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Abstract

A c-edge-colored multigraph has each edge colored with one of the c available colors
and no two parallel edges have the same color. A proper hamiltonian path is a
path containing all the vertices of the multigraph such that no two adjacent edges
have the same color. In this work we establish sufficient conditions for a multigraph
to have a proper hamiltonian path, depending on several parameters such as the
number of edges, the rainbow degree, etc.
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1 Introduction

The study of problems modeled by edge-colored graphs gave place to impor-
tant developments over the last years. For instance, the research on long
colored cycles and paths for edge-colored graphs has given interesting results.
Refer to [3] for a survey on related results. From the point of view of applica-
bility, problems arising in molecular biology are often modeled using colored
graphs, i.e., graphs with colored edges and/or vertices [9]. Given such an edge-
colored graph, original problems translate to extracting subgraphs colored in
a specified pattern. The most natural pattern in such a context is that of a
proper coloring, i.e., adjacent edges have different colors.

Clearly, the proper hamiltonian path and proper hamiltonian cycle prob-
lems are NP -complete in the general case. It is polynomial to find a proper
hamiltonian path in c-edge-colored complete graphs, c ≥ 2 [8]. It is also
polynomial to find a proper hamiltonian cycle in 2-edge-colored complete
graphs [4]. It is still open to determine the computational complexity for
proper hamiltonian cycles, c ≥ 3 [5]. Many other partial results for edge-
colored multigraphs can be found in the survey by Bang-Jensen and Gutin [2].

In this work we give sufficient conditions involving various parameters as
the number of edges, rainbow degree, etc, in order to guaranty the existence
of proper hamiltonian paths in edge-colored multigraphs where parallel edges
with same colors are not allowed. We remark that this problem arises naturally
since it has no sense to study such conditions just for simple edge-colored
graphs. Results involving only degree conditions can be found in [1].

Formally, let Ic = {1, 2, · · · , c} be a set of c ≥ 2 colors. Throughout this
paper, Gc denotes a c-edge-colored multigraph such that, each edge is colored
with one color in Ic and no two parallel edges joining the same pair of vertices
have the same color. Let n be the number of vertices and m be the number of
edges of Gc. If H is a subgraph of Gc, then N i

H(x) denotes the set of vertices
of H adjacent to x with an edge of color i. Whenever H is isomorphic to
Gc, we write N i(x) instead of N i

Gc(x). The colored i-degree of a vertex x,
denoted by di(x), is the cardinality of N i(x). The rainbow degree of a vertex
x, denoted by rd(x), is the number of different colors on the edges incident to
x. The rainbow degree of a multigraph Gc, denoted by rd(Gc), is the minimum
rainbow degree among its vertices. An edge with endpoints x and y is denoted
by xy, and its color by c(xy). A rainbow complete multigraph is the one having
all possible colored edges between any pair of vertices (its number of edges is

therefore cn(n−1)
2

). The complement of a multigraph Gc, denoted by Gc, is a

multigraph with the same vertices as Gc and an edge vw ∈ E(Gc) if and only

2



if vw /∈ E(Gc). A subgraph of Gc is said to be properly edge-colored, if any
two adjacent edges in this subgraph differ in color. A hamiltonian path (cycle)
is a path (cycle) containing all vertices of the multigraph. A path (cycle) is
said to be compatible with a given matching M if the edges of the path (cycle)
are alternatively in M and not in M . All multigraphs are assumed to be
connected.

We will use two families of multigraphs without proper hamiltonian paths.
First, let H2

k,k+3 denote a 2-edge-colored multigraph on 2k+3 vertices, k ≥ 1,
defined as follows. Consider a complete red graph on k vertices and join it
with red edges to an independent set on k + 3 vertices. Finally, superpose
a complete blue graph on 2k + 3 vertices. For the second family, let Hc

k,k+2

denote a c-edge-colored multigraph on 2k + 2 vertices, k ≥ 1 and c ≥ 3.
Consider a rainbow complete graph on k vertices and join it with edges of all
possible colors to an independent set on k + 2 vertices.

This paper is organized as follows: In Section 2 we present some prelim-
inary results that will be useful for the rest of the paper. In Section 3 we
study proper hamiltonian paths in 2-edge-colored multigraphs. In Section 4
we study proper hamiltonian paths in c-edge-colored multigraphs, for c ≥ 3.
We remark that this division is because of proper hamiltonian paths in 2-
edge-colored multigraphs are just alternating paths in 2 colors, therefore the
results are different of those for c ≥ 3 colors. Finally, in Section 5 we present
the conclusions.

2 Preliminary results

Lemma 2.1 Let G be a connected non-colored simple graph on n vertices,

n ≥ 9. If m ≥ (n−2)(n−3)
2

+ 3, then G has a matching M of size |M | = ⌊n
2
⌋.

Proof. By a theorem in [7], a 2-connected graph on n ≥ 10 vertices and

m ≥ (n−2)(n−3)
2

+ 5 edges, has a hamiltonian cycle. So, if we add a new
vertex v and we join it to all the vertices of G, we have that G + {v} has

m ≥ (n−2)(n−3)
2

+ 3 + n = (n−1)(n−2)
2

+ 5 edges. Therefore, G + {v} has a
hamiltonian cycle, i.e., G has a hamiltonian path and this implies that there
exists a matching M in G of size |M | = ⌊n

2
⌋. 2

Lemma 2.2 ([6]) Let G be a simple non-colored graph on n ≥ 14 vertices.

If m ≥ (n−3)(n−4)
2

+4 and for every vertex x, d(x) ≥ 1, then G has a matching

M of size |M | ≥ ⌈n−2
2
⌉.
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Lemma 2.3 Let Gc be a 2-edge-colored multigraph on n ≥ 14 vertices. Sup-

pose that for every vertex x in Gc, rd(x) = 2. If m ≥ (n− 3)(n− 4)+ 3n− 2,
then Gc has two matchings M r and M b on colors, say red and blue respectively,

such that |M r| = ⌊n
2
⌋ and |M b| ≥ ⌈n−2

2
⌉.

Proof. Let us denote Er(Gc) and Eb(Gc) the set of edges colored in red and
blue, of sizes |Er(Gc)| = mr and |Eb(Gc)| = mb, respectively. Observe that,
as for every vertex x in Gc, rd(x) = 2, we have that di(x) ≥ 1 for i ∈ {r, b}.

Observe also that mi ≥ (n−3)(n−4)
2

+ 4 for i ∈ {r, b}, since this threshold is
tight when the multigraph is complete on one of the colors.

Let us see the case when n is odd. By Lemma 2.2, there exist two matchings
M r and M b, each one of size n−1

2
, so the result follows straightforward.

Let us see now the case when n is even. Then, again by Lemma 2.2, there
exist two matchings, M r and M b, each one of size at least n−2

2
. We shall prove

the result by contradiction. Let us consider the monochromatic subgraphs
in color r and b respectively, and suppose that |M r| = |M b| = n−2

2
. Let

U = {u1, u2} denote the independent set of unmatched vertices in M r. The
vertices u1 and u2 are connected to the edges in M r. We claim that there exist
two distinct vertices v1, v2 in V (G) − {u1, u2} such that u1v1, u2v2 ∈ Er(Gc).
Otherwise, if N r ({u1, u2}) = v1, this vertex is the extremity of some edge
v1w1 in M r and then we distinguish two cases. First, if N r (w1) = v1, we have
three distinct vertices of degree one which leads us to a contradiction with the
total number of edges. Second, there exists w2 ∈ N r (w1)− {v1} and v2, such
that v2w2 ∈ M r. Then we can replace {v1w1, v2w2} by {u1v1, w1w2}. After
this permutation, we have a new matching on same size but u1 is replaced
by v2. So, as we claimed, there always exist two distinct vertices v1, v2 in
V (G) − {u1, u2} such that u1v1, u2v2 ∈ Er(Gc) (u2 and v2 are those vertices
in the case we have just seen).

Now, the edge v1v2 is not in M r, since otherwise, we can replace it by
{u1v1, u2v2} and get a larger matching in color r, contradicting thatM r is max-
imum. Consequently, there are two vertices w1 and w2 in V (G)−{u1, u2, v1, v2}
such that v1w1, v2w2 ∈ M r. Observe that there can be at most two edges
connecting the endpoints of any edge in M r to the set {u1, u2}, i.e., there
are at least two missing edges for each edge in M r, in total 2n−2

2
. Similarly,

for w1 and w2, we have same constraints and therefore, this also means two
missing edges for each edge in M r − {v1w1, v2w2}, in total 2n−6

2
. Otherwise,

suppose that there is an edge v3w3 with three edges between its endpoints to
the vertices w1 and w2, so we can replace v1w1 and v2w2 by say w1v3, w2w3,
v1u1 and v2u2 to obtain a perfect matching. Finally, as u1 and u2 are inde-
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pendent, the edge u1u2 is missing. If we sum up these numbers, there are at
least (n− 2) + (n− 6) + 1 = 2n− 7 missing edges in color red.

