N

N
N

HAL

open science

Safety Kernel for Cooperative Sensor-Based Systems

Pedro Nobrega da Costa, Joao Craveiro, Antonio Casimiro, José Rufino

» To cite this version:

Pedro Nébrega da Costa, Jodo Craveiro, Antonio Casimiro, José Rufino. Safety Kernel for Cooperative
Sensor-Based Systems. SAFECOMP 2013 - Workshop ASCoMS (Architecting Safety in Collaborative
Mobile Systems) of the 32nd International Conference on Computer Safety, Reliability and Security,
Oct 2013, Toulouse, France. pp.NA. hal-00847903

HAL Id: hal-00847903
https://hal.science/hal-00847903
Submitted on 24 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00847903
https://hal.archives-ouvertes.fr

Safety Kernel for Cooperative Sensor-Based Systems

Pedro Nébrega da Costa, Jodo Pedro Craveiro, Anténio Casimiro, and José Rufino

Universidade de Lisboa, Faculdade de Ciéncias, LaSIGE,
{pncosta, jcraveiro}@lasige.di.fc.ul.pt, {casim, ruf}@di.fc.ul.pt

Abstract. Developing smart vehicles, either automobile or aerial, to realise co-
operative functionality in open and inherently uncertain environments is a diffi-
cult task. One fundamental challenge is to make cooperation predictable and safe,
despite the uncertainties affecting the operation. Traditional approaches for the
design of safe control systems rely on the possibility of defining safe operational
bounds, both in the value and in the temporal domain. Unfortunately, when con-
sidering wireless communication networks and varying sources of sensor data, it
becomes very hard, or even impossible, to define safe and small enough bounds.
To deal with this problem, a possible approach is to consider a hybrid system ar-
chitecture in which some components may execute with uncertain timeliness, but
which also includes some predictable components. In addition, a Safety Kernel
implemented in the predictable part of the system will be instrumental to manage
the system behaviour and ensure safety.

In this paper, we describe the architecture and role of such Safety Kernel in the
context of a hybrid system architecture. The Safety Kernel is responsible for mon-
itoring and managing the run time configuration of the system, as needed to avoid
hazardous situations. We specify the individual components of the Safety Kernel
and how they interact with other components in the system architecture, including
the functional components of the control system. Finally we present a high-level
description of a concrete implementation based on time and space partitioning.

Keywords: Architectural hybridization, Autonomous vehicles, Cooperation, Safety,
Time and Space Partitioning

1 Introduction

Emerging technological improvements in the domains of embedded computing, sensing
and actuation and wireless communication are key enabling factors for the emergence
of new applications of smart vehicles autonomously cooperating and interacting to pro-
vide improved functionality. In the automotive domain, cooperation can be important
for achieving increased traffic throughput and energy saving. In the avionics domain,
Remotely Piloted Vehicles (RPVs) might be able to autonomously cooperate with other
airplanes in the vicinity in order to manage safety distances, making it possible to de-
ploy these systems in shared airspace areas.

All these applications have very strict safety requirements, which have to be handled
in design time during the several stages of the system development. Typically, safety re-
quirements call for predictability, that is, the need to make assumptions on worst case
values for critical parameters, upon which the system solutions are developed. However,

when considering cooperative systems that interact over inherently uncertain wireless
networks, it becomes infeasible or too inefficient to consider upper bounds, for instance
on communication delays, which prevents cooperation to be implemented while pre-
serving safety. Moreover, also the control algorithms tend to be more complex as the
diversity and richness of available sensory information increases. This also makes it
more difficult to ensure temporal and logical correctness of system components, which
is problematic when safety is a fundamental attribute. Ideally, we would like to be able
to exploit the benefits brought by cooperation, in terms of more precise control with
smaller safety margins, without making any concessions on safety, or even improving
safety. This is a challenging objective, on which the KARYON project is focused.

