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SHALLOW WATER WAVES OVER POLYGONAL BOTTOMS

MATHIEU CATHALA

The traditional shallow water model for waves propagating over varying bathy-
metry depends for its derivation on the asymptotic analysis of a Dirichlet-Neumann
operator. This analysis however is restricted to smoothly varying topographies. We
propose an adaptation to one dimensional polygonal bottoms using the conformal
mapping idea of Hamilton and Nachbin. The asymptotic analysis of the Dirichlet-
Neumann operator relies on an ad hoc transformation of the fluid domain into a flat
bottom domain. We derive a new shallow water model which accounts for polygonal
topographies.
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1. Introduction

1.1. Water waves over polygonal topographies. Studies of surface water wave
dynamics in the presence of variable topographies are of great interest from coastal
engineering point of view. Despite this importance, there is no general agreement
about how to describe shallow water flows over rough topographies. Actually, it has
been known for quite some time that the presence of strongly varying topographies
introduces special problems for the formal derivation of shallow water models. In
[9], Hamilton raises the limitations of the long wave models derived by Mei and
Le Méhauté [15] and Peregrine [20] when the bottom is strongly sloping. For two
dimensional flows, he used a conformal mapping technique (inspired from Kreisel
[11]) to derive a long wave model on a fluid of strongly varying depth. The restriction
of this method is that it requires knowledge of the conformal mapping between
the fluid domain and a flat strip. In case the topography has polygonal shape,
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2 MATHIEU CATHALA

Nachbin [16] used Schwarz-Christoffel theory to compute this conformal mapping
(numerically) and derived a weakly nonlinear, weakly dispersive, terrain-following
Boussinesq system.

The difficulties pointed out by Hamilton to derive shallow water models in the
presence of non smooth topographies also occur if one wants to use the more recent
method based on the Zakharov/Craig-Sulem formulation of the water waves problem.
The main task of this method is the asymptotic analysis of the Dirichlet-Neumann
operator involved in this particular formulation of the water waves problem (see
e.g. [1] or [10]). Now this analysis depends upon the transformation of the fluid
layer into a flat strip. Unfortunately, as noted by Lannes (see [13, section 2.5.3]),
the classical diffeomorphism between the fluid layer and a flat strip cannot be used
when the bottom parametrization is not regular.

On the basis of these considerations, we intend in this paper to conduce the
shallow water analysis of the Dirichlet-Neumann operator when the bottom has
polygonal shape using the conformal mapping idea of Hamilton and Nachbin to
straighten the fluid layer.

1.2. Formulation of the water waves problem. The water waves problem
consists is describing the motion of the free surface, denoted by ζ(t, x), of an
incompressible, homogeneous and inviscid fluid, under the influence of gravity.
Thorough this paper, we assume that the topography of the bottom is polygonal,
with a finite number of edges (that is the bottom is flat at infinity). The fluid

z = −H0 + b(x)

x ∈ R

z

0

−H0

z = ζ(t,x)

Ω(ζ,b)

Air

Figure 1. Sketch of the fluid domain.

domain is given by
Ω(ζ, b) =

{
(x, z) ∈ R2 ; −H0 + b(x) < z < ζ(t, x)

}
,

where H0 is a reference depth and b(x) denotes the polygonal variations of the
bottom (see Figure 1). With the usual assumption of irrotational flow, the fluid
velocity is represented by the gradient of a potential Φ.

The asymptotic analysis of the water waves problem requires the use of dimen-
sionless quantities based on characteristics of the flow. More precisely, denoting by
λ the typical wavelength of the waves, by asurf their typical amplitude and by abott
the typical amplitude of the bottom variations, we define dimensionless variables
and unknowns as

x′ = x

λ
, z′ = z

H0
, t′ =

√
gH0

λ
t,

and
ζ ′ = ζ

asurf
, b′ = b

abott
, Φ′ = Φ

asurfλ
√
g/H0

.
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To simplify the notations we omit the prime symbol in the rest of the paper. From
the previous physical scales we also define three independent parameters:

µ = H2
0

λ2 , ε = asurf

H0
, β = abott

H0
.