Same reasoning can be done with the matching M b to obtain 2n− 7 blue
missing edges. So, the total number of missing edges in colors red and blue is
4n− 14. Since the complement of Gc has edge set of size less than or equal to
3n− 10, for n ≥ 6 we have contradiction. and therefore, the result holds. 2

Lemma 2.4 Let Gc, c ≥ 2, be a connected c-edge-colored multigraph. Suppose

that Gc contains a proper path P = x1y1x2y2 . . . xpyp, p ≥ 3, such that each

edge xiyi is red. If Gc does not contain a proper cycle C with vertex set

{x1, y1, x2, y2, . . . , xp, yp}, then there are at least (c− 1)(2p− 2) missing edges

in Gc.

Proof. Let P = x1y1x2y2 . . . xpyp be a proper path, p ≥ 2, such that each
edge xiyi is red. Let blue be any other color different from red.

The blue edge x1yp can not be in Gc, otherwise C = x1y1 . . . xpypx1 is a
proper cycle.

Suppose that the blue edges x1xi are present in Gc, for i = 2, . . . , p. Then,
the blue edges yi−1yp cannot be in Gc, otherwise we have the proper cycle
C = x1xi . . . ypyi−1 . . . x1 that contradicts our hypothesis. Therefore for each
edge yi−1xi in the path, either the blue edge x1xi or the blue edge yi−1yp is
missing. So there are 2p−2

2
blue missing edges.

Now, suppose that the blue edges x1yi are present in Gc, for i = 3, . . . , p−
2. Then, the blue edges xi+1yp cannot be in Gc at same time as xiyi+1,
yi−1xi+2 or yi−1yi+1, xixi+2, otherwise we have the following proper cycles:
x1yixiyi+1xi+1yp . . . xi+2yi−1 . . . x1 or x1yixixi+2 . . . ypxi+1yi+1yi−1 . . . x1. The
minimum in this case corresponds to one missing edge xi+1yp for each edge
yi−1xi in the path, for i = 2, . . . , p− 1. Therefore, there are 2p−6

2
blue missing

edges.

For the moment we have 2p − 3 blue missing edges. To obtain the last
missing edge suppose that the blue edge x2yp is present in Gc. Then, it cannot
be at the same time with x1y2, y1x3 or x1x3, y1y2, otherwise we obtain the
proper cycles C = x1y2 . . . x2yp . . . x3y1x1 or C = x1x3 . . . ypx2 . . . y2y1x1. The
minimum in this case corresponds to one missing edge x2yp. We remark that
the blue edges x2yp, y1y2 and y1x3 were not counted before. The edges x1x3

and x1y2 were supposed to exist, otherwise, to obtain the last missing edge we
consider the symmetric case, i.e., using the blue edge yp−1x1 (if exists).

In total there are 2p−2
2

+ 2p−6
2

+ 2 = (2p− 2) blue missing edges in Gc. As
we have c−1 colors different from red, that gives (c−1)(2p−2) missing edges,
as desired.
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Note that this number of missing edges is the same as in the simplest case,
this is, if all edges different from red x1xi and x1yi, for i = 2, . . . , p are not
present in Gc. 2

Lemma 2.5 Let Gc be a connected c-edge-colored multigraph, c ≥ 2. Let

M be a matching of Gc in one color, say red, of size |M | ≥ ⌈n−2
2
⌉. Let

P = x1y1x2y2 . . . xpyp, p ≥ 3, be a longest proper path compatible with M .

Then, the following holds:

• (1) n is even, |M | = n
2
and 2p < n.

· (1a) If there is no proper cycle C such that V (C) = V (P ), then there are

at least (n − 2 + pn − 2p2)(c − 1) missing edges in Gc different from red

and the minimum value of this function is (2n− 4)(c− 1), for p = n−2
2
.

· (1b) If there is a proper cycle C such that V (C) = V (P ), then there are

at least (2pn− 4p2)(c− 1) missing edges in Gc different from red and the

minimum value of this function is (2n− 4)(c− 1), for p = n−2
2
.

• (2) n is odd, |M | = n−1
2

and 2p < n− 1.
· (2a) If there is no proper cycle C such that V (C) = V (P ), then there are

at least (n−3−p+pn−2p2)(c−1) missing edges in Gc different from red

and the minimum value of this function is (2n− 6)(c− 1), for p = n−3
2
.

· (2b) If there is a proper cycle C such that V (C) = V (P ), then there are

at least (2pn− 2p− 4p2)(c− 1) missing edges in Gc different from red and

the minimum value of this function is (2n− 6)(c− 1), for p = n−3
2
.

• (3) n is even, |M | = n−2
2

and 2p < n− 2.
· (3a) If there is no proper cycle C such that V (C) = V (P ), then there

are at least (n − 4 − 2p + pn − 2p2)(c − 1) missing edges in Gc different

from red and the minimum value of this function is (2n − 8)(c − 1), for
p = n−4

2
.

· (3b) If there is a proper cycle C such that V (C) = V (P ), then there are

at least (2pn− 4p− 4p2)(c− 1) missing edges in Gc different from red and

the minimum value of this function is (2n− 8)(c− 1), for p = n−4
2
.

Proof. Before starting the proof, we remark that the edges x1y1 and xpyp are
of color red. Otherwise, we can easily extend the path by adding an edge of
the matching to P .

Suppose first that n is even and 2p < n. Since M has size n
2
there are

n−2p
2

red edges outside P . Let us denote these edges by ei for i = 1, . . . , n−2p
2

.
Suppose there is no proper C cycle such that V (C) = V (P ). Let blue denote
any other color different from red. By Lemma 2.4 there are (2p − 2) blue
missing edges. As the path is maximum, we cannot extend P having an edge
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ei neither at the beginning nor at the end of it, then there are no blue edges
between the vertices x1, yp and the edges ei. Therefore, there are 4n−2p

2
blue

missing edges. Finally, As we cannot add any edge ei in-between the path,
then there at most 2 blue edges between the edges ei and the edges yixi+1,
i = 1, . . . , p−1. So, there are 2n−2p

2
2p−2
2

blue missing edges different from red.
Adding up and simplifying all these numbers and having c− 1 colors different
from red, we arrive that there are (n − 2 + pn − 2p2)(c − 1) missing edges
in Gc different from red. If we search the minimum value of this function we
arrive to (2n − 4)(c − 1) for p = n−2

2
and case (1a) holds. Now if there is a

proper cycle C such that V (C) = V (P ) then there cannot exist any edge at
all different from red between all vertices of C and the edges ei and therefore
there are 2n−2p

2
2p(c−1) = (2pn−4p2)(c−1) missing edges different from red.

Again, minimizing the function we obtain the same result as above and case
(1b) holds.

Suppose now that n is odd, M = n−1
2

and 2p < n−1, or n is even, M = n−2
2

and 2p < n− 2. In both cases, same arguments as before apply just replacing
n with n − 1 or n − 2 respectively, in the number of missing edges. This is
because we have n − 1 matched vertices and one non-matched vertex for the
first case and n − 2 matched vertices and two non-matched vertices for the
second one. 2

3 2-edge-colored multigraphs

In this section we study the existence of proper hamiltonian paths in 2-edge-
colored multigraphs. We present two main results. The first one involves the
number of edges, and the second one involves the number of edges and the
rainbow degree. Both results are tight.

Theorem 3.1 Let Gc be a 2-edge-colored multigraph on n ≥ 8 vertices. If

m ≥ (n− 2)(n− 3) + 2(n− 2) + 2, then Gc has a proper hamiltonian path.

Proof. The proof is by induction on n. For n = 8, 9, by a tedious analysis, the
result can be shown. Suppose now that n ≥ 10. Observe that |E(Gc)| ≤ 2n−4.
By a theorem in [1], if for every vertex v ∈ Gc we have that dr(v) ≥

⌈

n+1
2

⌉

and
db(v) ≥

⌈

n+1
2

⌉

, then Gc has a proper hamiltonian path. Suppose then than
there exists a vertex v such that dr(v) ≤ ⌈n+1

2
⌉− 1, otherwise there is nothing

to prove.

Suppose first that there exist two neighbors of v, say u and w, such that
c(vu) = r and c(vw) = b. We construct then a new multigraphG′c by replacing
the vertices v, u and w with a new vertex z such that N r(z) = N r

Gc−{v,u,w}(w)
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and N b(z) = N r
Gc−{v,u,w}(u). We remark that N r

Gc−{v,u}(w) and N r
Gc−{v,w}(u)

cannot be both empty at the same time, otherwise |E(Gc)| ≥ n− 3 + n− 3 +
n − (⌈n+1

2
⌉ − 1) > 2n − 4, a contradiction in the total number of edges. So,

by this we remove at most n− 1 blue edges and ⌈n+1
2
⌉ − 1 red edges from v,

n − 3 red edges from u, n − 3 blue edges from w, and one red and one blue
between u and w. Therefore G′c has at least (n− 2)(n− 3) + 2(n− 2) + 2−
(n − 1) − (⌈n+1

2
⌉ − 1) − (n − 3) − (n − 3) − 2 edges. This number is greater

or equal than (n− 4)(n− 5) + 2(n− 4) + 2, i.e., the number of edges required
to have a proper hamiltonian path in a multigraph on n − 2 vertices. So, by
the inductive hypothesis G′c has a proper hamiltonian path P . Finally, as we
have chosen the appropriate edges to remove at u and w it is easy to extend
P to a proper hamiltonian path for Gc.