More precisely, the KARYON project aims at providing system solutions for pre-
dictable and safe coordination of smart vehicles that autonomously cooperate and inter-
act in an open and inherently uncertain environment. Addressing this challenge requires
innovative solutions to guarantee safety by dynamically managing the system’s perfor-
mance. On the one hand, performance improvements (e.g., smaller safety distances)
can be achieved with a complex control system and cooperation. On the other hand, it
is necessary to constrain the system operation whenever this complex control system
experiences faults. Such faults, not excluded a priori in design time, may lead to haz-
ardous situations if not handled conveniently. For instance, considering an example with
RPVs flying in a group, a fault affecting the operation of a complex component can be
handled by increasing the safety distance, at the expense of a reduced performance (due
to the need of a larger portion of air space for the set of RPVs). This problem has been
recognized many years ago [13, 14] and approaches to address it have been described
under the perspective of using hybrid architectures. In [14] the Timely Computing Base
is presented, which separates the system in two parts, a payload and a control part,
where the former can be of arbitrary complexity and synchrony, while the latter has to
be small, predictable and synchronous. The payload part relies on the control part for
the execution of critical steps or fault handlers, which allows complex components to be
used to achieve overall better performances with the available resources, while making
sure that safety concerns can be addressed by the possibility of defining helper and fall
back procedures that are timely and correctly executed. In [13], the author also proposes
to structure the system in terms of complex control functions and simple control func-
tions, where the latter are executed whenever the former start to behave incorrectly or
untimely. He argues that the key issue is to use simplicity to control complexity, which
is better than using other fault-tolerance approaches like N-version programming [4]
and recovery blocks [11], when considering that resources are limited.

In this paper, we describe the Safety Kernel approach employed in the KARYON
project, backed up by a brief description of the surrounding system architecture, which
explores the concept of architectural hybridization introduced in [16], and is aligned
with the hybrid system models proposed in [14] and [13]. A fundamental issue in ar-
chitecturally hybrid system concerns the approach that is used to manage the existing
redundancy, that is, how to allocate functions to different parts of the system, how to
determine when some function is not performing as well as needed and how to select
which functions are executed and when they are executed. The Safety Kernel is the
part of the KARYON architecture that is in charge of some of these management func-

tions, which are defined to be consistent with the KARYON approach for dealing with
functional safety requirements of cooperative vehicles. A KARYON system relies on
the Safety Kernel to deal with the uncertainties potentially affecting some functional
components, to ensure that the provided cooperative functionalities are safe. The Safety
Kernel is in charge of monitoring and managing the operational configuration of the
control system components providing the functionality, for which it continuously ver-
ifies if a set of predefined safety rules on the timeliness and sensor data validity are
satisfied.

The paper is organized as follows. After surveying related work (Sect. 2), we briefly
describe the overall system architecture and how it address the problematic of safe
cooperative functionality (Sect. 3). Sect. 4 describes the Safety Kernel architecture,
namely its components, and how they interact between them and with the rest of the
system. Sect. 5 gives a description of a concrete implementation solution. Sect. 6 closes
the paper with concluding remarks and future work directions.

2 Related Work

State-of-the-art critical systems are typically built considering models in which assumed
properties (e.g., synchrony, faults) are applied to the whole system and do not change
over time. Therefore, these models are said to be homogeneous. On the contrary, we
advocate that in order achieve performance improvements without sacrificing safety it
is necessary to consider hybrid distributed system models [15]. These allow to better
capture the real properties of the environments in which vehicles operate and in which
functionality is implemented. More than that, we believe that architectural hybridiza-
tion [16] is the natural way to architect systems in accordance to the considered hybrid
system models. One simple example of a system well described by a hybrid system
model is a system with a watchdog. The watchdog is used as a safeguard, to make sure
that if something goes wrong in the system then it will be possible to, at least, make
the system stop in order to prevent some wrong or unsafe behaviour. Clearly, while
the system is assumed to possibly fail, the watchdog is assumed to always operate cor-
rectly. Therefore, the watchdog is a subsystem with better properties than the rest of the
system, which is possible because it is a simple component.

