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I. INTRODUCTION

The study of wave propagation in complicated structures can be achieved in the high frequency (or small wavelength)
limit by considering the dynamics of rays. The complexity of wave media can be either due to the presence of
inhomogeneities (scattering centers) of the wave velocity, or to the geometry of boundaries enclosing a homogeneous
medium. It is the latter case that was originally addressed by the field of Quantum Chaos to describe solutions of
the Schrödinger equation when the classical limit displays chaos. The Helmholtz equation is the strict formal analog
of the Schrödinger equation for electromagnetic or acoustic waves, the geometrical limit of rays being equivalent to
the classical limit of particle motion. To qualify this context, the new expression Wave Chaos has naturally emerged.
Accordingly, billiards have become geometrical paradigms of wave cavities.

In this chapter we will particularly discuss how the global knowledge about ray dynamics in a chaotic billiard may
be used to explain universal statistical features of the corresponding wave cavity, concerning spatial wave patterns of
modes, as well as frequency spectra. These features are for instance embodied in notions such as the spatial ergodicity

of modes and the spectral rigidity, which are indicators of particular spatial and spectral correlations. The spectral
study can be done through the so-called trace formula based on the periodic orbits of chaotic billiards. From the latter
we will derive universal spatial and spectral features in agreement with predictions of Random Matrix Theories, but
also see that actual deviations from a universal behavior can be found, which carry information about the specific
geometry of the cavity. Finally, as a first step towards disordered scattering systems, a description of spectra of
cavities dressed with a point scatterer, will be given in terms of diffractive orbits.

II. RAY CHAOS AND TRACE FORMULA FOR THE HELMHOLTZ EQUATION

A. Ray chaos in cavities - Periodic Orbits

The Helmholtz equation describes a variety of stationary wave-phenomena studied in electro-magnetism, acoustics,
seismology and quantum mechanics; its general form for a (complex) scalar wavefunction ψ (ψ being the pressure
variation in a fluid, a component of the electromagnetic field in a cavity, the elevation of a membrane, ...) reads

(

~∇2 + k2(~r)
)

ψ(~r) = 0 (1)

The wavenumber k depends explicitly on space according to the dispersion relation k2(~r) = ω2/c2(~r), where c(~r) is the
spatially varying wave velocity. By writing the wavefunction in the form ψ(~r) = A(~r) exp

[

iS(~r)
]

, and by neglecting

term of the form ~∇2A/A, equation (1) leads to the so-called Eikonal equation for the phase

(

~∇S
)2

= k2(~r) (2)

In the geometrical limit, the rays may be viewed as the characteristic curves [~r(t), ~k(t)] of a fictitious particle of

variable mass (2c2)−1 and pseudo-momentum ~k whose dynamics is controlled by the Hamiltonian [1]

H(~r,~k) = c2(~r)~k 2 = ω2 (3)

The ray trajectories are given by the Hamilton’s equations of motion:

d

dt
~r =

c2

ω
~k,

d

dt
~k = − c

ω
k2~∇c = −ω

c
~∇c (4)

Acoustic enclosures or rooms are common examples of complex wave cavities where the dynamics of rays may
generically display chaos. Using the formal analogy between the geometrical limit of rays and classical mechanics,
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(a) (b)

FIG. 1: Examples of a single ray trajectory after a propagation of 150 in units of the radius R: (a) inside a circular billiard,
where a caustic is clearly observed; (b) inside a circular billiard cut by a small straight segment of length 10−2R. The caustic
is destroyed due to the chaotic motion.

the simplest paradigms of such enclosures are billiards, which are closed homogeneous domains containing a particle
specularly bouncing on the walls. According to the shape of the billiard, the motion may be regular or chaotic.
Without going into too technical details, we wish now to illustrate the particular dynamics of chaotic billiards. Let
us first recall the regular motion of rays in the billiard with the shape of a circle. The Fig. 1 (a) shows a typical
trajectory within such a billiard after a propagation length of 150 in units of the radius R. One can clearly observe
the presence of a caustic. The latter encloses a region of space that this trajectory never visits (whatever the number
of reflections). This kind of structure is destroyed in chaotic billiards. This is exemplified by considering the following
modification of the previous billiard. A new shape is obtained by cutting a small straight segment of length 10−2R.
Whereas the change of boundary is not visible on Fig. 1 (b), its effect on the dynamics is dramatic: for the same
initial conditions (position and direction) the formerly forbidden region is invaded after a finite number of reflections.
In the theory of Hamiltonian chaos, it is shown that this effect stems from the extreme sensitivity to initial conditions,
which appears for any non-vanishing size of the cut (except for a cut of length 2R which corresponds to the semi-circle
billiard).

n̂j

sj

t̂j

sj+1

sj−1

αj

FIG. 2: Representation of the dynamics in a billiard through the coordinates associated, at each rebound, to the curvilinear
abscissa s along the boundary, and the sine of the angle of reflection α with respect to the inward boundary normal.