Suppose now that there does not exist two neighbors of v, say u and w,
such that c(vu) = r and c(vw) = b. So, we have two possible cases. First
case is when v has one only neighbor w in both colors. It is easy to observe
that Gc − {v} has (n − 2)(n − 3) + 2(n − 2) = (n − 1)(n − 2) edges, i.e., it
is a rainbow complete multigraph. Therefore, we have any possible proper
hamiltonian path, in particular the one that starts at w and then we easily
extend the path to Gc. For the second case, v has just neighbors in one
color, say b. Observe that for every vertex w 6= v, w has a red neighbor
different of v. Otherwise, if there is a vertex w without red neighbors, we
have that |E(Gc)| ≥ n − 1 + n − 2 > 2n − 4, a contradiction. Now, suppose
first that v has at most n − 2 blue neighbors. So, consider a neighbor w of
v and remove all its blue incident edges. Remove then v from Gc and call
this multigraph G′c. In G′c, w is monochromatic in red, and G′c has at least
(n− 2)(n− 3)+2(n− 2)+2− (n− 2)− (n− 2) edges. This number is exactly
(n − 3)(n − 4) + 2(n − 3) + 2, i.e., the number of edges required to have a
proper hamiltonian path in a multigraph on n−1 vertices. Then, by inductive
hypothesis in G′c we obtain a proper hamiltonian path that clearly starts at
w since it was monochromatic. Therefore we have a proper hamiltonian path
for Gc. Finally, if v has n − 1 blue neighbors, suppose that one neighbor
w of v has at most n − 3 blue neighbors, then we proceed as before, we
remove v from the multigraph and we remove all blue incident edges to w.
This multigraph G′c has at least (n − 2)(n − 3) + 2(n − 2) + 2 − (n − 1) −
(n − 3) = (n − 3)(n − 4) + 2(n − 3) + 2 edges. Again we obtain a proper
hamiltonian path for G′c and therefore a proper hamiltonian path for Gc (since
w is monochromatic in red). Now, every vertex w has n − 2 neighbors, i.e.,
the multigraph Gc − {v} is complete in blue. Call this multigraph G′c. Now,
G′c has at least (n− 2)(n− 3)+2(n− 2)+2− (n− 1) = n2− 4n+5 edges and
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since this is bigger than (n− 3)(n− 4) + 2(n− 3) + 2 by inductive hypothesis
we have a proper hamiltonian path in G′c. Now, if n − 1 is odd, one of the
extremities of the path is red and therefore we trivially add v to the path. If
n − 1 is even, both extremities have the same color. If they are red we are
done. Otherwise, remove all the blue edges from G′c, this new (red) graph

has n− 1 vertices and at least n2 − 4n+ 5− (n−1)(n−2)
2

= (n−2)(n−3)
2

+ 1 edges
therefore by a theorem in [7], it has a hamiltonian path P . Now, since G′c is
complete in blue we can use those blue edges along with P to form a proper
hamiltonian P ′ for G′c that starts and ends with color red. Finally, we can
trivially add v to P ′.

Since we covered all cases, the proof is finished. 2

Theorem 3.1 is the best possible for n ≥ 8. In fact, consider a rainbow
complete 2-edge-colored multigraph on n − 2 vertices for n odd. Add two
new vertices x1 and x2. Then add a red edge x1x2 and all red edges between
{x1, x2} and the complete graph. Although the resulting graph has (n−1)(n−
2)+2(n−2)+1 edges, it has no proper hamiltonian path, since at least one of
the vertices x1 or x2 cannot be attached to any such path. Indeed, for n odd,
the first and last edge of any proper hamiltonian path must differ in colors. If
n = 5, 7, Theorem 3.1 does not hold for the multigraphs H2

k,k+3, k = 1, 2.

Theorem 3.2 Let Gc be a 2-edge-colored multigraph on n ≥ 14 vertices. Sup-

pose that for every vertex x in Gc, rd(x) = 2. If m ≥ (n− 3)(n− 4)+ 3n− 2,
then Gc has a proper hamiltonian path.

Proof. Let us suppose that Gc has not a proper hamiltonian path. We will
show that E(Gc) has more than 3n − 10 edges, i.e., Gc has less than (n −
3)(n− 4) + 3n− 2 edges, contradicting the hypothesis of the theorem.

We distinguish between two cases depending on the parity of n.

Case A: n is even. By Lemma 2.3, Gc has two matchings M r, M b, such
that |M r| = n

2
and |M b| ≥ n−2

2
. Take the longest proper paths, say, P =

x1y1x2y2 . . . xpyp and P ′ = x′
1y

′
1x

′
2y

′
2 . . . x

′
p′y

′
p′ compatibles with M r and M b,

respectively. Observe that as the length of P (P ′) is odd then both its first
and last edges are on the same color. It follows that, since |M r| = n

2
, c(x1y1) =

c(xpyp) = r. Otherwise, we can easily extend P by adding an edge of M r. It
follows that the edges xiyi are red, i = 1, . . . , p. Similarly, we may suppose
that c(x′

1y
′
1) = c(x′

p′y
′
p′) = b. Indeed if c(x′

1y
′
1) = c(x′

p′y
′
p′) = r, then either x′

1

or y′p′ is the endpoint of an edge of M b − P ′ and therefore we obtain a path

longer than P ′ compatible with M b, a contradiction to the definition of P ′.

Notice now that if 2p = n or 2p′ = n, then we are finished. In addition, if
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2p < n− 2 or 2p′ < n− 2, then by Lemma 2.5, there are at least 2n− 4 blue
missing edges and 2n − 8 red ones. This gives a total of 4n − 12 > 3n − 10
missing edges, a contradiction. Consequently, in what follows we may suppose
that 2p = 2p′ = n− 2.

Suppose first that there exists a proper cycle C in Gc such that V (C) =
V (P ). Let e be the red edge of M r in Gc −C. If there exists a blue edge, say
e′, between an endpoint of e and C, we can easily obtain a proper hamiltonian
path considering e, e′ and a segment of C of length n − 3 in the appropriate
direction. Otherwise, as the multigraph is connected, all edges between the
endpoints of e and C are red. Now, as rd(Gc) = 2, there must exist a blue
edge, say e′, parallel to e and therefore we can obtain a proper hamiltonian
path just as before but starting with e′.

Next suppose that there exists no proper cycle C in Gc such that V (C) =
V (P ). By Lemma 2.5, there are at least 2n− 4 blue missing edges. Consider
now the path P ′ and let v1, w1 be the vertices in Gc − P ′. It is clear that if
there exists a blue edge joining v1 and w1, then by symmetry on the colors
there are at least 2n−4 red missing edges. This gives a total of 4n−8 missing
edges, a contradiction. Otherwise, assume that there is no blue edge between
v1 and w1. In this case we will count the red missing edges assuming that we
cannot extend P ′ to a proper hamiltonian path. If there exists no cycle C ′ in
Gc such that V (C ′) = V (P ′) then by Lemma 2.4 there are 2p′− 2 = n− 4 red
missing edges. By summing up, we obtain 2n− 4 + n− 4 = 3n− 8 > 3n− 10
missing edges, a contradiction. Finally, assume that there exists a proper cycle
C ′ in Gc such that V (C ′) = V (P ′). Set C = c1c2 . . . c2p′c1 where c(cici+1) = r
for i = 1, 3, . . . , 2p′ − 1. If there are 3 or more red edges between {v1, w1} and
{ci, ci+1}, for some i = 1, 3, . . . , 2p′ − 1, then either the edges v1ci and w1ci+1,
or v1ci+1 and w1ci are red. Suppose v1ci and w1ci+1 are red. In this case, the
path v1y

′
ix

′
i . . . y

′
i+1x

′
i+1w1 is a hamiltonian one. Otherwise, if there are no 3

or more red edges between {v1, w1} and {ci, ci+1}, for all i = 1, 3, . . . , 2p′ − 1,
then there are 22p′−2

2
= n − 4 red missing edges. If we sum up we obtain a

total of 2n− 4 + n− 4 = 3n− 8 > 3n− 10 missing edges, a contradiction.