Mixed criticality [5] is the concept of allowing applications with different levels of
criticality to coexist on the same system. In this case, one may want that the properties
and assumptions that hold for one application be different from the ones that hold for
another application, which is not easily achieved in a system based on a homogeneous
model. Mixed criticality models show affinity with hybrid system models, in which as-
sumptions and properties may vary on different parts of the system or may hold only
for a period of time. The GENESYS project [10] acknowledged the hybrid nature of
systems and developed a component-based generic platform for embedded real-time
system. However, GENESYS is significantly focused on the problems related to com-
position and component interfaces, whereas our interest is on understanding how un-
certainty can be characterized and how the performance can be managed while making
sure that safety requirements are always satisfied.

The recovery block concept [9] follows an hybrid model, where multiple versions
for the same function are developed. First it runs the more complex version of the
function (with extra features and more prone to errors). If an error is detected, then a
simpler implementation is executed. Simplex [13] follows a similar approach by defin-
ing an architecture composed of two system controllers. One simple and proven safe
and one with additional features but unreliable. It tolerates faults in the unreliable con-
troller using a decision module that observes the plant to verify if the the controller is
being able to keep the controlled system within the desired operational envelope. If not,
it switches the execution to the reliable controller, trading off performance for safety.
The solution is thus designed by assuming that faults are ultimately reflected on some
undesired external behaviour, which can be reliably observed through the existing sen-
sors. In KARYON we look to the problem differently, because we consider that sensor
data may not always be valid due to faults affecting sensor, or due to uncertainties af-
fecting the timeliness of communication and hence the promptness (and validity) of
the other sensor data received from remote vehicles. Therefore, we define an abstract
sensor model that allows the validity of sensor data to be estimated, and we consider
that some components may do timing failures due to their complexity. Given that, the
solutions for deciding when to change the control algorithm, or when to perform some
system reconfiguration, are done in a different way than it is done in Simplex.

The coexistence of reliable and unreliable components calls for mechanisms for
fault containment. Virtualization [7] has been widely used as a mechanism to run multi-
ple systems within the same physical computing platform, allowing to provide different
environments in each virtual machine and isolation between them. However, most vir-
tualization solutions do not provide strict temporal isolation. One approach to achieve
mixed criticality without increased certification expense and providing a complete fault
containment (including temporal isolation) between components is to use time and
space partitioning (TSP). TSP is a concept for safety-critical systems in which ap-
plications with different criticality levels and different requirements may coexist in the
same execution platform. TSP separates the system’s software components into logical
containers called partitions, ensuring that faults occurring in one partition do not af-
fect other partitions, with respect to both time and space domains. These two properties
ensure that faults are contained to their domain of occurrence, preventing them from
propagating to other partitions.

A prominent example of TSP system design is the adoption of the ARINC 653 [1]
specification by the civil aviation domain. In the automotive industry, the top-level re-
quirements for an AUTOSAR operating system include provisions that correspond, to
some extent, to the notions of temporal and spatial isolation [2]. The specification of
the AUTOSAR operating system, however, does not prescribe the use of strict parti-
tioned scheduling as a means to achieve this temporal isolation among applications [3].
We take advantage of TSP properties to develop a solution that integrates in the same
platform components of different complexity, some that are proven timely and reliable
in design time, and other that may behave in uncertain ways. The latter can be used
to implement improved functions, exploiting the additional information made available
through cooperation, without compromising safety. The overall approach can still be
viewed as sufficiently modular to be adopted by existing legacy systems.

3 System architecture for safe cooperation

Cooperation and information sharing is one way to increase the performance and ef-
ficiency of one set of neighbour vehicles. However, when dealing with safety critical
systems, cooperation comes with a major challenge: the need of dealing with uncer-
tainty and, at the same time, guarantee the system’s safety. This section describes how
to integrate and manage unpredictable components in a safety critical system, and how
it is reflected in the system’s architecture.

3.1 Levels of Service

We consider one system (a vehicle) as a set of multiple components, such as sensors,
actuators and computing elements, in charge of acquiring information, processing it,
and outputting a result.

