edges between y and the
multigraph Gc−{x, y, z} and no blue edges between z and Gc−{x, y, z}. Now,
since we are not in the previous cases, y has at least two different neighbours
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y′ and z′ such that c(yy′) 6= c(yz′). Then we contract the vertices y, y′, z′.
In the contraction process we delete at most 2(n − 3) edges between y and
Gc − {x, y, z} (since there are no red edges), six between y and the vertices
x, z, and 3(n− 3) + 3 at y′ and z′. We obtain in total at most 5n− 6 deleted
edges. Now, this new contracted multigraph has n − 2 vertices and at least
3
(

n−3
2

)

− n − 3 edges. Clearly, if the multigraph is connected we are done.
Otherwise, as in the situation before, it has two components with one vertex
and n− 3 vertices respectively. We can suppose that the contracted vertex is
the isolated one. Observe now that the component on n − 3 vertices has at
least 3

(

n−3
2

)

−n−3, therefore it is almost rainbow complete and it has a proper
Hamiltonian cycle. Finally, in the original multigraph it is easy to add the
vertices y, y′, z′ to the proper cycle in order to obtain a proper Hamiltonian
path.

Now as the connectivity is proved the theorem holds. ✷

Theorem 4.4 Let Gc be a c-edge-coloured multigraph on n vertices, n ≥ 11
and c ≥ 3. Assume that for every vertex x of Gc, rd(x) = c. If m ≥ c

(

n−2
2

)

+
2c+ 1, then Gc has a proper Hamiltonian path.

For the extremal graphs, n ≥ 11, consider a rainbow complete multigraph,
say A, on n−2 vertices. Add two new vertices v1, v2 and join them to a vertex
v of A with all possible colours. The resulting c-edge-coloured multigraph has
c
(

n−2
2

)

+ 2c edges and clearly has no proper Hamiltonian path.

Proof. By Lemma 4.1 it is enough to prove the theorem for c = 3. As
m ≥ 3

(

n−2
2

)

+ 7 then |E(Gc)| ≤ 6n − 16. The proof will be done either by
construction of a proper Hamiltonian path or using Theorem 4.3. We will do
this by contracting two or three vertices depending on if there exists a vertex
x in Gc such that |N r,g,b(x)| = 1 or not.

If there exists a vertex x ∈ Gc such that |N(x)| = 1 we proceed as usual
and we contract x and its unique neighbour y to a new vertex s in order to
leave s monochromatic. We can check that we delete at most 2n−1 edges and
therefore we can apply Theorem 4.3. Observe that the resulting multigraph
on n − 1 vertices is connected since as rd(x) = 3, we can choose at y which
two colours to delete.

Suppose next that there is no vertex x ∈ Gc such that |N(x)| = 1. Let us
suppose that there are three vertices x,y,z such that c(xy) = b and c(xz) = r.
Then, we contract x,y,z to a new vertex s as in Theorem 4.2. In this case
only 5n− 12 edges can be deleted to apply Theorem 4.3. Therefore, we need
to find a vertex x such that d(x) ≤ 2n− 6.
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Suppose that without losing generality that |Eb| ≥ |Er| ≥ |Eg|, then
|Eb| ≥

(

n−2
2

)

+ 3. Since the subgraph in colour b is connected because of
the rainbow degree of the vertices, we have by Lemma 2.1 that there is a
matching M b such that |M b| = n

2
for n even and |M b| = n−1

2
for n odd. Let

P = x1y1x2y2 . . . xpyp be the longest proper path compatible with M b.

Suppose now that n is even (the case n odd is similar, refer to [8] for
more details). If there is a proper cycle C such that V (C) = V (P ) the result
easily follows. Assume therefore that there is no proper cycle C such that
V (C) = V (P ). By Lemma 2.5 we can check that |P | ≥ n − 4. Let x be
the vertex in M b − P with minimum degree and let y be its adjacent vertex
in the matching. Clearly there cannot be edges in colours r and g between
M b − P and the endpoints of P . Additionally, there can be at most 4 edges
in colours r and g from each edge in M b − P and the edges yi−1xi in P . We
can conclude that there are at most 2p− 2 edges in colour r and g between x
and the vertices in P .

Suppose now that there is one parallel edge to the blue edge xy in colour
r or g. Using the edges xxi, yyi or yxi, xyi in colour b we can add the edge
xy in colour r or g into P . Since this would contradict our hypothesis we can
conclude that there are two missing edges in colour b from xy to each edge
xiyi in P . Now since there are p edges xiyi we conclude that the vertex x has
db(x) ≤ (n − p − 1). In total we have d(x) ≤ 3n − 3p − 5. For |P | = n − 2,
this is less than or equal to 2n− 6 and we can make the contraction with it.

Now if |P | = n − 2 and there are no parallel edges in r and g at xy,
we have that d(x) ≤ 2n − 5 and d(y) ≤ 2n − 5. We can now use one of
these vertices unless both inequalities become equalities. In this case we try
to replace the edges xiyi in P by xixyi and xjyyj, i 6= j. Suppose that
we have the edges xxi in colours r and g, xyi in colour b, yxj in colours
r and g, and yyj in colour b. Then we have a proper Hamiltonian path
P ′ = x1y1 . . . xixyixi+1 . . . xjyyj . . . xpyp. Otherwise at least one of those edges
is missing and therefore either d(x) ≤ 2n− 6 or d(y) ≤ 2n− 6 as desired.