Case B: n is odd. By Lemma 2.3, Gc has two matchings M r, M b, such that
|M r| = |M b| = n−1

2
. As in Case A, we consider the longest proper paths P

and P ′ compatibles with the matchings M r and M b respectively. Suppose first
that 2p < n−1 and 2p′ < n−1. By Lemma 2.5, there are at least 2n−6 blue
missing edges and 2n − 6 red ones. We obtain a total of 4n − 12 > 3n − 10
missing edges, a contradiction.

Suppose next 2p = 2p′ = n−1 (the cases where 2p < n−1 and 2p′ = n−1,
or 2p = n − 1 and 2p′ < n − 1 are similar). In the rest of the proof, because
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of symmetry, we will consider only the path P since same arguments may
be applied as well for P ′. In this case we will count the blue missing edges
assuming that we cannot extend P to a proper hamiltonian path. Now, let v
be the unique vertex in Gc − P . It is clear that if there is a proper cycle C
in Gc such that V (C) = V (P ), we can trivially obtain a proper hamiltonian
path since the multigraph is connected, i.e., there is at least one edge between
v and C. So, as there is no proper cycle C in Gc such that V (C) = V (P ),
we have by Lemma 2.4, that there are 2p − 2 = n − 3 blue missing edges.
If there exists a blue edge between x1 and xi, for some i = 2, . . . , p, then it
cannot exist the blue edge vyi−1, otherwise we obtain the proper hamiltonian
path vyi−1 . . . x1xi . . . yp. We can complete the argument in a similar way, if
both edges ypyi and vxi+1, i = 1, . . . , p− 1 exist in Gc and are on color blue.
Note that since there is no proper cycle C in Gc such that V (C) = V (P ), we
cannot have at the same time the blue edges x1xi and ypyi−1, i = 2, . . . , p.
Therefore, there are 2p−2

2
= n−3

2
blue missing edges. If we make the sum and

multiply it by two (since the same number of red missing edges is obtained
with P ′), we conclude that there are 2(n − 3 + n−3

2
) = 3n − 9 missing edges,

a contradiction.

Since we covered all the cases, the theorem is proved. 2

Theorem 3.2 is the best possible for n ≥ 14. Indeed, for n odd, n ≥
14, consider a complete blue graph, say A, on n − 3 vertices. Add 3 new
vertices, say v1, v2, v3, and join them to a same vertex v in A with blue edges.
Finally, superpose the obtained graph with a complete red graph on n vertices.
Although the resulting 2-edge-colored multigraph has (n− 3)(n− 4) + 3n− 3
edges, it has no proper hamiltonian path since one of the vertices v1, v2, v3
cannot belong to such a path. For n = 7, 9, 11, 13, it is easy to see that the
multigraphs H2

k,k+3, k = 2, 3, 4, 5, are exceptions for Theorem 3.2.

4 c-edge-colored multigraphs, c ≥ 3

In this section we study the existence of proper hamiltonian paths in c-edge-
colored multigraphs, for c ≥ 3. We present three main results. The first one
involves the total number of edges. The second one, the total number of edges
and the connectivity of the multigraph. The last one, the total number of
edges and the rainbow degree. All results are best possible.

First, we present a key result that reduces the case c ≥ 3 just to the case
c = 3.

Lemma 4.1 Let Gc be a c-edge-colored connected multigraph on n vertices,

11



c ≥ 4 and m ≥ c f(n) + 1 edges. There exists one color cj such that if we

color its edges with another used color and we delete parallel edges with the

same color, then the resulting (c−1)-edge-colored multigraph is connected and

has m′ ≥ (c − 1) f(n) + 1 edges, such that if Gc−1 has a proper hamiltonian

path then Gc has one too. Moreover, if rd(Gc) = k, then rd(Gc−1) = k− 1 for

1 ≤ k ≤ c.

Proof. Let ci denote the color i, for i = 1, . . . , c, in Gc, and denote by |ci| the
number of edges with color i. Let cj be the color with less number of edges.
Color the edges on color cj with another used color, say cl, and delete (if
necessary) parallel edges with that color. Call this multigraph Gc−1. By this,
we delete at most |cj| edges. It is clear that this multigraph is connected since
we delete just parallel edges. Also, if is Gc−1 has a proper hamiltonian path,
then, this path is also proper hamiltonian in Gc but maybe with some edges on
color cj (in the case that they have been recolored with cl). Observe also that if
rd(Gc) = k then rd(Gc−1) = k−1 since only the color cj disappeared. We will
show now that m′ ≥ (c− 1) f(n)+1. We have two cases. First, if |cj| > f(n),
then clearly m′ ≥ (c − 1) f(n) + 1 edges since for all i, |ci| > f(n). For the
second case, we have that |cj| ≤ f(n). Now, m =

∑c

i=1 |ci| ≥ c f(n) + 1 and
therefore

∑c

i=1,i 6=j |ci| ≥ c f(n)− |cj|+1 = (c− 1) f(n)+ f(n)− |cj|+1. This
last expression is greater or equal than (c− 1) f(n) + 1 since f(n)− |cj| ≥ 0.
Finally, we have that Gc−1 has m′ ≥ (c− 1) f(n) + 1 edges as desired. 2

Theorem 4.2 Let Gc be a c-edge-colored multigraph on n vertices, n ≥ 2 and

c ≥ 3. If m ≥ c(n−1)(n−2)
2

+ 1, then Gc has a proper hamiltonian path.

Proof. By Lemma 4.1 we can assume that c = 3 and m ≥ 3(n−1)(n−2)
2

+ 1.
Furthermore, cases n ≤ 7 can be checked by exhaustive methods. Assume so,
n ≥ 8. Since there exists one color, say red, such that the number of red edges
are at least (n−1)(n−2)

2
+ 1 then by a theorem in [7], there is a hamiltonian

red path and therefore a perfect or almost perfect matching M r. Take the
longest proper path P = x1y1x2y2 . . . xpyp compatible with M r. So we have

that, c(xiyi) = r for i = 1, . . . , p. As m ≥ 3(n−1)(n−2)
2

+ 1, |E(Gc)| ≤ 3n − 4.
Now, we will distinguish between two cases depending on the parity of n.

Case A: n even. Clearly |M r| = n
2
. By contradiction suppose that 2p < n,

otherwise we are finished. Assume first that there is no proper cycle C in Gc

such that V (P ) = V (C). By Lemma 2.5, there are at least 2(n−2+pn−2p2)
missing edges different from red and therefore the inequality 2(n − 2 + pn −
2p2) ≤ 3n − 4 must be satisfied. This inequality does not hold for n ≥ 8.
Therefore, we have a contradiction with the number of edges of Gc. Assume
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next that there is a proper cycle C in Gc such that V (P ) = V (C). Again by
Lemma 2.5, 2(2pn − 4p2) ≤ 3n − 4 must be satisfied, and as before this is
never possible for n ≥ 8.

Case B: n odd. Clearly |M r| = n−1
2
.

Assume first that there is a proper cycle C in Gc such that V (P ) = V (C).
If 2p = n−1 then we can obtain a proper hamiltonian path by just taking any
edge between the unique vertex outside C and C and then following C in the
appropriate direction. Otherwise by Lemma 2.5 there are 2(2pn − 2p − 4p2)
missing edges different from red and therefore 2(2pn−2p−4p2) ≤ 3n−4 must
hold and this never happens for n ≥ 9.

Assume next that there is no proper cycle C in Gc such that V (P ) = V (C).
If 2p < n− 1 then, again by Lemma 2.5, the inequality 2(n− 2 + pn− 2p2) ≤
3n− 4 must be satisfied. However this is not possible for n ≥ 9. It remains to
handle the case 2p = n − 1. Let v be the unique vertex of Gc − P . We have
the following cases depending on the degree and neighbors of v.

Subcase B1: All edges incident to v have the same color, say red.

Suppose first that d(v) ≤ n − 2, consider the multigraph Gc − {v} and
delete from a neighbor of v, say w, all the edges in two colors in order to have
w monochromatic not in red. Call this multigraph G′c. Observe that we can
always do this since it is impossible to have 2 monochromatic vertices. So, by
this, we delete at most n−2+n−2+n−2 = 3n−6 edges. It is easy to see that
the multigraph G′c on n− 1 vertices has at least 3(n−1)(n−2)

2
+ 1− (3n− 6) =

3(n−2)(n−3)
2

+ 1, then, by the even case, we have a proper hamiltonian path P ′

in G′c. Since w is monochromatic not in red, w is either in the beginning or
in the end of P ′ and therefore it is trivial to add v to P ′ in order to obtain a
proper hamiltonian path in Gc.