Safety is guaranteed by managing in runtime the performance provided by each
function in the system. For that, we consider that functions may be performed in dif-
ferent ways, each way leading to different results in qualitative terms, but possibly re-
quiring different resources and implying different degrees of timeliness. One approach
to achieve multiple performance levels is to have a component able to adapt its own
behaviour based on some given external parameter. The other approach is to have more
than one component, each implementing the function in a different way, executed in
parallel and producing different possible outputs, from which one is chosen to be used.
In this case, at least one of the implementations must be proven, at design time, to
provide the necessary performance to satisfy safety requirements.

We define Level of Service (LoS) of a cooperative functionality as the combined
performance achieved by the set of components executing in the system. Because we
consider cooperative functionality, it is expected that cooperating entities will be aware
of this LoS, and that each of these entities will eventually perform the cooperative func-
tionality with that LoS. At least, each entity must be aware of the LoS with which each
other entity is capable of performing the cooperative functionality. On each LoS the
functionality is realised with a different performance and requires a different set of as-
sumptions to ensure safety. For instance, to achieve higher performance the required
safety integrity levels are also higher and, as such, the set of safety requirements that
must be met at runtime is more stringent for this LoS than for other LoS corresponding
to a lower performance. In runtime, it must be possible to select the LoS that provides
the highest performance while making sure that all unacceptable risks are avoided and
that, based on runtime constraints, safety is achieved.

3.2 Hybrid Architecture

We exploit the advantages of architectural hybridization with the purpose of allowing
the integration of functions with different criticality levels and different requirements in
the same system. This gives us the possibility to include not only real-time components
proven timely in design time, but also components that, due to their complexity, cannot

to be proven timely (with reasonably small bounds). In practice, this allows us to in-
clude a bigger variety of components, namely those that would have to be discarded in
approaches requiring all components to be proven timely in design time.

The two types of components (i.e. the ones that are proven to be timely safe and the
ones that are not), are logically divided by a so-called hybridization line. Predictable
components are said to be under the hybridization line, while components exhibiting un-
certain behaviour are said to be above it, defining two different realms that enjoy differ-
ent properties and provide different guarantees. Since the realm above the hybridization
line is a source of possible uncertainty, it must be guaranteed that components below the
hybridization line can maintain the system in a safe state (i.e., realise the functionality
in a safe way), despite the possible misbehaviour of the ones above the line. We further
consider another separation within the predictable part of the system. This separation
is between the components that provide some sort of function that is necessary for the
overall functionality (and are thus aware of the application semantics), and components
that are fully unaware of the application semantics, only providing services related to
the management of safety and in charge of switching the system and component be-
haviour according to the required LoS. These components constitute the Safety Kernel,
which we consider to be separated from the other components by a so-called semantics
line (see Fig. 1).

3.3 Safety Kernel

To ensure that safety requirements are always satisfied, the LoS has to be adjusted in
runtime to a level in which all safety constraints are met given the observed integrity of
the system components and sensor data. This adjustment is done by the Safety Kernel,
which encompasses a set of components in charge of monitoring the execution of the
functional components and controlling the LoS in which the system operates. There-
fore, the Safety Kernel components must be reliable, proven in design time to behave
correctly and timely, similarly to other components below the hybridization line.

We envision a generic Safety Kernel, providing services that are independent of the
specifically considered functionality. As mentioned above, the Safety Kernel is unaware
of any application semantics. This makes it modular, facilitates its use and integration
in existing systems, and its development and validation process. Still, the Safety Kernel
must know about safety constraints that need to be satisfied in each LoS. These safety
constraints (defined at design time) take into account all the functionalities to be pro-
vided, their interdependencies, and other issues that are important when making a safety
analysis, and are stored in a Safety Rules Database (part of the Safety Kernel).

4 Safety Kernel architecture

To achieve a Safety Kernel that is reliable, simple enough to be proven safe at design
time and always behaving in a correct and timely way at runtime, its function is centred
around a simple rule checker.