The qualification of chaos is more conveniently studied through a phase space representation. A common represen-
tation in billiards consists in restricting the dynamics to the knowledge, at each impact, of the curvilinear abscissa,
s, and of the sine of the angle of reflection, α, with respect to the inward boundary normal (see Fig. 2). Thus, at jth
reflection, defining t̂j the unit vector tangent to the oriented boundary at abscissa sj , and n̂j the inward normal unit

vector, the pseudo momentum reads ~k = sinαj t̂j + cosαjn̂j . The same trajectories as in Fig. 1, are shown in the
phase space (s, sinα) on Fig. 3 for a finite number of bounces: the regular motion is associated to the conservation
of α in the circular billiard (Fig. 3 (a)), while in the truncated billiard, which is chaotic, the whole phase space is
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eventually uniformly covered by almost any trajectory (Fig. 3 (b)). It should be mentioned here that there exist
particular trajectories which do not fit into this scheme, namely, the periodic orbits. These orbits are trajectories
which close upon themselves in phase space (hence also in real space). For a chaotic system they must, of course, be
unstable in the sense that any small initial deviation from it must diverge exponentially with time.
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FIG. 3: Same trajectories as in figure 1 using the phase space coordinates (s, sinα) introduced in figure 2. (a) The regular
motion in the circular billiard is associated to the conservation of α, (b) while, in the chaotic billiard, the whole phase space is
asymptotically uniformly covered by almost any ray trajectory.

It is important to stress here that if one considers rays as trajectories of pointlike particles carrying wave energy,
then the assumption of uniform and isotropic distribution of wave energy, commonly used in reverberant enclosures,
is fulfilled in chaotic billiards. This is the basis for all exponential reverberation laws used in room acoustics since the
pioneering works of Sabine (see for instance [2, 3] and references therein).

B. The Semiclassical approach for Chaotic Systems - The Trace formula

The aim of a semiclassical (high-frequency) analysis is to obtain approximate solutions for the response of the
stationary wave equation, only by means of classical trajectories and the wavelength λ when the latter can be assumed
to be small enough compared to all sizes of the billiard. In the following, we will be interested in homogeneous media
where the Helmholtz scalar wave equation holds :

(~∇2 + k2)ψ(~r) = 0 inside the enclosure D (5)

where k = 2π/λ is the wavenumber which can only take on discrete values, due to the Dirichlet conditions ψ = 0
prescribed at the boundary ∂D of the enclosure. Other boundary conditions would also produce a discrete spectrum
of values for k as long as they correspond to lossless conditions.

The eigenfunctions φn of this boundary-value problem form a complete set enabling the following expansion for the
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Green’s function of equation (5) :

G(~rB , ~rA; k) =
∑

n

φ∗n(~rB)φn(~rA)

k2 − k2
n

. (6)

In the limit k|~rB−~rA| ≫ 1, the Green’s function can be approximated as a sum over all geometrical ray contributions
from multiply reflected trajectories connecting points A and B (the so-called semiclassical Green’s function; see for
instance [4] or [5])

Gsc(~rB , ~rA; k) =
∑

q , A → B

1

i(2πi)(d−1)/2
|∆AB,q|1/2 exp

[

iSq(~rB , ~rA; k) − i
π

2
mq

]

. (7)

where the action Sq = kLq is proportional to the path length Lq(~rB, ~rA) along the trajectory labeled q, and mq =
2nr,q + nc,q is the so-called Maslov index, with nr,q and nc,q denoting the number of reflections at the boundary and
the number of passages through caustics. The divergence factor ∆AB has the following geometrical expression

∆AB =
k(d−3)

4

dΩA
dAB

(8)

where dAB is the (d− 1)-dimensional cross section at point B of the tube of rays starting from A within a solid angle
dΩA in the vicinity of a given trajectory.

To fix ideas, in the 2D case, for a direct trajectory without reflection between A and B, |dΩA/dAB |1/2 reduces to
1/

√

Lq whereas, after many reflections, in a chaotic billiard, it will typically decrease like exp(−hLq/2) where h is
the instability rate per unit length (Lyapunov exponent).