Suppose finally that d(v) = n− 1. Therefore the multigraph Gc − {v} on

n−1 vertices has at least 3(n−1)(n−2)
2

+1−(n−1) ≥ 3(n−2)(n−3)
2

+1, then, again,
we have a proper hamiltonian path P ′ in G′c. Now, if the path either starts
or ends with a color different from red, we trivially add v to the path. If not,
both of them finish with red. Now, if we can take any parallel edge of these
without losing the property of being properly colored we have again that it is
easy to add v to the path. Otherwise, we have, without losing generality, the
degree in some color, say c1 of the first vertex of the path, say w, is at most
n − 3. So, we are in the same case as before, since we take the multigraph
Gc − {v} and we delete from w the edges in color c1 and in another color
in order to have w monochromatic not in red. By this, we delete at most
n− 1 + n− 2 + n− 3 = 3n− 6 edges and finally, the result follows exactly as
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in the first situation.

Subcase B2: There exist two distinct edges incident to v, say vx and vy,
such that c(vx) = c1 6= c2 = c(vy).

Assume first that x = y. This case is similar to the previous one just taking
the multigraph Gc−{v} and deleting from x the edges in the appropriate two
colors in order to have it monochromatic. By this we delete at most 3 edges at
v and 2(n− 2) at x to obtain a total of 2n− 1 deleted edges and we have that

the multigraph Gc − {v} has 3(n−1)(n−2)
2

+ 1 − (2n − 1) edges that is greater

than or equal to 3(n−2)(n−3)
2

+ 1 for n ≥ 5.

Assume next that x 6= y. We will prove the result by induction. If we
cannot attach v to the path P we have that there are 4 missing edges in colors
different from red between v and the vertices x1, yp. Also, we have at most 2
edges different from red between v and the edges yixi+1 of the path. Therefore
there are 2n−3

2
missing edges. Adding up all this, we conclude that the degree

of v in colors different from red is at most n+1. So, if we contract the three ver-
tices v, x, y to a new one, say v′, such that N c1(v′) = N c1

Gc−{v,x,y}(y), N
c2(v′) =

N c2
Gc−{v,x,y}(x) and N c3(v′) = N c3

Gc−{v,x,y}(x)∩N c3
Gc−{v,x,y}(y). By this we delete

at most 5n − 6 edges. Now, it is easy to see that the new 3-edge-colored
multigraph on n − 2 vertices, say G′c, has at least 3(n−1)(n−2)

2
+ 1 − (5n − 6)

edges that is greater than or equal to 3(n−3)(n−4)
2

+ 1, for n ≥ 9, therefore,
by inductive hypothesis, we have a proper hamiltonian path P ′ in G′c. Now,
because of the way we have chosen the edges to delete at x and y, it is easy
to obtain from P ′ a proper hamiltonian path for Gc.

Since we covered all the cases, the theorem is proved. 2

Theorem 4.2 is the best possible. Indeed, consider a rainbow complete
multigraph on n − 1 vertices with c colors and add a new isolated vertex x.
The resulting multigraph, although it has c (n−1)(n−2)

2
edges, contains no proper

hamiltonian path since it is not connected.

Notice that in the above theorem there is no condition guaranteeing the
connectivity of the underlying graph. Next result adds this condition.

Theorem 4.3 Let Gc be a connected c-edge-colored multigraph on n vertices,

n ≥ 9 and c ≥ 3. If m ≥ c(n−2)(n−3)
2

+ n, then Gc has a proper hamiltonian

path.

Proof. By Lemma 4.1 it is enough to prove the theorem for c = 3. The proof
is by induction on n. For cases n = 9, 10, refer to [6]. Now, we have two cases,
depending on whether Gc contains a monochromatic vertex or not.

Case A: There exists a monochromatic vertex, say x, in Gc. Let y be a
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neighbor of x. If y is also monochromatic then the multigraph Gc−{x, y} has

n−2 vertices and at least 3(n−2)(n−3)
2

+n−(2n−3) = 3(n−2)(n−3)
2

−n+3 edges, i.e.,
it is almost rainbow complete and therefore it has a proper hamiltonian cycle.
Then, it is easy to add x and y to the cycle to obtain a proper hamiltonian path
in Gc otherwise we have a contradiction in the total number of edges. Suppose
then that y is not monochromatic and that xy has color b. Let us contract
the vertices x and y by a new vertex, say z, such that N b(z) = N r(z) = ∅ and
N g(z) = N g(y) (or N b(z) = N g(z) = ∅ and N r(z) = N r(y)). Observe that, if
the resulting multigraph on n − 1 vertices is connected, (we show this later)
and has enough edges for the induction hypothesis to hold, by induction it
contains a proper hamiltonian path. Since z is monochromatic, it can only be
the endpoint of the path. Therefore, using the blue edge xy, we can extend
the path to a proper hamiltonian one in the initial multigraph.

We now count the maximum number of edges that may be deleted by the
contraction. We delete all the edges incident to x, which is at most n− 1, and
the edges of color b and say g (or r) incident to y, at most 2(n−2). This gives
us a total of 3n− 5 edges. We now show that we can choose x and y for the
contraction process, such that we delete at most 3 (n−2)(n−3)

2
+n−3 (n−3)(n−4)

2
−

n+ 1 = 3n− 8 edges, necessary for the induction hypothesis to hold.

Let us consider now db(x). Note that if db(x) ≤ n − 4, we delete at most
n− 4 + 2(n− 2) = 3n− 8 edges from x and any selected neighbor y of x and
we are done. Further, from a theorem in [1], if di(z) ≥

⌈

n
2

⌉

∀z ∈ Gc −{x}, i ∈
{r, g, b}, then Gc − {x} has a proper hamiltonian cycle. This would imply a
proper hamiltonian path in G. Thus, we may assume that there exists some
vertex w ∈ Gc − {x} such that di(w) <

⌈

n
2

⌉

for some i ∈ {r, g, b}. We have
the remaining cases:

Subcase A1: db(x) = n − 1. Observe that w ∈ N b(x). In this case, the
contraction process deletes n−1 edges from x, and at most n−2+ n

2
−1 from

w, much less than 3n− 8 for n > 10.

Subcase A2: db(x) = n − 2. Let w be the only vertex not adjacent to
x. Now, if there is a vertex y adjacent to x such that dr,b

Gc−{x}(y) ≤ 2n − 6

or dr,g
Gc−{x}(y) ≤ 2n − 6. We choose x and y for the contraction process.

Otherwise, for all y adjacent to x we have that dr,b
Gc−{x}(y) ≥ 2n − 5 and

dr,g
Gc−{x}(y) ≥ 2n − 5. Therefore, the multigraph Gc − {x} is almost rainbow

complete and therefore, it has a proper hamiltonian cycle. Finally, we trivially
add x to the cycle to form a proper hamiltonian path for Gc.

Subcase A3: db(x) = n−3. Similar to the last case. Just observe that if there
is a vertex y adjacent to x such that dr,b

Gc−{x}(y) ≤ 2n−5 or dr,g
Gc−{x}(y) ≤ 2n−5,
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we choose x and y for the contraction process. Otherwise, for all y adjacent
to x we have that dr,b

Gc−{x}(y) ≥ 2n − 4 and dr,g
Gc−{x}(y) ≥ 2n − 4, i.e., the

multigraph Gc − {x} is rainbow complete and we proceed as before to obtain
the proper hamiltonian path.

Case B: There is no monochromatic vertex in Gc.

First suppose that there exists a vertex x such that |N(x)| = 1. Pick x
and some vertex y ∈ N(x), for the contraction. We delete at most 3 edges
at x and 2n− 4 at y, which guarantees the induction hypothesis and leaves y
monochromatic.

In what follows, we suppose that |N(x)| ≥ 2 for all x ∈ Gc. We describe
another contraction process, but now between 3 vertices. Consider a vertex
x and y, z ∈ N(x) and suppose that c(xy) = b and c(xz) = r 6= c(xy).
For the contraction, replace x, y and z by a new vertex say s, such that
N r(s) = N r

Gc−{x,y,z}(y), N
b(s) = N b

Gc−{x,y,z}(z) and N g(s) = N g

Gc−{x,y,z}(y) ∩

N g

Gc−{x,y,z}(z).

If the resulting multigraph has a proper hamiltonian path, it is easy to
obtain a proper hamiltonian path for the initial multigraph since we chose
the appropriate edges to delete at y and z. Let us count now the maximum
number of edges that may be deleted in the contraction process.

We now need to select x, y and z so that we delete at most 3 (n−2)(n−3)
2

+n−

(3 (n−4)(n−5)
2

+ n− 2) = 6n− 19 edges, necessary for the induction hypothesis
to hold.

Since we delete at most 3n−6 edges incident to y and z in Gc−{x}, if the
degree of x is at most 6n− 19− (3n− 6) = 3n− 13, the hypothesis holds. If
not, we show that there exist x,y and z such that the total number of deleted
edges in the contraction process is less than or equal to 6n− 19.

In what follows we show how to find the desired triplet. We have two cases,
depending on the parity of n.