Each component in the system whose output has to be monitored commits to pro-
duce information regarding the validity of its output, which we call validity data. A set

Function A Component &l Cooperative &
(Not proven safe at design time) LoS Evaluator
T e e == = = = = = = = == = = =~ = |~ — ~ ~ Hibrdzationlne
Function A Component 3
(Proven safe at design time)
— ___i___ - I _l_ _ _ __ __|Semanticsline
Writezs, Write App 5, Read Apps, Write Data Read Write Cooperative s, Read Localz,
TFD Data r Output Data (f Input Data? Validity ctive Lo Los Maximum LoS |
X £]
Operating System Support
Read Read App Write App | Read Data |Write Effective | Read Cooperative | Write Local |
TFD DataT Output Data\[\ Input DatT Validity Lo! LOST‘ Maximum LOST‘
L3 x * P A
£]

safety]
Manager

?

Local ()
LoS Evaluator

;glr;:]"rge g] Data Component
Multiplexer
Detector

‘ Safety €] ’—o
Rules Database Safety Kernel

Fig. 1. Components and interfaces

of predefined safety rules establish bounds to the validity data produced by components,
allowing to assert whether that validity data fulfils the current safety requirements.

The evaluation of the validity data against these rules defines the LoS in which the
system is able to perform each cooperative functionality. As such, the main task of the
Safety Kernel is to periodically read the validity data produced by functional compo-
nents, compare it with a set of predefined rules to determine the suitable combination
of LoS for the managed functionalities, and make the necessary adjustments on the op-
eration of system components to bring one or more functionalities into their new LoS.

The Safety Kernel must as well act as a timing failure detector, looking up for timing
failures in components above the hybridization line.

In Fig. 1 we present a schematic view of the system architecture in the form of a
Unified Modelling Language (UML) component model, with the Safety Kernel and the
components which it may use for its operation.

4.1 Relation of the Safety Kernel with the overall architecture

As mentioned previously, the Safety Kernel is positioned below both the hybridiza-
tion line and the semantics line. We assume the existence of another set of semantics-
independent functionalities corresponding to functionalities provided by an operating
system. The remaining components we consider are located in the other two architec-
tural levels above the semantics line. The task of the Safety Kernel is to control these
remaining components, based on the validity data and on timeliness observations, and
defining the performance level of each component (in case they can perform in differ-
ent ways) as to meet a certain LoS. This requires the Safety Kernel to perform multiple
tasks. For the components located above the hybridization line, and because they are not
proven to be timely at design time, their timeliness must be continuously monitored. For
functions that are implemented using multiple components (and in which each compo-

nent produces one possible output to be used by other components), the Safety Kernel
must choose which of the produced outputs will be forwarded to other components.

The control of the LoS is done not only based on the safety evaluation of the local
components, but also on the evaluation made by the cooperative neighbour nodes. Based
on this, the Safety Kernel defines the LoS to be applied to each of the functions of the
system.

4.2 Operating system support

Communication between functions and the Safety Kernel is handled by some sort of
Operating System (OS) support. As such, the interfaces required by the Safety Kernel
shall be provided by the OS, which ensures that the primitives composing these inter-
faces are provided in READ—WRITE pairs constituting an information flow channel
with one writer and one or more readers.

In each pair of READ-WRITE primitives, one of the primitives is intended to be
used by one of the Safety Kernel components, whereas the other one shall be used by
a component external to the Safety Kernel, as pictured in Fig.1. Both types of primi-
tive should be non-blocking, atomic, and the OS support should provide the following
guarantees: (i) the value that is returned by a READ call is the one written in the last
invocation of the corresponding WRITE call (until overwritten, a value can be read
multiple times and/or by multiple readers); and (ii) the value provided in a WRITE call
overwrites the value previously provided by the same writer. The way these information
flow channels are implemented is abstracted by the OS support, and should be transpar-
ent to the remaining components. It is the responsibility of the OS support to ensure, by
whichever means necessary, that READs are consistent with the latest WRITE. The OS
support must also provide scheduling mechanisms which allow temporal predictability
of the interaction flows we here describe.

4.3 Safety Kernel components

To perform its role, the Safety Kernel exchanges information with the remaining com-
ponents of the system. The exchanges with different types of component embody dif-
ferent aspects of the Safety Kernel operation. For this reason, we see the Safety Kernel
as a set of components, with clearly defined and separated concerns, combined to verify
and guarantee the operational conditions for safety.