Our analysis focuses on the shallow water regime µ� 1. The parameters ε and β
respectively account for the relative amplitude of the waves and of the bathymetry.

As remarked by Zakharov [21], the evolution of the flow is characterized by the
evolution of only two quantities located at the surface, namely the surface elevation
εζ and the trace of the velocity potential ψ = Φ|z=εζ . The formulation of the water
waves problem in the form of a system of two scalar evolution equations on (ζ, ψ),
due to Craig and Sulem [6, 5], reads in dimensionless form

∂tζ −
1
µ
Gµ[εζ, βb]ψ = 0,

∂tψ + ζ + ε

2 |∂xψ|
2 − εµ

( 1
µGµ[εζ, βb]ψ + ε∂xζ∂xψ

)2
2(1 + ε2µ |∂xζ|2)

= 0.
(1.1)

The key point in this formulation is the introduction of the Dirichlet-Neumann
operator

Gµ[εζ, βb] : ψ 7→
√

1 + ε2 |∂xζ|2∂nΦ|z=εζ , (1.2)

where the velocity potential Φ is the solution to the non-dimensionalized elliptic
problem 

µ∂2
xΦ + ∂2

zΦ = 0 in Ω(εζ, βb),
Φ = ψ on {z = εζ},
∂nΦ = 0 on {z = −1 + βb},

(1.3)

in which ∂n stands for the upward conormal1 derivative associated with the elliptic
operator µ∂2

x + ∂2
z . Using the Zakharov/Craig-Sulem formulation (1.1) as a starting

point, approximating the water waves equation in shallow water regime then amounts
to understand the asymptotic behavior of the Dirichlet-Neumann operator when
the shallowness parameter µ is small.

1.3. Asymptotic expansion of the Dirichlet-Neumann operator.
Transforming the Laplace equation into an elliptic problem on a flat strip. Since the
Dirichlet-Neumann operator is explicitly defined in terms of the velocity potential,
a natural way to derive asymptotic properties of this operator is by studying the
asymptotic behavior of the potential. The issue is then to study a Laplace equation
on the unknown fluid domain Ω(εζ, βb). An efficient approach to get around this
issue is to transform the fluid domain to the flat strip S = (−1 , 0) × R (see e.g.
[2, 1, 10] or [18]). The main interest is that the resulting transformed potential
on the flat strip then solves an elliptic boundary value problem with variable
coefficients defined on the fixed domain S. Since the Dirichlet-Neumann operator
can be expressed in terms of the transformed potential, constructing a shallow water
expansion of Gµ[εζ, βb]ψ reduces to finding an approximate solution to this new
boundary value problem on S.

1At the bottom boundary, the outward unit normal vector n is well defined everywhere except
at the vertices.



4 MATHIEU CATHALA

Limitations of the classical approach. In the previous approach, the choice of the
diffeomorphism between the flat strip and the fluid domain is important because
it governs the form of the resulting elliptic problem on S. More precisely, given a
diffeomorphism Σ mapping S onto Ω(εζ, βb), we know from Proposition 2.7 of [12]
that the transformed velocity potential φ = Φ ◦ Σ satisfies

∇x,z · P [Σ]∇x,zφ = 0 in S,

where∇x,z = [∂x , ∂z]T and where the matrix P [Σ] is defined in terms of the Jacobian
matrix JΣ of Σ as

P [Σ] = |det JΣ| J−1
Σ

[
µ 0
0 1

]
(J−1

Σ )T .

To define this diffeomorphism, the simplest choice consists in transforming only the
vertical coordinate:

∀(x, z) ∈ S, Σ(x, z) =
(
x, εζ(x) + z(1 + εζ(x)− βb(x))

)
.