Let Ei be the set of edges in color i and suppose that the color b maximizes
|Ei|. The monochromatic subgraph in color b has at leastmb ≥ (n−2)(n−3)

2
+⌈n

3
⌉

edges. We distinguish two possibilities. If this subgraph is connected, then by
Lemma 2.1 there is a perfect matching for n even and almost perfect matching
for n odd. Otherwise, there is a matching of size n−2

2
for n even and n−1

2
if n

is odd. Let M b denote the maximum matching in Eb.

Subcase B1: n is even. Let P = x1y1x2y2 . . . xpyp be the longest proper path
compatible with M b. It is easy to check that |P | ≥ 4, otherwise there are not
enough edges in Gc.

Suppose now that there is a proper cycle C such that V (C) = V (P ). We
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have the following cases.

(i) |M b| = n
2
. By Lemma 2.5, we can check that |P | ≥ n−2, otherwise there

is a contradiction with the total number of edges of the multigraph. Now,
if |P | = n− 2, we trivially add the edge of the matching outside the path
since, P also defines a proper cycle, there are no monochromatic vertices
and the multigraph is connected. If |P | = n, P is a proper hamiltonian
path and we are done.

(ii) |M b| = n−2
2
. By Lemma 2.5, we can check that |P | ≥ n − 4, other-

wise, as before, there is a contradiction with the number of edges of the
multigraph. Suppose first that |P | = n − 4. Let xy be the edge of the
matching outside P . Clearly, there are no edges in color g or r between
xy and the cycle otherwise we would have a longest proper path com-
patible with the matching. Then, we have that dr,g(x) ≤ 6 and therefore
d(x) ≤ 6 + n − 1 < 3n − 13. So we take x with any two neighbors in
different colors for the contraction process and we are done. Suppose now
that |P | = n − 2. Let x, y be the unmatched vertices. For every edge
yixi+1 on the cycle we can have at most 4 edges in colors r and g between
their endpoints and the vertices x, y. Otherwise, we can add x and y to
the cycle in order to obtain a proper hamiltonian path. Therefore, with-
out losing of generality dr,g(x) ≤ 2n−2

2
+ 2. Same observation applies for

the blue edges xiyi. This is, we can have at most 2 blue edges between
their endpoints and the vertices x, y. Then db(x) ≤ n−2

2
− 1. Summing

up we have d(x) ≤ n + n−2
2

− 1 < 3n − 13. Thus, we can take x for the
contraction process.

Let us suppose now that there is no proper cycle C such that V (C) = V (P ).
Consider the following cases, in a similar manner, as we did before.

(i) |M b| = n
2
. By Lemma 2.5 we can check that |P | ≥ n − 4. If P is

hamiltonian we are done. Otherwise, there is at least one edge in M b −
(P∩M b). Clearly, there are no edges in color r and g from the extremities
of P to the edges in M b − (P ∩ M b). Now, for each each edge outside
the matching, there are at most 4 edges between their endpoints and the
endpoints of the edges yixi+1, otherwise we can obtain a longer path.
Therefore, taking the vertex, say x, outside P with minimum degree, we
have that dr,g(x) ≤ 2n−6

2
+ 6, for |P | = n − 4, and dr,g(x) ≤ 2n−4

2
+ 2,

for |P | = n − 2. In both cases, if we consider db(x) = n − 1, we get
d(x) ≤ 3n− 13 and we take it for the contraction.

(ii) |M b| = n−2
2
. For |P | = n − 4 the proof is similar as previous case.
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Suppose then that |P | = n − 2. Let v, w be the unmatched vertices.
We try to add these vertices to the path either at the extremities or
between the vertices yi and xi+1. Suppose first that we cannot add any
of them. Then dr,g(v) ≤ 2n−4

2
+ 2. Summing up this with at most

n − 2 blue edges we obtain d(v) ≤ 2n − 4 < 3n − 13 and we take v
for the contraction. Suppose last that we can add v but we cannot add
w. If v was added at one extremity of the path we obtain that d(w) ≤
2n−4

2
+1+n− 2 = 2n− 5 < 3n− 13. If v was added inbetween the path,

we have d(w) ≤ 2n−6
2

+ 2 + n− 2 = 2n− 6 < 3n− 13. In both cases we
can take w for the contraction.

Subcase B2: n is odd. Therefore |M b| ≥ n−1
2
. Let P = x1y1x2y2 . . . xpyp be

the longest proper path compatible with M b. It is easy to check that |P | ≥ 4,
otherwise there are not enough edges in Gc. Then we distinguish two cases:

There is a proper cycle C such that V (C) = V (P ). By Lemma 2.5 we can
check that |P | ≥ n − 5. If |P | = n − 1 we are done since is trivial to add
the unmatched vertex to the cycle to obtain a proper hamiltonian path. If
n − 5 ≤ |P | ≤ n − 3, as in the even case, we can use for the contraction any
vertex incident to any edge of the matching outside the path, since there are
no red and green edges at all between the edges of the matching outside the
path and the path.

There is no proper cycle C such that V (C) = V (P ). Again, by Lemma 2.5
we can check that |P | ≥ n − 5. This case is also similar to the even case.
For n− 5 ≤ |P | ≤ n− 3, we try to extend P with the edges of the matching
outside the path. Since this is not possible we can chose one matched vertex
outside the path to do the contraction. For |P | = n − 1, we try to extend P
with the unique unmatched vertex. If this is not possible, we can use it for
the contraction and we are done.

Since we cover all cases, we can always find three appropriate vertices to
make the contraction process. We now check the connectivity of the resulting
multigraph after the contraction of 2 or 3 vertices.

Assume that we contract two vertices x, y to a vertex s and the multigraph
is disconnected. It can be easily shown that the graph has two components
with one vertex and n − 2 vertices respectively, otherwise, there is a contra-
diction on the total number of edges of the multigraph. Observe first that
the isolated vertex cannot be s unless x and y are both monochromatic, but
this case was solved independently. Then, as we have the choice at y of which
colors to delete, s cannot be isolated in the contracted multigraph and there-
fore this case cannot occur. Suppose now that a vertex z 6= s is the isolated
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vertex.

Suppose the first the case where x is monochromatic. Consider the orig-
inal multigraph. There are at least 2(n − 1) missing edges at x since it is
monochromatic and 3(n− 3) missing edges at z since z is isolated in the con-
tracted multigraph. Also there are two more missing edges between y and z
since we have the choice of which colors to delete at y. This gives us a total
of 5n − 9 = |E(Gc)| missing edges. Therefore, if there is one more missing
edge, we have a contradiction with the total number of edges. Suppose now
that there is another vertex y′ 6= y adjacent to x and take x and y′ for the
contraction. If the contracted multigraph is connected we are done. Otherwise
we have many more new missing edges and therefore a contradiction. Finally
if there is no other vertex than y adjacent to x we obtain more missing edges
at x and again a contradiction.

Suppose finally that x is not monochromatic. In this case x has y as its
unique neighbor. So, there are 3(n−2) missing edges at x and 3(n−3) missing
edges at z since z is isolated in the contracted multigraph. This gives us a
total of 6n − 15 missing edges and this is greater than |E(Gc)| = 5n − 9. A
contradiction.

Assume now that we contract three vertices x, y, z where c(xy) = b and
c(xz) = r to a vertex s and the multigraph is disconnected. Again, this
multigraph has exactly two components with one vertex, say u, and n − 3
vertices respectively.

Suppose first that u 6= s. In the original multigraph u must have at least
two different neighbors in two different colors among the vertices x, y and z,
otherwise we would be in the case that either u is monochromatic or u has
one unique neighbor and we have already solved these cases. Let y′ and z′

two neighbors of u among x, y and z such that c(uy′) 6= c(uz′). Now we
contract the vertices u, y′, z′ as before. Observe that at u we delete only 6
edges since u has only x, y and z as neighbors and the red edge uy, the blue
edge uz and at least one green edge among uy and uz are missing. At y′ and
z′ we delete 3(n − 3) + 3 edges as usual. With this contraction we delete in
total 6 + 3(n − 3) + 3 = 3n edges and therefore the contracted multigraph

on n− 2 vertices has at least 3(n−2)(n−3)
2

+ n− 3n = 3(n−3)(n−4)
2

+ n− 9 edges
which guarantees not only the inductive hypothesis but also the connectivity
for n ≥ 10.

Suppose finally that u = s. Then, there are no red edges between y and the
multigraph Gc−{x, y, z} and no blue edges between z and Gc−{x, y, z}. Now,
since we are not in the previous cases, y has at least two different neighbors,
say y′ and z′, such that c(yy′) 6= c(yz′). Then we contract the vertices y, y′, z′.
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In the contraction process we delete at most 2(n − 3) edges between y and
Gc − {x, y, z} (since there are no red edges), 6 between y and the vertices
x, z, and 3(n− 3) + 3 at y′ and z′. We obtain in total at most 5n− 6 deleted
edges. Now, this new contracted multigraph has n − 2 vertices and at least
3(n−2)(n−3)

2
+n− (5n−6) = 3(n−3)(n−4)

2
−n−3 edges. Clearly, if the multigraph

is connected we are done. Otherwise, as before, it has two components with
one vertex and n − 3 vertices respectively. We can suppose that we are not
in the previous case, i.e., we are in the case that the contracted vertex is the
isolated one. Observe now that the component on n− 3 vertices has at least
3(n−3)(n−4)

2
−n−3, therefore it is almost rainbow complete and it has a proper

hamiltonian cycle. Finally, in the original multigraph, it is easy to add the
vertices y, y′, z′ to the proper cycle in order to obtain a proper hamiltonian
path.