Safety Rules Database. The Safety Rules Database contains the rules used to evaluate,
at runtime, the system safety and to decide under which LoS the system may operate.
The system safety is evaluated by assessing the data validity information with respect to
the bounds expressed in the stored rules. Each LoS has its own set of requirements and
therefore its own set of rules that must be checked to realise whether the system is able
or not to perform in that LoS. The complexity of the rules can vary from a collection
of independent checks of data validity to a sequence of interdependent checks of data
validity. Based on safety analysis, these rules are generated and verified by application
developers and merged at integration time in the Safety Kernel, which is independent

from their generation, validation and semantics, which allows to have a generic Safety
Kernel, independent from the applications.

Component Data Multiplexers. As explained in Sect. 3.1, functions can be imple-
mented by more than one component executing simultaneously: at least one must be
predictable and some may execute with uncertain timeliness. The output by the reliable
component can always be used, whereas the remaining outputs from other components
may have low validity or may be be produced too late. The task of the Data Component
Multiplexers is to decide which of the outputs will be forwarded to components that
use these outputs as inputs, discarding the others. To do so, each component sends its
output value to the Data Multiplexer who, in its turn, reads it and forwards the one that
corresponds to the determined LoS to components.

Communication between components and the Data Multiplexer is realised by the
Data Multiplexer Interface, that provides the primitives for both reading and writing
the outputs and inputs of components (see Fig. 1), abstracting the process both to com-
ponents who provide output and the ones who seek input. In practice, this allows to
mask timing failures produced by unpredictable components, since the result of another
component (e.g., the safe one) can be forwarded as soon as the timing failure is detected.

Timing Failure Detector. The Timing Failure Detector (TFD) component is in charge
of detecting failures in the time domain in components above the hybridization line.
Hence, this component acts as a watchdog, detecting delays and crashes. Using the
primitives provided by the TFD Data Inteface, components above the hybridization
line must periodically send a heartbeat to the TFD. When executed, the TFD must,
for all the functions, check whether their heartbeats are still valid or not (i. e., recently
produced). Upon a detected delay or crash on some function, this will be considered
when evaluation safety rules and will lead to a LoS change and, consequently, to the
selection of a different component output by the Component Data Multiplexer.

Local LoS Evaluator. The role of the Local LoS Evaluator is to, periodically, evaluate
and check the validity data sent by each function against the Safety Rules Database.
This interaction is supported by the primitives provided by the Data Validity Interface.
Based on data validity analysis, the Local LoS Evaluator determines the maximum LoS
at which the local functions are able to safely perform. The Local LoS Evaluator can,
from this information, determine the maximum cooperative LoS at which the node can
participate in each cooperative functionality. This result is then made available; while it
can be read and used by any part of the system, the maximum cooperative LoS is meant
to be used by the Cooperative LoS Evaluator, external to the Safety Kernel (Sect. 4.4).

Safety Manager. The Safety Manager is the component in charge of controlling the
operation of the system and that ultimately enforces one LoS to be effectively adopted
by system components. Periodically, using the Cooperative LoS Interface, the Safety
Manager reads the valid agreed cooperative LoS, if available, as well as the Local LoS

calculated by the Local LoS evaluator. The effective LoS is chosen by the Safety Man-
ager as the lowest LoS between the Local and the Cooperative LoS: EffectiveLoS =
min(LocalLoS, CooperativeLoS).

Using the Write_Enforced_LoS primitive, the Safety Manager outputs the effective
LoS to all the functions that should reconfigure themselves in accordance to it. This LoS
is also made available to the Cooperative LoS Evaluator (presented in Sect. 4.4). The
reconfiguration and adjustment mechanisms are responsibility of each function, and are
out of the scope of the Safety Manager.