If |P | = n − 4 by Lemma 2.5 there are 6n − 20 missing edges in colours
r and g. Now, if there is one parallel edge to the blue edge xy in colour r or
g, similar to the situation before, there would be p = n−4

2
blue missing edges

from xy to each edge xiyi in P . Therefore since 6n− 20 + n−4
2

> 6n− 16, we
obtain a contradiction in the total number of edges.

Finally if |P | = n− 4 with no parallel edges in colours r and g to the blue
edge xy and to the other edge of the matching outside the path. We obtain
four more missing edges in colours r and g and therefore 6n − 16. Observe
now that if we can replace the edges xy and the other edge of the matching
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outside P , say uv, in M b by xu and yv, then there are four missing parallel
edges in colours r and g, obtaining 6n − 12. A contradiction. Otherwise if
not, there are two more missing edges obtaining 6n− 14 edges, which is again
a contradiction.

Since all cases were covered, there always exists a vertex x such that d(x) ≤
2n−6 and the contraction can be done. Therefore by Theorem 4.3 we obtain a
proper Hamiltonian path in this new multigraph. Then, it is simple to extend
this path to a proper Hamiltonian one in the initial multigraph because of the
choice of the edges to delete at the contracted vertices.

Connectivity: Suppose we contract three vertices x, y, z, such that c(xy) = b,
c(xz) = r to a vertex s and the multigraph is disconnected. This multigraph
has exactly two components with one vertex u and n− 3 vertices respectively.

First, if u 6= s, we proceed exactly as in the equivalent case in Theorem 4.3
and we find three other vertices u, y′, z′ to contract to a vertex s′, just deleting
3n edges. This new contracted multigraph on n − 2 vertices has at least
3
(

n−3
2

)

− 2 edges. Then, if it is connected we are done, otherwise there is a
component with one vertex u′ and another one on n− 3 vertices with at least
3
(

n−3
2

)

−2 edges, i.e., almost rainbow complete. Therefore, we obtain a proper
Hamiltonian cycle and then we can easily add either the isolated vertex u′ (if
u′ 6= s′) or the three u, y′, z′ (if u′ = s′) vertices to the cycle to obtain a proper
Hamiltonian path for the initial multigraph.

Finally, if u = s we will consider two cases. Suppose first that x has at
most one neighbour with parallel edges. Therefore, d(x) ≤ n. Now in this
case, the contraction process deletes 4n − 6 edges instead of 5n − 12. We
have then that the contracted multigraph on n − 2 vertices is disconnected
and the component on n− 3 vertices has at least 3

(

n−3
2

)

− n + 4 edges. This
component is almost rainbow complete and as before we can obtain a proper
Hamiltonian cycle. This allows us to easily add x, y, z in order to obtain a
proper Hamiltonian path in the initial multigraph. Suppose last that x has
two different neigbors y′ and z′ with parallel edges. Consider the next two
cases:

Assume first that the parallel edges are on the same two colours, that is,
c(xy′) = c(xz′) = {b, r} (cases with other two colours are similar). Now,
suppose that in both possible contractions the multigraph is disconnected
and the contracted vertex is always the isolated one. We can observe that
the initial multigraph has n + 3 missing edges at x (since d(x) ≤ 2n − 6),
n− 3 green edges and 4(n− 3) blue and red edges at y′ and z′ (since in both
contractions the multigraph is disconnected). By this we obtain a total of
6n− 12 > 6n− 16 missing edges, which is a contradiction.
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Thus, assume that the parallel edges are not on the same two colours,
that is, c(xy′) = {b, r} and c(xz′) = {b, g} (cases with other combinations are
similar). Now since we are not in the previous case we do not have either the
green edge xy′ or the red one xz′. Try any of the three possible contractions.
Then, if the multigraph is disconnected and the contracted vertex is always the
isolated one, we can observe that there can exist just the red edges between y′

and Gc − {x, y′, z′}, and the green edges between z′ and Gc − {x, y′, z′}. Now
as rd(Gc) = 3 there must exist the green edge y′z′ and the red edge z′y′. Since
we are not in the previous case, the blue edge y′z′ is not present. We find
us in the situation that c(xy′) = {b, r}, c(xz′) = {b, g} and c(y′z′) = {r, g}.
Now, we have nine different contractions to try, three for each triplet xy′z′,
y′xz′ and z′xy′. If in all of them we are in this same situation (the contracted
multigraph is disconnected and the isolated vertex is the contracted one) we
can conclude that in the original multigraph there can exist just the blue edges
between x and Gc − {x, y′, z′}, the red edges between y′ and Gc − {x, y′, z′},
and the green edges between z′ and Gc−{x, y′, z′}, therefore 6(n− 3) missing
ones. Finally, adding the three missing edges xy′, xz′ and y′z′ in green, red
and blue respectively, we obtain 6n−15 missing edges which is a contradiction.

Now as the connectivity is proved the theorem holds. ✷

5 Summary and remarks

In this work, we studied the existence of proper Hamiltonian paths, in edge-
coloured multigraphs depending on the number of edges, the rainbow degree
and the connectivity. Here, the notable fact is that the proofs were sometimes
long and tedious despite the lower bounds for the edges in the considered
multigraphs were really high. It should be also interesting to study simi-
lar conditions guaranteeing other patterns than proper paths, as for instance
proper cycles, proper trees, etc.
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