Now as the connectivity is proved the theorem holds. 2

Theorem 4.3 is the best possible. Indeed, consider a rainbow complete
multigraph on n − 2 vertices with c colors and add two new vertices x and
y. Add now the edge xy and also all edges between y and the complete
multigraph, all on a same color. The resulting multigraph, although it has
c (n−2)(n−3)

2
+ n− 1 edges, it contains no proper hamiltonian path, as x cannot

belong to such a path.

Theorem 4.4 Let Gc be a c-edge-colored multigraph on n vertices, n ≥ 11 and
c ≥ 3. Assume that for every vertex x of Gc, rd(x) = c. If m ≥ c(n−2)(n−3)

2
+

2c+ 1, then Gc has a proper hamiltonian path.

Proof. By Lemma 4.1 it is enough to prove the theorem for c = 3. As
m ≥ 3(n−2)(n−3)

2
+ 7, then |E(Gc)| ≤ 6n− 16. The proof will be done by con-

struction of a proper hamiltonian path or, if it is not possible, by a reduction
to Theorem 4.3, i.e., to a connected 3-edge-colored multigraph on n′ ≥ 9 ver-
tices and m′ ≥ 3(n′−2)(n′−3)

2
+ n′ that has a proper hamiltonian path. We will

do this reduction by contracting 2 or 3 vertices depending on if there exists a
vertex x in Gc, such that |N r,g,b(x)| = 1 or not.

Suppose first that there exists a vertex x ∈ Gc such that |N r,g,b(x)| = 1.
Let y be the unique neighbor of x. We replace x and y by a new vertex s,
such that N r(s) = N r(y) and N b(s) = N g(s) = ∅. Clearly, we delete 3 edges
between x and y and at most 2(n − 2) edges in color b and g incident to y.
This gives us a total of 2n − 1 deleted edges. For the reduction hypothesis
we can delete at most 3(n−2)(n−3)

2
+ 7 − 3(n−3)(n−4)

2
− n + 1 = 2n − 1 edges.

Observe that the resulting multigraph on n− 1 vertices is connected since as
rd(x) = 3, we can choose at y which two colors to delete, therefore since the
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original multigraph is connected it is impossible that in all 3 possible choices
the multigraph after contraction would be disconnected. So, as we deleted
2n−1 edges and the multigraph is connected, by Theorem 4.3, it has a proper
hamiltonian path. Now, since s is monochromatic, it can only be the endpoint
of the path. We can replace back s with x and y using the edge xy in color b
(or g) and find the proper hamiltonian path for the initial multigraph.

Suppose next that there is no vertex x ∈ Gc, such that |N r,g,b(x)| = 1.
Let us suppose that there are 3 vertices x, y and z, such that xy is in color b,
and xz in color r. Then, we contract x, y and z to a new vertex s, such that
N r(s) = N r

Gc−{x,y,z}(y), N
b(s) = N b

Gc−{x,y,z}(z) and N g(s) = N g

Gc−{x,y,z}(y) ∩

N g

Gc−{x,y,z}(z). Clearly, we delete at most 3(n− 1) edges incident to x, n− 3
edges in b incident to y, n−3 edges in r incident to z, n−3 in color g incident
to y and z, and 3 edges between y and z. In total we delete at most 6n − 9
edges. Only 3(n−2)(n−3)

2
+7− 3(n−4)(n−5)

2
−n+2 = 5n−12 edges can be deleted

to make the reduction. Therefore, we need to find a vertex x such that its
total degree is less than or equal to 2n− 6.

Suppose without losing generality that |Eb| ≥ |Er| ≥ |Eg|, then |Eb| ≥
(n−2)(n−3)

2
+ 3. Since the subgraph in color b is connected because of the

rainbow degree of the vertices, we have by Lemma 2.1 that there is a matching
M b such that |M b| = n

2
for n even and |M b| = n−1

2
for n odd. Let P =

x1y1x2y2 . . . xiyi . . . xpyp be the longest proper path compatible with M b. The
rest of the proof is now divided in two cases depending on the parity of n.
Case A: n is even.

Assume first that there is a proper cycle C such that V (C) = V (P ). By
Lemma 2.5 we can check that |P | ≥ n− 2, otherwise we have a contradiction
with the number of edges. This case is trivial since, either P is a proper
hamiltonian path or we can add the unique edge of the matching outside P
directly to the cycle to obtain a proper hamiltonian path since the multigraph
is connected.

Assume therefore that there is no proper cycle C such that V (C) = V (P ).
By Lemma 2.5 we can check that |P | ≥ n − 4. Let x be the vertex in M b −
(M b∩P ) with minimum degree and let y be its adjacent vertex in the matching.
Clearly, there cannot be edges in colors r and g between M b − (M b ∩ P ) and
the extremities of P . Also, there can be at most 4 edges in colors r and g
from each edge in M b − (M b ∩ P ) and the edges yi−1xi in P . Then, we can
conclude that there are at most 22p−2

2
edges in color r and g, between x and

the vertices in P .

Suppose now that there is one parallel edge to the blue edge xy in color
r or g, then using the edges xxi, yyi or yxi, xyi in color b, we can add the
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edge xy in color r or g into P . Since this contradicts our hypothesis, we can
conclude that there are 2 missing edges in color b from xy to each edge xiyi
in P . Now, since there are 2p

2
edges xiyi we conclude that the vertex x has

db(x) ≤ 2p
2
+ (n− 2p− 1). In total we have that d(x) ≤ 3(n− 2p− 1) + 2p

2
+

(2p− 2) = 3n− 3p− 5, and for |P | = n− 2, this is less than or equal to 2n− 6
and we can make the contraction with it.

Now, if |P | = n − 2 and there are no parallel edges in r and g at xy, we
have that d(x) ≤ 2n− 5 and d(y) ≤ 2n− 5. We can use one of these vertices
unless both inequalities become equalities. In this case we try to replace the
edges xiyi in P by xixyi and xjyyj, i 6= j. Suppose that we have the edges xxi

in colors r and g, xyi in color b, yxj in colors r and g, and yyj in color b. Then
we have a proper hamiltonian path P ′ = x1y1 . . . xixyixi+1 . . . xjyyj . . . xpyp.
Otherwise at least one of those edges is missing and therefore either d(x) ≤
2n− 6 or d(y) ≤ 2n− 6 as desired.

If |P | = n − 4 by Lemma 2.5 there are 6n − 20 missing edges in colors r
and g. First, if there is one parallel edge to the blue edge xy in color r or g
there are, as before, 2p

2
= n−4

2
blue missing edges from xy to each edge xiyi in

P , therefore since 6n − 20 + n−4
2

> 6n − 16 we obtain a contradiction in the
total number of edges.

Finally, if |P | = n− 4 and there are no parallel edges in colors r and g to
the blue edge xy, and the other edge of the matching outside the path. We
obtain then, 4 more missing edges in colors r and g and therefore 6n − 16.
Observe now that if we can replace the edges xy and the other edge of the
matching outside P , say uv, in M b by xu and yv, then there are missing the 4
parallel edges in color r and g, obtaining 6n− 12. A contradiction. Otherwise
if we cannot, there are 2 more missing edges obtaining 6n− 14 edges. Again
a contradiction.

Case B: n is odd.

Assume first that there is a proper cycle C such that V (C) = V (P ).
By Lemma 2.5 we can check that |P | ≥ n − 5. The case |P | = n − 1 is
trivial. Clearly, there are no edges in colors r and g between M b − (M b ∩ P )
and P . Therefore taking any vertex x in M b − (M b ∩ P ) we obtain that
d(x) ≤ 4 + n− 1 = n+ 3, for |P | = n− 3, and d(x) ≤ 8 + n− 1 = n+ 7, for
|P | = n−5. In both cases, this is less than 2n−6 so we can do the contraction
with x.

Assume therefore that there is no proper cycle C such that V (C) = V (P ).
By Lemma 2.5 we can check that |P | ≥ n − 7. Suppose first |P | < n − 1.
Let xy and uv be two edges in M b − (M b ∩ P ) where x has the minimum
degree. There cannot be edges in colors r and g to the extremities of P and
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there can be only 4 edges in colors r and g between M b − (M b ∩ P ) and
yi−1xi in P . Suppose now that there exists an edge xy in color r or g, then
we can use the edges in color b between xy and xiyi to extend P . Since it is
not possible we conclude that there are only 2p

2
+ (n− 2p− 1) edges in color

b at x. For |P | = n − 7 and |P | = n − 5, we have a contradiction in the
total number of edges as in the even case |P | = n − 4. If |P | = n − 3, then
d(x) ≤ 2p

2
+ (2p− 2) + 3(n− 2p− 1) = 3n− 3p− 5 ≤ 2n− 6 and we use x for

the contraction.