4.4 Cooperative LoS Evaluator

For each cooperative function, the Cooperative LoS Evaluator has the purpose of par-
ticipating in an agreement on the LoS. This agreement is performed with the remaining
participating nodes, so as to take into account the maximum cooperative LoS each of
them can achieve. Although the Cooperative LoS Evaluator plays an important role to-
wards safety, it cannot be part of the Safety Kernel mainly due to the uncertainty in
the communication with other nodes. Therefore, it is located above the hybridization
line, outside the Safety Kernel. This component must maintain knowledge about which
nodes are participating in the cooperative functionality (group membership).

The output of the Cooperative LoS Evaluator is the agreed cooperative LoS, made
available to the Safety Manager using the Cooperative LoS Interface. If this component
is not able to reach an agreement with the nodes included in the group membership
it will not produce any output. The Safety Manager shall be prepared to deal with this
situation, by establishing an LoS which guarantees safe co-existence with the remaining
participating nodes in spite of the impossibility to cooperate.

S Implementation

Based on the requirements described previously, this chapter details a preliminary im-
plementation of a system based on the TSP concept. Finally, we present a practical
example of implementation using a TSP architecture, detailing how it will support
scheduling and communication between the system components.

5.1 Time and Space Partitioning

TSP separates software components into logical containers (partitions), ensuring fault
containment between them (i.e., faults that occur in one partition do not affect other
partitions), with respect to both time and space. Partitions are managed by an underlying
layer responsible for enforcing TSP properties, partition scheduling and dispatching,
memory protection, and communication between partitions.

We take advantage of the properties provided by TSP to contain faults between
components above and below the hybridization line. By isolating unpredictable com-
ponents, we can ensure that failures and delays that may occur in these components do
not affect the remaining.

5.2 AIR Implementation

AIR [12] is a TSP architecture implementation using an intermediary layer called Par-
tition Management Kernel (PMK) to ensure TSP properties. Although inspired in the
ARINC 653 specification, AIR aims to improve upon such specification. More specifi-
cally, it deliberately diverts from ARINC 653 where the latters limitations can be over-
come to the benefit of additional functionality and flexibility without compromising
safety. For instance, despite the strict prohibition thereto in ARINC 653, the architec-
ture is being improved to safely schedule applications over multiple processor cores [6].

Partitioning. In order to prevent errors from propagating from one component to an-
other, these must be isolated in partitions. One partition may, however, host more than
one component. The division in partitions is only mandatory between components on
which we want to ensure fault containment by enforcing temporal and spatial segre-
gation. In an extreme case, all components under the hybridization line may be in one
partition, and the ones above the line in another partition. In an opposite example, every
component may have its own partition.

Partitions are scheduled by the PMK according to a fixed schedule defined at design
time, bounding the time assigned to each partition and ensuring that timing faults do
not propagate from one partition to another. This schedule repeats itself over a time
period called Major Time Frame (MTF). This ensures that scheduling is completely
predictable, and that the time assigned to each partition is known and bounded —so
that delays in one partition do not affect the others.

Communication. AIR implements two communication mechanisms between different
partitions: queues and sampling ports. Queues store all the values sent by one partition
in a buffer until they are read. On the other hand, sampling ports only store one value,
overwriting it every time a new value is sent, avoiding possible overflow problems.

When a sampling port is created, a validity period must be defined. This period
defines the rate at which a value should be refreshed by the sender. Upon reading from
a sampling port, the reader knows whether the value is still valid or not. The value of
this validity period must be calculated prior to the creation of the port, and it should
reflect how long is the value valid to be used by other components after being written
and the period of execution of the component that writes it, based on the scheduling
performed by the PMK. This mechanism may be used by readers to detect delays and
timing faults in components above the hybridization line. If a component is delayed
and does not write some value that was supposed and the validity of the previous value
expires, the delay will be, eventually, detected by the reading components. The PMK
layer is in charge of transferring the data between the sender and the receiver ports,
being completely transparent for the applications.