To retrieve some information about the frequency spectrum and the eigenfunctions from this asymptotic approach
one needs a more global quantity than the Green’s function itself. The expected connection between ray and modal
spectral properties can be deduced from the so-called trace formula. Let us briefly describe its derivation from the
above expression (7). First, one needs to handle the pole singularities in (6) by using

1

k2 − k2
n

→ lim
ε→0+

1

(k2 + iε) − k2
n

= P
(

1

k2 − k2
n

)

− iπδ(k2 − k2
n) , (9)

where P(·) denotes the Cauchy principal value. Relation (9) implies that the imaginary part of the Green’s function,
once integrated over the domain (often referred to as a trace in quantum physics), yields the density of eigenvalues :

1

π
Im

[
∫

D

G(~r, ~r; k)d~r

]

=
∑

n

δ(k2 − k2
n) . (10)

This quantity represents the eigenvalue-density function D(k2) in terms of the variable k2 (also known as the density of
states (DOS) in quantum physics) which is related to the modal density ρ(k) =

∑

n δ(k−kn) through ρ(k) = 2kD(k2).
In the high-frequency limit, if one uses the semiclassical approximation (7) in the above equation, one notices the

rapidly oscillating factor exp [ikLq]. One can therefore evaluate the spatial integral by stationary phase. Indeed, the
equations of motion for the ray trajectory from A to B imply that the partial derivative of Lq(~rB , ~rA) with respect
to ~rB is the unit vector n̂B tangent to the trajectory at B while its derivative with respect to ~rA is minus the unit
vector n̂A tangent to the trajectory at A. Thus, the stationary-phase condition imposed at ~r = ~rB = ~rA selects closed
trajectories in phase space, i.e. periodic orbits. All this finally yields the celebrated trace formula over periodic orbits
(PO), also known as the Gutzwiller trace formula [4]:

ρ(k) = ρ(k) +
1

π

∑

pPO q

Lq
∑

repetitionsr

cos [r(kLq −mqπ/2)]

|det
(

1 −M r
q

)

|1/2 , (11)

where the summation is performed over all primitive periodic orbits (pPO) and their repetitions, and Mq is the
monodromy matrix of the pPO describing the linear change of the transverse coordinates (in phase space) after one
period.

In formula (11), ρ(k) is the contribution of the zero-length trajectories. For such trajectories, the semiclassical
approximation is not valid and the space integral must be performed by using the free-space Green’s function:

ρ(k) =
2k

π
Im

[
∫

D

lim
~rB→~rA

G0(~rB, ~rA; k)d~rA

]

(12)
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This corresponds to the average behavior of the modal density, varying smoothly with k, and given, in billiards, by an
asymptotic series in powers of k−1 whose leading term is known as the Weyl’s law (also known as the Thomas-Fermi
approximation in nuclear physics) and reads:

ρWeyl(k) =
VdΩd
(2π)d

kd−1 . (13)

where Vd is the d-dimensional volume of the billiard and Ωd is the surface of the d-dimensional sphere of unit radius.
The sum over periodic orbits describes the oscillatory behavior, denoted ρosc, of this density around its smooth
component. Longer periodic orbits contribute to finer oscillations and the largest length required to describe the
modal density at the scale of the mean spacing 1/ρ(k) is called the Heisenberg length LH(k) ≡ 2πρ(k). For periodic
orbits longer than LH , as noted by Bogomolny and Keating [6], their contributions should not provide any significant
information about the modal density other than to account for the discreteness of the spectrum: this implies subtle
compensations between terms indicating in fact that most of the information contained in long orbits can be retrieved
from shorter ones. We will come back to this point later in the section devoted to the spectral correlations. Note
that formula (11) is only valid at the lowest order in the small parameter (kL)−1, where L is a typical size of the
billiard, and also that it should be restricted to isolated orbits which is typically the case in truly chaotic billiards.
In the case of continuous families of orbits, especially for integrable billiards, a sum over periodic orbits can be
analytically performed through the use of Poisson sum rules (see e.g. [7], chap. 7 section 1, or also [8, 9]). Another
related problem is the apparent lack of convergence of the Trace formula in chaotic billiards. Indeed, long orbits have
amplitudes behaving like Lq exp(−hLq/2), while it is known that the number of periodic orbits with period less that L
proliferates like (hL)−1 exp(hL) [10]. This should imply that the sum does not converge unless, as already mentioned
above, the fact that the POs are not independent and that the information they contain is structured, conspire in
such a way to ensure convergence.