Unfortunately, this choice requires some regularity on the bottom parametrization b
since the coefficients of P involve, among others, the derivative of b.
Schwarz-Christoffel mappings as an adaptation to polygonal topographies. In this
paper, we intend to adapt the previous approach to the particular case of a polygonal
topography. Therefore, the first task is to construct a diffeomorphism between the
flat strip and the fluid domain with polygonal bottom. This task is undertaken
in section 2, in which we transform the Laplace problem (1.3) on the polygonal
bottom domain Ω(εζ, βb) into a variable coefficients elliptic problem on the flat
strip S. Introducing complex canonical coordinates, we use a conformal mapping
technique, namely Schwarz-Christoffel mapping theory (see [17] for example), to
straighten the polygonal bottom. Section 3 is entirely devoted to the shallow water
analysis of the Dirichlet-Neumann operator. Following the usual approach outlined
above, we show that this operator can be expressed in terms of the solution of
the boundary value problem on the flat strip. The asymptotic expansion of the
Dirichlet-Neumann operator then hinges on the construction of an approximate
solution to this boundary value problem. Using this asymptotic analysis, we finally
derive in section 4 a shallow water model which accounts for polygonal topographies.

2. Reduction to a problem on the flat strip

In view of the shallow water analysis of the Dirichlet-Neumann operator, it is
important to address the recovering of the velocity potential Φ from its trace ψ
at the surface. For this reason, this section is devoted to the study of the Laplace
equation on the physical domain Ω = Ω(εζ, βb) with polygonal topography:

µ∂2
xΦ + ∂2

zΦ = 0 in Ω,
Φ = ψ on {z = εζ},
∂nΦ = 0 on {z = −1 + βb}.

(2.1)

In what follows, we assume that the water depth remains positive:

∃hmin > 0, 1 + εζ − βb ≥ hmin. (2.2)

In this section, we explain how to transform the problem (2.1) into a variable
coefficients elliptic problem on the flat strip. The main issue is to straighten the
polygonal bottom using a smooth mapping. Section 2.1 is devoted to the construction
of such straightening mappings. The transformation of the Laplace problem on Ω
into a boundary value problem on the flat strip then proceeds in two steps (see
Figure 2):
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(1) Using the straightening of the bottom, we first transform in section 2.2
the Laplace problem (2.1) into a Laplace problem with flat bottom via a
diffeomorphism, denoted by Σ−1

bott.
(2) Starting from this transformed Laplace problem with flat bottom, section 2.3

then addresses the flattening of the fluid boundary using the diffeomorphism
Σ−1

surf .

x

z

0

−1

Ω
Σbott

x̃

z̃

0

−1

�Ω
Σsurf

x̃

z̃

0

−1

S

Figure 2. Two step straightening of the physical domain: Σ−1
bott

straightens the bottom, then Σ−1
surf straightens the fluid boundary.

2.1. Using conformal mappings to straighten the bottom. We first aim at
mapping the flat strip S onto the domain at rest

Ωrest =
{

(x, z) ∈ R2 ; −1 + βb(x) < z < 0
}
.

To achieve this, we focus on µ-conformal transformations that is transformations
that are conformal for the metric µdx2 + dz2. As we will see, working with such
mappings is convenient because they leave invariant the nondimensionalized Laplace
equation µ∂2

xΦ + ∂2
zΦ = 0.