6 Conclusion

In this paper we addressed the problematic of trading off the degree to which we fulfil
the goals of a cooperation between vehicles (the performance of the cooperative func-
tionality) for increased overall safety. The Safety Kernel is the component in charge of

monitoring and controlling the execution of system’s components, ensuring they adapt
to runtime constraints. Due to the uncertainty present in some components, we sug-
gested an implementation based on the TSP concept employed in the civil aviation and
aerospace industries, which provides fault containment between components. By iso-
lating non-safe components, we ensure that failures and delays that possibly occur in
these components do not affect any other ones.

As future work, we envision implementing the described Safety Kernel solution
within the scope of the considered system architecture, demonstrating its effectiveness
and innovations via computer simulations with fault injection support to experimentally
evaluate safety assurance according to the ISO 26262 [8] safety standard and evaluate
the results in realistic scenarios of the civil aviation and automotive industries.

Acknowledgements. This work was partially supported by the EC, through project KARYON
(IST-FP7-STREP-288195); and by FCT, through Multiannual Funding to LaSIGE (UI 408), the
CMU|Portugal program, and the Individual Doctoral Grant SFRH/BD/60193/2009.

References

1. AEEC: Avionics application software standard interface. ARINC Specification 653, Airlines
Electronic Engineering Committee (AEEC) (Jan 1997, rev Nov 2010)

2. AUTOSAR: Requirements on operating system, v3.1.0, release 4.1, revision 1 (Jan 2013)

. AUTOSAR: Specification of operating system, v5.1.0, release 4.1, revision 1 (Feb 2013)

4. Avizienis, A.A.: The methodology of n-version programming. In: Lyu, M.R. (ed.) Software
Fault Tolerance, chap. 2, pp. 23-46. John Wiley & Sons, New York (1995)

5. Barhorst, J., Belote, T., Binns, P., Hoffman, J., Paunicka, J. Sarathy, P., Scoredos, J., Stanfill,
P, Stuart, D., Urzi, R.: A research agenda for mixed-criticality systems (2009), white paper

6. Craveiro, J.P., Rufino, J., Singhoff, F.: Architecture, mechanisms and scheduling analysis tool
for multicore time- and space-partitioned systems. ACM SIGBED Review 8(3) (Jul 2011)

7. Heiser, G.: The role of virtualization in embedded systems. In: First workshop on Isolation
and integration in embedded systems (IIES’08). Glasgow, Scotland (Apr 2008)

8. ISO: ISO 26262: Road vehicles - functional safety. Int’l Standard ISO/FDIS 26262 (2011)

9. Kim, K.H.: The distributed recovery block scheme. In: Lyu, M.R. (ed.) Software Fault Tol-
erance, chap. 8, pp. 189-209. John Wiley Sons (1995)

10. Obermaisser, R., Kopetz, H. (eds.): GENESYS: A Candidate for an ARTEMIS Cross-
Domain Reference Architecture for Embedded Systems (Sep 2009)

11. Randel, B., Xu, J.: The evolution of the recovery block concept. In: Lyu, M.R. (ed.) Software
Fault Tolerance, chap. 1, pp. 1-22. John Wiley & Sons, New York (1995)

12. Rufino, J., Craveiro, J., Verissimo, P.: Architecting robustness and timeliness in a new gen-
eration of aerospace systems. In: Casimiro, A., de Lemos, R., Gacek, C. (eds.) Architecting
Dependable Systems VII, LNCS, vol. 6420, pp. 146—170. Springer Berlin Heidelberg (2010)

13. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20-28 (Jul/Aug 2001)

14. Verissimo, P., Casimiro, A., Fetzer, C.: The timely computing base: Timely actions in the
presence of uncertain timeliness. In: International Conference on Dependable Systems and
Networks. pp. 533-542. New York City, NY (Jun 2000)

15. Verissimo, P.: Uncertainty and predictability: Can they be reconciled? In: Schiper, A.,
Shvartsman, A., Weatherspoon, H., Zhao, B. (eds.) Future Directions in Distributed Com-
puting, LNCS, vol. 2584, pp. 108—113. Springer Berlin Heidelberg (2003)

16. Verissimo, P.E.: Travelling through wormholes: a new look at distributed systems models.
SIGACT News 37(1), 66-81 (Mar 2006)

w