C. Speckle-like and Scarred Wavefunctions

The chaotic exploration of phase space by rays illustrated in section II A should be expected to govern the statistical
spatial distribution of eigenmodes. Such an ergodic behavior was, indeed, rigorously demonstrated in the late 70’s by
Voros [11] and popularized by Berry [12] through an analogy with laser speckle patterns. Berry provided evidence
that the wavefunction of a typical mode may be viewed as a Gaussian random function resulting from a random
superposition of plane waves [13]. The ergodicity of eigenmodes emerges through the normalized local density of
states defines as follows

ρ̃(~r, ω2) =

∫

d~k ′ δ
(

ω2 −H(~r,~k ′)
)

∫

d~r ′d~k ′ δ
(

ω2 −H(~r ′, ~k ′)
)

(14)

where H(~r,~k) is the Hamiltonian given in (3). In the semiclassical limit kL→ ∞ equation (14) turns into

ρ̃(~r, ω2) ≃ lim
kL→∞

〈

|ψ(~r)|2
〉

ω2 =
1

N

∑

n

|φn(~r)|2 (15)

where the sum runs over N eigenmodes centered on “energy” ω2 (on wavenumber k(~r) =
√

ω2/c2(~r), equivalently) in
an interval small enough for the density of states to remain constant and large enough to ensure a large value of N .
In practice, less and less modes are required as the central mode is far in the semiclassical domain, and, eventually,
the ergodic behavior is obtained for individual modes. As an illustration, equation (5) has been numerically solved
for a domain D with the shape of the chaotic billiard shown in figure 2. Recall that in the billiard case the velocity
is uniform inside the domain: c(~r) ≡ c and, consequently, ω2 = c2k2. In figure 4, the square amplitude of the mode
number n = 1513 (k1513 = 87.89R−1) is depicted. The ergodic nature of the mode is clearly shown: apart from the
axial symmetry such an eigenmode can be viewed, locally, as a superposition of planes waves with fixed k and random
phases and directions. As a consequence, the field autocorrelation function defined as follows

Cψ(~r, ~r0; k) =
〈

ψ∗(~r − 1
2~r0)ψ(~r + 1

2~r0)
〉

k
(16)

reads [12, 14]

Cψ(~r, ~r0; k) =

∫

d~k ′ exp
[

i~k ′ · ~r0
]

δ
(

c2k2 −H(~r,~k ′)
)

∫

d~r ′d~k ′ δ
(

c2k2 −H(~r ′, ~k ′)
)

(17)
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FIG. 4: A typical ergodic eigenmode (squared amplitude), solution of Eq. (5) with Dirichlet boundary conditions, in the
truncated chaotic billiard with k × R = 87.89. Apart from the obvious symmetry, such an eigenmode can be viewed as a
superposition of plane waves at a given k with random phases and directions.

In a 2D billiard the Hamiltonian is uniform and in equation (17) the Dirac δ function only fixes the norm of ~k
giving rise to the important result [12]

Cψ(~r, ~r0; k) = J0(kr0) (18)

where J0 is the zeroth-order Bessel function and r0 is the norm of ~r0. Using an ergodic hypothesis, the average in
(16) can be replaced by a spatial average over the midpoint ~r, which, in practice, should be evaluated over a domain
encompassing a sufficiently large number of oscillations [14].

In the asymptotic limit, a random superposition of plane waves with random uncorrelated phases is expected to
yield a Gaussian random field. In the case of real eigenmodes, this implies that the probability P (ψ)dψ that the
eigenfunction has a value between ψ and ψ + dψ is given by

P (ψ) =
1

√

2π〈ψ2〉
exp

(

− ψ2

2〈ψ2〉

)

. (19)

where 〈· · · 〉 denotes a spatial average on the domain D. One should note that a Gaussian distribution does not imply
the stronger requirement (17). The result (19) is also recovered by Random Matrix Theory (RMT) for the Gaussian
Orthogonal Ensemble of real symmetric N × N matrices in the limit N → ∞ [15] (see also [16]). Indeed, RMT
leads to the so-called Porter-Thomas distribution for the squared eigenvectors components. The latter distribution is
obtained from (19) for the intensity I = ψ2 and reads

P (I) =
1

√

2πI/〈I〉
exp

(

− I

2〈I〉

)

. (20)

To check this behavior, we first numerically solve the Helmholtz equation (5) with Dirichlet boundary conditions
using a plane wave decomposition method. This method [17] has allowed the calculation of the first 2 000 eigenmodes
of the truncated circle billiard [18]. Because of Dirichlet boundary conditions, the eigenmodes are chosen to be real.

Using these calculated modes, we have evaluated the radial field autocorrelation function Cψ(r0; k)

Cψ(r0; k) =
1

2π

2π
∫

0

dθ Cψ(~r0; k) (21)

with θ the polar angle and where the field autocorrelation function Cψ(~r0; k) is equivalent to (16) with a spatial
average over ~r

Cψ(~r0; k) =
〈

ψ⋆(~r − 1
2~r0)ψ(~r + 1

2~r0)
〉

~r
(22)



7

where the average 〈· · · 〉~r reads
∫∫

D
· · ·d~r/

∫∫

D
|ψ(~r)|2d~r, with D the domain of integration.