2.1.1. Building µ-conformal mappings. Following Nachbin [16], a simple way to build
µ-conformal maps from conformal maps is to use a vertical scaling by a factor √µ,
namely Tµ : (x, z) 7→ (x,√µz). As a matter of fact, a transformation Σ : S 7→ Ωrest
is µ-conformal if and only if the transformation Σµ = Tµ◦Σ◦T−1

µ is a conformal map.
Building a µ-conformal transformation further amounts to building a conformal map
Σµ between the scaled domains Sµ = Tµ(S) and Ωµ

rest = Tµ(Ωrest) (see Figure 3).
The main interest of such a scaling is that conformal transformations between a
strip and a polygonal domain can be found from using Schwarz-Christoffel mapping
theory. The latter ensures that the problem of seeking a conformal map from a strip
to the interior of a polygonal region can be reduced to solving a nonlinear system
of equations, whose unknowns are the pre-images of the vertices of the polygonal
boundary. This problem, known as the Schwarz-Christoffel parameter problem, is
nontrivial and generally analytically intractable but it can be solved numerically
with very efficient methods (see for instance [7]). As an illustration for the use of
the Schwarz-Christoffel formula, we construct in the following example an analytic
function which maps S onto a step bottom domain.

Example 2.1. Let us consider the simple case of a step bottom, that is suppose that
the bathymetry is parametrized by

b(x) =
{

0 if x < 0,
b0 if x > 0,

where b0 is some positive constant. Identifying R2 with the complex plane C, the
rescaled strip Sµ reads

Sµ =
{
ω = x+ iz ; (x, z) ∈ R2, −√µ < z < 0

}



6 MATHIEU CATHALA

1

0

−1

Ωrest

µ-conformal

1

0

−1

S

Tµ T −1
µ

µ

0

−µ

Ω
µ
rest

conformal
µ

0

−µ

Sµ

Figure 3. Getting µ-conformal mappings from conformal ones.

and the rescaled domain at rest Ωµrest is given as

Ωµrest =
{
ω = x+ iz ; (x, z) ∈ R2,

√
µ(−1 + βb(x)) < z < 0

}
.

We seek for an analytic function Σµ from Sµ to Ωµrest which maps the upper boundary

x

z

0

√
µh0

−√µβb0

−√µ

Ω
µ
rest

Figure 4. Rescaled domain at rest in the case of a step

{z = 0} onto itself and the lower boundary {z = −√µ} onto the rescaled bottom
boundary of Ωµrest. Using the Schwarz-Christoffel formula (see e.g [7, Theorem 2.1]),
the desired mapping can be found by integrating the following expression

dΣµ
dω (ω) =

(
1 + h2

0 exp
(
πω√
µ

)
1 + exp

(
πω√
µ

) )1/2

,

where h0 = (1− βb0) (see Figure 4). It follows that

Σµ(ω) = √µh0

π

(
log
(1 + s

1− s
)
− 1
h0

log
(s+ h0

s− h0

))
,
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where s = h0

(
1+exp

(
πω√
µ

)
1+h2

0 exp
(
πω√
µ

)) 1
2

. See Figure 5 for a sketch of the behavior of the

resulting conformal mapping Σµ.

1 0.5 0 0.5 1
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.1

Figure 5. Level lines for the conformal map of Example 2.1

2.1.2. Choice of a µ-conformal transformation. Let Σµ be the Schwarz-Christoffel
mapping from the rescaled strip Sµ to the rescaled physical domain at rest Ωµrest. As
explained above, a µ-conformal transformation Σbott from S to Ωrest is given
by Σbott = T−1

µ ◦ Σµ ◦ Tµ, where we recall that Tµ is the scaling defined as
Tµ(x, z) = (x,√µz). Now, when solving the Schwarz-Christoffel parameter problem,
the conformal map Σµ can be chosen so as to map the upper boundary {z = 0} of
Sµ onto the corresponding boundary of Ωµ

rest. Thus, Schwarz reflection principle
ensures that Σµ can be analytically continued across {z = 0} to the reflected strip
[0 ,√µ) × R. It follows that the associated µ-conformal transformation Σbott is
actually a diffeomorphism between the strip (−1 , 1) × R and the augmented do-
main Ωrest ∪ Ω∗rest obtained as the union of Ωrest with the reflected domain at rest
Ω∗rest =

{
(x, z) ∈ R2 ; 0 < z < 1− βb(x)