Suppose there are no parallel edges in colors r and g at the edges in M b −
(M b ∩ P ). If |P | = n − 7 then there are 6 missing edges. Now, if we can
replace the three blue edges in M b − (M b ∩ P ) to another different three blue
edges, we are, either in the previous case or there are 6 more parallel missing
edges and by Lemma 2.5 there are 8n−48−6−6 = 8n−36 > 6n−16 missing
edges. A contradiction. Otherwise there are at least 5 missing edges in color
b and again by Lemma 2.5 there are 8n− 48− 6− 5 = 8n− 37 missing edges.
Again a contradiction.

If |P | = n − 5 there are 4 parallel edges r and g missing at the edges in
M b − (M b ∩ P ) and by Lemma 2.5 there are 6n − 26 more missing edges in
color r and g. Therefore 6n− 22. Now, if we cannot replace the blue edges xy
and uv with the blue edges xu, yv there are at least 2 missing edges in color b,
otherwise we would miss more parallel edges. Also, there are 4 more missing
edges in color b between the extremities of the edges in M b − (M b ∩ P ) and
the unmatched vertex, since otherwise we can construct 4 different matchings
and therefore 8 more missing edges. In conclusion we have at least 6 missing
edges in color b and 6n− 22 in colors r and g, that gives us a total of 6n− 16
missing edges. To find the last one to get a contradiction suppose that there
are the parallel edges x1y1 and xpyp in colors r and g, then we can make a
proper cycle of length n − 1: x1y1 . . . xpypvyxux1, if we also have the edges,
ypv and ux1 in color b, xu and yv in color r or g. Now, as it is trivial to attach
the unmatched vertex to the proper cycle there is at least one of those edges
missing and therefore a contradiction.

If |P | = n− 3, we have as before that dr,gP (x) ≤ n− 5. As always, there are
no parallel edges to the edge xy in colors r and g. Now, if there are no edges
between xy and the unmatched vertex z in color r and g, then d(x) ≤ 2n− 6
as desired for the contraction. Otherwise, if there are edges in colors r and
g to the vertex z, then there cannot be the edges in color b parallel to them
since we could replace xy by one of those and thus come back to the previous
case. Therefore, we have that d(x) ≤ 2n − 5 and d(y) ≤ 2n − 5. Then, we
can choose for the contraction, either x or y, unless both inequalities become
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equalities. Now, if we suppose that c(xz) = r, we contract the three vertices
x, y and z such that we delete at most 2n− 5 edges at x, n− 3 blue edges at
y, n − 3 red edges at z, n − 3 green edges with common enpoints at y and
z and 2 edges, one red and one green between y and z. We remark that the
blue edge yz is not present. By this, we delete at most 5n− 12 edges, i.e., the
required number for the contraction.

Finally, suppose that |P | = n− 1. Let z be the unmatched vertex. Then,
for same reasons as before, dr,g(z) ≤ n− 3. If we suppose that there are edges
in colors r and g between z and yi, then there cannot be the edges xiz in color
b, otherwise a hamiltonian path can be found. Suppose there are no such
edges then, by Lemma 2.4, either x1 or yp have degree in colors r and g at
most n− 3. If there is at least one of the edges zy1 or zxp in color b, then we
can replace z by either x1 or yp. In both cases, we arrive that d(x1) ≤ 2n− 6
or d(yp) ≤ 2n− 6, otherwise d(z) ≤ 2n− 6 and the contraction can be done.

Since all cases were covered, there always exists a vertex x such that d(x) ≤
2n−6 and the contraction can be done. Therefore by Theorem 4.3 we obtain a
proper hamiltonian path in this new multigraph. Then, it is simple to extend
this path to a proper hamiltonian one in the initial multigraph because of the
choice of the edges to delete at the contracted vertices.

We will check now the connectivity of the resulting multigraph after the
contraction of 3 vertices. Suppose we contract three vertices x, y, z, such that
c(xy) = b and c(xz) = r, to a vertex s, and the multigraph is disconnected.
This multigraph has exactly two components with one vertex, say u, and n−3
vertices respectively.

First, if u 6= s, we proceed exactly as in the equivalent case in Theorem 4.3
and we find three other vertices u, y′, z′ to contract to a vertex s′, just deleting
3n edges. This new contracted multigraph on n − 2 vertices has at least
3(n−2)(n−3)

2
+ 7 − 3n = 3(n−3)(n−4)

2
− 2 edges. Then, if it is connected we are

done, otherwise there is a component with one vertex, say u′ and another
one on n − 3 vertices with at least 3(n−3)(n−4)

2
− 2 edges, i.e., almost rainbow

complete. Therefore, we obtain a proper hamiltonian cycle and then we can
easily add either the isolated vertex u′ (if u′ 6= s′) or the three u, y′, z′ (if
u′ = s′) vertices to the cycle to obtain a proper hamiltonian path for the
initial multigraph.

Finally, if u = s we will consider two cases. Suppose first that x has at
most one neighbor with parallel edges. Therefore d(x) ≤ n. Now, in this case,
in the contraction process we delete 4n − 6 edges instead of 5n − 12, so the
contracted multigraph on n − 2 vertices is disconnected and the component
on n − 3 vertices has at least 3(n−2)(n−3)

2
+ 7 − (4n − 6) = 3(n−3)(n−4)

2
− n + 4
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edges. Then, this component is almost rainbow complete and, as before, we
can obtain a proper hamiltonian cycle and easily add x, y and z to it in order
to obtain a proper hamiltonian path to the initial multigraph. Suppose last
that x has two different neigbors, say y′ and z′ with parallel edges. Consider
the next two cases:

Assume first that the parallel edges are on the same two colors, this is,
c(xy′) = c(xz′) = {b, r} (cases with other two colors are similar). Now,
suppose that in both possible contractions the multigraph is disconnected and
the contracted vertex is always the isolated one (since if not, that case was
solved above). We can observe that the initial multigraph has n + 3 missing
edges at x (since d(x) ≤ 2n− 6), n− 3 green edges and 4(n− 3) blue and red
edges at y′ and z′ (since in both contractions the multigraph is disconnected).
By this we obtain a total of 6n−12 > 6n−16 missing edges. A contradiction.

Assume therefore that the parallel edges are not on the same two colors,
this is, c(xy′) = {b, r} and c(xz′) = {b, g} (cases with other combinations are
similar). Now since we are not in the case before we do not have neither the
green edge xy′ nor the red one xz′. Try any of the three possible contractions.
Then, if the multigraph is disconnected and the contracted vertex is always
the isolated one, we can observe that there can be just red edges between y′

and Gc − {x, y′, z′}, and green edges between z′ and Gc − {x, y′, z′}. Now
since rd(Gc) = 3 there must exist the green edge y′z′ and the red edge z′y′,
and again since we are not in the previous case, the blue edge y′z′ is not
present. We are in the precise situation that c(xy′) = {b, r}, c(xz′) = {b, g}
and c(y′z′) = {r, g}. Now, we have nine different contractions to try, three for
each triplet xy′z′, y′xz′ and z′xy′. So, if in all of them, we are in this same
situation (the contracted multigraph is disconnected and the isolated vertex
is the contracted one), we can conclude that in the original multigraph there
can be just blue edges between x and Gc−{x, y′, z′}, red edges between y′ and
Gc−{x, y′, z′}, and green edges between z′ andGc−{x, y′, z′}, therefore 6(n−3)
missing ones. Finally, adding the 3 missing edges xy′, xz′ and y′z′ in green,
red and blue respectively, we obtain 6n− 15 missing edges. A contradiction.

Now as the connectivity is proved the theorem holds. 2

Theorem 4.4 is the best possible for n ≥ 11. In fact, consider a rainbow
complete multigraph, say A, on n− 2 vertices. Add 2 new vertices v1, v2 and
then join them to a vertex v of A with all possible colors. The resulting c-
edge-colored multigraph has c(n−2)(n−3)

2
+ 2c edges and clearly has no proper

hamiltonian path. If n = 6, 8, the multigraphs Hc
k,k+2, k = 2, 3, are exceptions

for Theorem 4.4.
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5 Summary and remarks

In this work, we studied the existence of proper hamiltonian paths, in edge-
colored multigraphs depending on the number of edges, the rainbow degree
and the connectivity. Here, the notable fact is that the proofs were sometimes
long and tedious despite the lower bounds for the edges in the considered
multigraphs were really high. It should be also interesting to study simi-
lar conditions guaranteeing other patterns than proper paths, as for instance
proper cycles, proper trees, etc.
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