In Fig. 5, we have represented one typical high energy eigenmode (amplitude) of the truncated circle billiard for a
value of k equal to 87.89 in units of inverse radius R, its probability distribution and the corresponding radial field
autocorrelation function following Eqs. (21) and (22). The assumption of a random superposition of plane waves is
confirmed by the good agreement between the probability distribution P (ψ) and the Gaussian distribution as can
be seen in Fig. 5 (b). The radial autocorrelation function Cψ(r0; k) is compared to the expected zero order Bessel
function J0(kr0) for k ×R = 87.89. Note that the prediction (18) is perfectly verified.

(c)

(b)

(a)

r0/R

−2

Cψ(r0; k)
J0(r0)

+2 +4−4 0

P (ψ)

Truncated circle

0.2 0.4 0.6 0.8 10
−0.4

0

1

0

0.15

0.30

0.45

(ψ − 〈ψ〉)/〈ψ2〉

FIG. 5: (a) A high energy eigenmode (amplitude) with k × R = 87.89 in the truncated chaotic billiard, (b) its associated
probability distribution P (ψ), compared to a Gaussian distribution (continuous line), and (c) the radial field autocorrelation
function Cψ(r0; k).

As any prediction concerning average behaviors, the results presented just above suffer rare but important ex-
ceptions. Indeed, inspecting Fig. 6 (a), a clear deviation from ergodicity is seen, which is in fact associated to a
particular periodic orbit (superimposed as a solid line). This intensity enhancement in the vicinity of a single periodic
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orbit is coined scarring [17, 19]. This unexpected behavior has led the Quantum Chaos community to reconsider
the semiclassical limit (14). They have established that the semiclassical skeleton of eigenmodes is built on all the
periodic orbits of the system. Thus the one-to-one relationship shown in Fig. 6, between an eigenmode and a periodic
orbit, has to be considered as an exception, since, as the number of POs proliferates exponentially with their lengths,
eigenmodes must build upon many of them. A thorough description of the subtle scarring phenomenon is given by
E. Vergini in the present book [20].

(a) (b)

FIG. 6: Examples of eigenmodes displaying an intensity enhancement in the vicinity of (a) an unstable periodic orbit (super-
imposed as a solid line), (b) the continuous family of diameters (boundaries shown as solid lines).

III. TWO-POINT SPECTRAL CORRELATIONS AND FORM FACTOR (SPACE-AVERAGED
TIME-RESPONSE)

A. Spectral Rigidity à la Berry (diagonal approximation)

1. Form Factor

In a complex wave system, either a chaotic cavity or a disordered medium, it is not possible to give a detailed
description of the frequency spectrum by providing a determined sequence of numbers. Hence, the frequency spectrum
is too complicated to be explained level by level but may nevertheless be studied through a statistical approach, in a
way quite analog to the statistical approach of a gas of interacting particles. In the study of spectral properties, a key
role is played by the spectral correlations and their description in terms of adequate quantities will be our concern
in this section. With these quantities we will be in a position to establish how certain universal features predicted
by RMT can be recovered from a global knowledge of chaotic dynamics but also in what respect some non-universal
behavior can be related to the shortest POs of the system.

The spectral autocorrelation function Ck(κ) of the modal density is defined in terms of the oscillating part ρosc of
the modal density as

Ck(κ) = 〈ρosc(k +
κ

2
)ρosc(k − κ

2
)〉k . (23)

where the brackets denote local averaging over k (in practice over an interval large enough to include a large number
of eigenvalues but sufficiently small as to keep the modal density approximately constant). As ρosc =

∑

n δ(k−kn)−ρ,
it is quite easy to show (see e.g. [7]) that Cρ(κ) presents a δ-like behavior at the origin which can be accounted for
by defining an ancillary quantity called the two-level cluster function Y2(κ) through

Ck(κ) = ρ2 [δ (κLH) − Y2 (κLH)] (24)

For the following calculations, it is convenient to re-write the trace formula for ρosc as

ρosc(k) =
∑

PO j

Aje
ikLj , (25)

where the sum runs over all POs including repetitions and complex conjugate terms, stability and phase factors
being integrated into the amplitudes Aj . The form factor is defined through the Fourier transform of the two-point
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autocorrelation function Ck(k) as

K(L) =
1

ρ(k)

∫

Ck(κ) exp (iκL) dκ (26a)

= 1 − 1

2π

∫

Y2(s) exp

(

is
L

LH

)

ds ≡ 1 − b

(

L

LH

)

, (26b)

which, using (25), becomes

Ksc(L) =
2π

ρ(k)

∑

jl

A∗

jAle
ik(Ll−Lj)δ

[

L−
(

Lj + Ll
2

)]

. (27)