}
(see Figure 6). We assume that the fluid

α

0

-1

1

x

z

Σbott

0

−1

0

1

x̃

z̃

Figure 6. Reflected domains and assumption (2.3).

domain Ω is contained within this augmented domain, more precisely

∃α > 0, 1− βb− εζ ≥ α on R. (2.3)

This allows us to set Ω̃ = Σ−1
bott(Ω) and to define functions σµ and ρµ through

∀x ∈ R, (σµ(x), ρµ(x)) = Σ−1
bott(x, εζ(x)).
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In other words, we get a transformed domain Ω̃ with flat bottom and whose free
surface Γ̃ is parametrized by (σµ(x), ρµ(x))2. Moreover the diffeomorphism Σbott

between Ω̃ and Ω maps the bottom (resp. fluid) boundary of Ω̃ onto the bottom
(resp. fluid) boundary of Ω (see Figure 7).

0

x

εζ(x)

Ω
Σbott

σµ(x)

ρµ(x)

�Ω

Figure 7. Straightening the polygonal topography with a µ-
conformal diffeomorphism.

Remark 2.2. Even if the physical elevation is parametrized by a graph (namely
z = εζ(x)), the transformed free surface Γ̃ of Ω̃ is not necessarily a graph too.
However, for the sake of simplicity, we assume in what follows that Γ̃ may be
parametrized as a graph. More precisely, we make the following assumption

∃δ > 0, σ′µ > δ. (2.4)

This assumption implies that σµ is a diffeomorphism so that, setting ζ̃µ = ρµ ◦ σ−1
µ ,

the transformed surface may be parametrized as

Γ̃ =
{

(x̃, ζ̃µ(x̃)) ; x̃ ∈ R
}
.

Note that, since Σ−1
bott is smooth near {z = 0} and since this diffeomorphism maps

this line onto itself, the previous assumption holds if ε is small enough.

2.2. Transformed Laplace equation with flat bottom. By carefully choos-
ing the diffeomorphism Σbott, we have ensured that the transformed potential
φ̃ = Φ ◦ Σbott still solves the (nondimensionalized) Laplace equation on the flat
bottom domain Ω̃. This actually follows from the fact that Σbott is a µ-conformal
transformation. More precisely, defining the inner product 〈·, ·〉µ as

∀u, v ∈ R2, 〈u, v〉µ = Iµu · v,

where

Iµ =
[
µ 0
0 1

]
,

the Jacobian matrix JΣbott of Σbott enjoys the following property.

Lemma 2.3. For all vectors u, v ∈ R2,〈
JTΣbott

u, JTΣbott
v
〉
µ

= |det JΣbott | 〈u, v〉µ (2.5)

2The subscript µ on “σ” and “ρ” reminds one that the transformed free surface depends on µ.
Indeed, by definition, the transformation Σbott is dependent on µ. Note that, as is clear from their
definition, σµ and ρµ also depend on ε but this dependence is omitted.
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Proof. The Jacobian matrix of the conformal transformation Σµ can be written as

JΣµ =
[
a −b
b a

]
.

Differentiating the identity Σbott = T−1
µ ◦ Σµ ◦ Tµ then gives

JΣbott =
[
ã −√µb̃
b̃√
µ ã

]
, (2.6)

where ã = a◦Tµ and b̃ = b◦Tµ. Equality (2.5) then follows from direct computations
using the latter expression for JΣbott . �

Before stating the main proposition of this section let us recall that, with the
notation above, the Laplace equation µ∂2

xΦ + ∂2
zΦ = 0 holds in D′(Ω) if and only if

∀ϕ ∈ D(Ω),
∫

Ω
〈∇x,zΦ,∇x,zϕ〉µ = 0.