For very short lengths (L of the order of the length of the shortest PO), K(L) displays a series of sharp peaks. At
longer lengths, due to the proliferation of POs, the peaks tend to overlap and one can try to evaluate the smooth
behavior of the form factor by means of a classical sum rule. For large k, the terms of expression (27) with Lj 6= Ll
rapidly oscillate and cancel out in the process of averaging over a k-interval as mentioned above. This leads one
to ignore all the off-diagonal terms of the sum, and, in this diagonal approximation, one is left with the following
expression

Kdiag
sc (L) =

2π

ρ(k)

∑

j

|Aj |2δ (L− Lj) . (28)

For the pPOs, the squared modulus of the amplitude behaves like |Aj |2 ≃
(

Lj

2π

)2

exp(−hLj) while their density

(number of pPOs with period between L and L+dL over dL) increases as exp(hL)/L. Thus, ignoring the contributions
of the repetitions of smaller orbits at a given lengths, one finally obtains

Kdiag
sc (L) =

L

LH
. (29)

FIG. 7: Schematic representation of the semiclassical form factor, illustrating how the diagonal approximation predicts a non
universal part showing peaks due to short POs and a universal part due to long POs but for lengths shorter than LH . The
unit value for L≫ LH is predicted by semiclassical arguments beyond the diagonal approximation

Of course, such an expression becomes unphysical for arbitrary long lengths and cannot be valid for L & LH .
Indeed, for such long periods, a complete cancellation of non-diagonal terms cannot be achieved due to the increasing
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number of POs whose lengths nearly coincide. Delande has proposed another semiclassical sum rule [21] which shows
that

Ksc(L) → 1 when L≫ LH . (30)

The argument goes as follows. If the integral defining K(L) is performed over an interval ∆k containing N = ρ(k)∆k
eigenvalues, it approximately reads (using the Wiener-Khinchin theorem) :

K(L) =
1

N

∣

∣

∣

∣

∣

∫ k+∆k/2

k−∆k/2

[ρ(k′) − ρ(k′)]e−ik′Ldk′

∣

∣

∣

∣

∣

2

(31a)

≈ 1

N

∣

∣

∣

∣

∣

∑

n

exp(−iknL)

∣

∣

∣

∣

∣

2

. (31b)

At long lengths L ≫ LH , the oscillating terms in the above expression add incoherently, therefore yielding the limit
(30). All the above results concerning the form factor are summarized in Fig. 7.

For time-reversal invariant systems, which is generally the case for classical wave cavities, one has to correct the
preceding argument because, for each PO, there is a time-reverse PO with an identical amplitude and phase. Therefore,
the corresponding off-diagonal terms in the double sum contribute the same amount as the diagonal terms, yielding
a result that is doubled. At short times, expression (29) thus becomes

Kdiag
sc (L) = 2

L

LH
. (32)

This turns out to be the result predicted by RMT in the case of the Gaussian Orthogonal Ensemble (see e.g. [16] or
[15]) for which

b(x) = 1 − 2x+ x ln(1 + 2x) if 0 < x < 1 (33a)

= −1 + x ln [(2x+ 1)/(2x− 1)] if x > 1 . (33b)

The small-x and large-x behaviors of b(x) perfectly agree with the above semiclassical predictions. That semiclassics
and RMT agree about the universal behavior of the two-point spectral correlations is not a complete confirmation
of the Bohigas-Giannoni-Schmit conjecture [22] which states that the spectral fluctuations of classically chaotic sys-
tems should be described by the relevant ensembles of random matrices. For example the nearest-neighbor spacing
distributions derived form RMT have never been totally justified on semiclassical arguments. As has been shown
with different classes of pseudo-integrable systems (see below the billiards with point scatterers), non-chaotic systems
can very well mimic level repulsion or short range spectral rigidity. Thus a clear-cut separation between classically
integrable or chaotic systems on the basis of their spectral properties is no longer really an issue.

2. Length Spectrum

In the non-universal regime corresponding to the lengths of the shortest POs, expression (28) can also be re-written
as the squared modulus of the Fourier transform of expression (25) for ρosc. When restricting the integral to the
neighborhood of a given k, Ksc(L) can be written as

Ksc(L) =
1

N

∣

∣

∣

∣

∣

∣

2π
∑

j

Ajδ (L− Lj)

∣

∣

∣

∣

∣

∣

2

. (34)

From the latter expression or from expression (28), the so-called length spectrum is revealed from the short length
behavior of a given billiard’s form factor. This behavior is clearly non-universal and can be used to identify the
shortest POs with the largest contribution to the spectral density. This can be a genuine practical tool to gain some
extra knowledge about the specific geometry of a cavity when one only knows part of its spectral response deduced
from scattering experiments.