Proposition 2.4. Assume that ∂xψ ∈ H1/2(R) and that ζ ∈W 1,∞(R). Then the
transformed potential φ̃ = Φ ◦ Σbott is the solution of

µ∂2
x̃φ̃+ ∂2

z̃ φ̃ = 0 in Ω̃,

φ̃ = ψ̃µ on
{
z̃ = ζ̃µ

}
,

∂z̃φ̃ = 0 on {z̃ = −1},

(2.7)

where the velocity ψ̃µ at the transformed free surface is defined as ψ̃µ = ψ ◦ σ−1
µ .

Proof. Given the definitions of ζ̃µ and ψ̃µ, it is straightforward that φ̃ satisfies the
Dirichlet boundary condition on the fluid boundary

{
z̃ = ζ̃µ(x̃)

}
. To prove that φ̃

solves (2.7), it therefore remains to show that we have∫
Ω̃

〈
∇x̃,z̃φ̃,∇x̃,z̃ ṽ

〉
µ

= 0, (2.8)

for any test function ṽ in the functional space

Ṽ =
{
ṽ ∈ H1(Ω̃) ; ṽ = 0 on Γ̃

}
.

Let us prove first that (2.8) holds for ṽ of the form ṽ = v ◦ Σbott, where v is any
function in D(Ω ∪ {z = −1 + βb}). Given such a function, we thus have to check
that ∫

Ω̃
〈∇x̃,z̃(Φ ◦ Σbott),∇x̃,z̃(v ◦ Σbott)〉µ = 0. (2.9)

Using the chain rule and then applying Lemma 2.3 yields∫
Ω̃
〈∇x̃,z̃(Φ ◦ Σbott),∇x̃,z̃(v ◦ Σbott)〉µ

=
∫

Σbott(Ω)
〈∇x,zΦ ◦ Σbott,∇x,zv ◦ Σbott〉µ |det JΣbott | .

Using the mapping Σbott to perform a change of variable in the last integral, we get∫
Ω̃
〈∇x̃,z̃(Φ ◦ Σbott),∇x̃,z̃(v ◦ Σbott)〉µ =

∫
Ω
〈∇x,zΦ,∇x,zv〉µ

and thus, since Φ solves (2.1),∫
Ω̃
〈∇x̃,z̃(Φ ◦ Σbott),∇x̃,z̃(v ◦ Σbott)〉µ = 0.
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It is important to note that, due to the behavior of Σbott near the prevertices (in
Ω̃) of the polygonal bottom, every function of the form ṽ = v◦Σbott is not necessarily
in H1(Ω̃). Nonetheless, by construction of Σbott, we know that v ◦ Σbott is smooth
on condition that v vanishes near the vertices of the polygonal bottom. Using such
test function in (2.9), we deduce that (2.8) holds for all ṽ ∈ D(−1 ≤ z̃ < 1 + ζ̃µ)
supported away from the prevertices. Since this last set is dense in Ṽ (see [8, Lemma
2.1.2]) we finally conclude that (2.8) holds for any test function ṽ ∈ Ṽ . �

2.3. Transformed problem on the flat strip. We have seen in Proposition 2.4
that the Laplace problem with polygonal bottom (2.1) can be reduced to the same
equation posed in a transformed fluid domain Ω̃ with flat bottom. Therefore, to
reduce the problem to a boundary value problem on the flat strip, it simply remains
to straighten the transformed fluid boundary

{
z̃ = ζ̃µ(x̃)

}
of Ω̃. This can be done

using the classical straightening diffeomorphism defined in section 1.3. Following
this classical approach we define the diffeomorphism Σsurf mapping S onto the flat
bottom domain Ω̃ as

Σsurf : S −→ Ω̃

(x̃, z̃) 7−→
(
x̃, ζ̃µ(x̃) + z̃(1 + ζ̃µ(x̃))

)
.