As an illustration, a length spectrum is shown in Figure 8 computed from the first 2000 eigenvalues of the truncated
circle (see Figs. (4 and 6) with Dirichlet boundary conditions. As shown in section II A, this billiard is known to be
chaotic in the strongest sense. A few POs among the shortest are indicated by arrows and are displayed in Fig. (9).
Remark that the vast majority of periodic orbits contribute to the generic ergodic behavior described in section II C.
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FIG. 8: The length spectrum or Fourier transform of the density of states n(κ), for the eigenvalue problem (5) in the truncated
chaotic billiard shown in Figs. 4 and 6. The trace formula permits to show that the length spectrum should have peaks at the
period lengths of the periodic orbits. Arrows indicate lengths corresponding to the periodic orbits shown in figure 9.

Nonetheless, a special family of POs, namely the continuous family of diameters which survived the truncation, and
constitute marginally unstable periodic orbits, are responsible for some of the high peaks at short length and thus also
responsible for non-universal features of the long range spectral correlations as well as for the non-gaussian statistics
of the eigenmode (b) shown in Fig. (6).

B. From Ballistic to Scattering Systems : point-like scatterers and diffractive orbits

In a billiard where one or more point-like scatterers are added, an approach similar to what has been described
in the previous sections is feasible. In diffractive systems with point-like singularities, classical trajectories that hit
those points can be continued in any direction. These can nonetheless be treated within the wave description by
introducing an isotropic diffraction coefficient D, which fixes the scattering amplitude at each scatterer. In previous
works [23, 24], this diffraction constant has been calculated (with the free Green’s function in [24]) to yield:

D =
2π

− ln(ka/2) − γ + iπ/2
(35)

where γ is the Euler constant and a is a characteristic length which may be interpreted as the non-vanishing radius
of an s-wave scattering disc [23].

With the help of this diffraction constant, a Dyson’s formula can be written for the Green’s function which is
expanded in a multiple scattering series, which, in the presence of a point scatterer located at ~s, reads:

G(~r, ~r ′) = G0(~r, ~r
′) +G0(~r, ~s)DG(~s,~r ′) (36)

where G0 is the unperturbed Green’s function of the bare billiard. If two consecutive scattering events are more
distant than a wavelength, a semiclassical approximation for the unperturbed Green’s function can be used, so that a
semiclassical trace formula can be obtained for the perturbed billiard, which is based on POs and Diffractive periodic
Orbits (DO) as well. These DOs are composed of closed orbits all starting and ending at the same scatterer. Hence
the oscillating part of the modal density now includes DOs, yielding

ρosc(k) = ρoscPO(k) + ρoscDO(k) (37)

where the term with the subscript PO is the corresponding part of the Gutzwiller trace formula (11) and the term
with the subscript DO is a similar sum over all DOs.
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FIG. 9: A few periodic orbits whose periods (in units of R) correspond to peaks of the length spectrum shown in figure (8).

For instance, in a rectangular domain of area A with a single point scatterer, contributions from periodic orbits
and diffractive orbits respectively read [25]:

ρoscPO =
A
π

∑

PO

′
∞
∑

r=1

k√
2πkrLPO

cos(krLPO − rnPOπ − π/4) (38)

and

ρoscDO =
∑

DO

′LDO
π

D√
8πkLDO

cos(kLDO − nDOπ − 3π/4) (39)

where
∑

′ denotes a sum over primitive periodic (diffractive) orbits of length LPO (LDO) and number of bounces
nPO (nDO), and r is the number of repetitions. In formula (39) only leading order one-scattering events are included,
repetitions or concatenations of primitive orbits of order ν being of order O(k−ν/2) [25].

The problem of numerically calculating the eigenwavenumbers in the presence of a point scatterer in a rectangular
billiard with Dirichlet boundary conditions has been solved for instance in [26, 27] and more recently revisited in [28]
where the authors provide a comparison with experimental results in a two-dimensional microwave cavity.

An example of a length spectrum corresponding to a rectangular cavity with a single point scatterer is given in
Figure 10. Here, the dimensions of the cavity in which we have performed our calculations are those of an actual
microwave cavity used in our experiments, with perimeter L = 2.446 m and area A = 0.3528 m2. A large number
of modes (approximately 12000) have been used so that the length resolution is excellent. To illustrate that such a
length spectrum still is dominated by the POs of the empty cavity, the amplitude scale chosen in Figure 10 is such
that the contributions of the DOs are much too small to be seen.

POs are easily identified on the length spectrum shown in Figure 10. At first sight, it could even seem that no other
contribution can be seen as if the DOs were absent from it. Somehow, it could even be expected since no long range
correlations are observed in the frequency spectrum thereby indicating that, if the DOs should contribute, especially
at short lengths, they should only in a negligible way. This is what can be observed by closely inspecting a typical
length spectrum for lengths smaller or of the order of the size of the cavity in the presence of a single point scatterer.
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FIG. 10: Length spectrum computed in a a rectangular cavity with a single point scatterer. Approximately 12000 resonances
have been used.

In Figure 11, the contributions of the DOs are displayed on the length range from 0 to 1.6m using an enlarged scale
for the amplitude of the peaks. Sticks with different styles indicate the lengths of the DOs (dotted) and POs (dashed)
within this range.

 1.6 1  1.2  1.4

Length (m.)

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8

FIG. 11: Zoom (×104) of the length spectrum shown in Figure 10 on the length range from 0 to 1.6 m using an enlarged scale
for the amplitude of the peaks : POs (dashed sticks), DOs (dotted sticks)

In [27], R. L. Weaver and the present authors proposed a heuristic way of semiclassically understanding the short and
mid-range spectral correlations of rectangular billiards with point scatterers. In particular, a semiclassical prediction
for the form factor in the universal regime was proposed. It corresponded to the typical two-point spectral correlations
observed in such pseudo-integrable billiards and also produced the linear behavior of the spacing distribution at small
spacings (known as the level repulsion which is typical of GOE spectra). At large spacings, however, the spacing
distribution of spectra calculated in such rectangular billiards with point scatterers, decreases exponentially thus
behaving like the so-called Poisson distribution generically observed for uncorrelated spectra associated to integrable
billiards (such as the rectangle) [16].

The argument proposed in [27] is now briefly summarized. First, one has to acknowledge that the wave problem
associates a finite size of the order of the cross section σ (here a length) to the point scatterer. From the expression
(35) of the diffraction constant, one can show [28] that, apart from a logarithmic correction, the scattering cross
section essentially scales as the wavelength,

σ = |D|2/4k (40)
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thus making the scatterer practically equally efficient at all frequencies in a given band. Thus, in a coarse-grained
way obtained, for instance, by averaging the modal density over a small k-interval, the orbits which are effectively
scattered at lengths much larger than the shortest DOs, are those which meet a small disk of diameter σ centered on
the scatterer. The rate at which a typical ray hits this disk is given by a Sabine-like expression

Γ =
πσ

πA (41)

One then evaluates the form factor by considering it results from two contributions: one from the original POs of the
bare rectangle which have not met the disk at length L, and another one from new POs which have met the disk.
For the first regular part of the form factor, the fraction of orbits which have survived decays like exp(−ΓL), thus
yielding

Kreg(L) ≈ Krect(L) exp(−ΓL) = exp(−ΓL) (42)

(where Krect(L) = 1 yields Poisson statistics for uncorrelated spectra, see, for instance, Ref. [29]), whereas, for the
scattered part, the probability of having met the disk at length L behaves like 1 − exp(−ΓL) thus yielding

Kscat(L) ≈ 2
L

LH
[1 − exp(−ΓL)] if L≪ LH (43a)

≈ [1 − exp(−ΓL)] if L≫ LH , (43b)

where the proliferation of scattered periodic orbits was assumed to follow the same sum rule as the POs of a genuinely
chaotic billiard (following an argument introduced in [30]). In a 2D billiard with area A, LH = Ak so that ΓLH =
|D|2/4 is practically a constant in a given frequency band, therefore leading to a long length (i.e. L≫ Γ−1) behavior of
the form factor very similar to the one of chaotic systems displaying level repulsion. At shorter lengths (i.e. L≪ Γ−1),
K(L) = Kreg(L) +Kscat(L) is practically unity like Krect(L), therefore leading to an absence of long-range spectral
correlations. This was analytically demonstrated by Bogomolny, Gerland and Schmit [31] who used the fact that the
eigenvalues of such singular billiards can be considered as the zeroes of random meromorphic functions with a large
number of poles, when these poles are independent random variables.

If the billiard in which a point scatterer is added is already chaotic, Bogomolny, Lebœuf and Schmit have shown, by
using both a random matrix argument and a semiclassical approach, that the spectral correlations are essentially not
modified with respect to those of the bare chaotic billiard [32]. In a certain way, diffractive orbits cannot randomize
more a system which is already fully chaotic.

IV. CONCLUSION

In the present chapter we have tried to provide a self-contained introduction to the semiclassical approach for the
Helmholtz equation in complex systems known as chaotic billiards. These systems are paradigms of wave cavities
where the chaotic ray motion of the geometrical limit has implications on the spectral response and on the distribution
of wavefunctions. We have introduced the Trace formula, yielding the modal density in terms of a sum over the
unstable Periodic Orbits of the billiard, and given a particular emphasis on its applications in spectral and spatial
correlations. Its connection with Random Matrix theory has been discussed. To bridge the gap between chaotic
billiards and scattering systems, we have also presented how the spectral correlations of billiards in the presence of a
point scatterer can be influenced by periodic Diffractive Orbits, leading to level repulsion even though the unperturbed
cavity is not chaotic.
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