Then we know (see e.g. [13, Proposition 2.26]) that the Laplace problem on Ω̃, and
thus the Laplace problem on Ω, are equivalent to the following elliptic equation on
S 

∇x̃,z̃ · P̃∇x̃,z̃φ = 0 in S,

φ = ψ̃µ on {z̃ = 0},
∂nφ = 0 on {z̃ = −1},

(2.10)

with φ = φ̃ ◦ Σsurf and where the matrix P̃ is given by

P̃ =

 µ(1 + ζ̃µ) −µ(z̃ + 1)∂x̃ζ̃µ

−µ(z̃ + 1)∂x̃ζ̃µ
1+µ(z̃+1)2

(
∂x̃ζ̃µ

)2

1+ζ̃µ

 , (2.11)

and ∂nφ|z̃=−1 = ez̃ · P̃∇x̃,z̃φ|z̃=−1 denotes the upward conormal derivative.

3. Shallow-water analysis of the Dirichlet-Neumann operator

In this section we concentrate on the asymptotic analysis of the Dirichlet-Neu-
mann operator in shallow water regime (µ� 1). In the light of the previous section,
the Laplace problem (2.1) with polygonal bottom boundary can be reduced to
the elliptic problem (2.10) on the flat strip. This can then be used to build an
asymptotic expansion of Gµ[εζ, βb]ψ with respect to µ following the usual method
for smooth topographies (see for instance [1] or [2, 14, 4] where the method has
been used to derive long-wave models, see also [19] in which this change of variable
approach is applied to address the analyticity of the Dirichlet-Neumann operator).
As outlined in the introduction, this method consists of the following steps:

(1) Express the Dirichlet-Neumann operator in terms of the solution φ to the
problem (2.10) on the flat strip;

(2) Approximate the transformed potential φ on S using a BKW procedure;
(3) Plug this approximate solution back into the expression of (1) to compute

an approximation of Gµ[εζ, βb]ψ.
The first step is undertaken in section 3.1, while the second and third steps are
detailed in section 3.2.
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3.1. The Dirichlet-Neumann operator on the flat strip. As seen in the intro-
duction, the Dirichlet-Neumann operator is given in terms of the velocity potential
as

Gµ[εζ, βb]ψ = ∂zΦ|z=εζ − µε∂xζ∂xΦ|z=εζ (3.1)
=
〈
∇x,zΦ|z=εζ ,n

〉
µ
, (3.2)

where n is the (non-unit) normal vector to the free surface defined as n =
[−ε∂xζ , 1]T . Using the µ-conformal transformation Σbott, this operator can be
similarly expressed in terms of the transformed velocity potential φ̃ = Φ ◦ Σbott on
the flat bottom domain Ω̃.

Proposition 3.1. Assume that ∂xψ ∈ H1/2(R) and that ζ ∈ Ht0+1(R) for some
t0 > 1/2. Then, the Dirichlet-Neumann operator can be written as

Gµ[εζ, βb]ψ =
〈
∇x̃,z̃φ̃ ◦ (σµ, ρµ), ñ

〉
µ
, (3.3)

where ñ is the (non-unit) normal vector to the transformed free surface Γ̃ defined as
ñ = [−ρ′µ , σ′µ]T .

Proof. The proof relies on the fact that the transformation Σbott is µ-conformal.
Indeed, from the chain rule, we have(

JTΣbott
◦ (σµ, ρµ)

)
∇x,zΦ|z=εζ = ∇x̃,z̃φ̃ ◦ (σµ, ρµ).

Using Lemma 2.3 and the above equality in the definition (3.1) of Gµ[εζ, βb], we
obtain

Gµ[εζ, βb]ψ =
〈
∇x̃,z̃φ̃ ◦ (σµ, ρµ),

(
JTΣbott

|det JΣbott |
◦ (σµ, ρµ)

)
n
〉
µ

,

and so it remains to show that(
JTΣbott

|det JΣbott |
◦ (σµ, ρµ)

)
n = ñ. (3.4)

To do this, we first note that a tangent vector to the transformed fluid boundary
Γ̃ is given by t̃ = J−1

Σbott
◦ (σµ, ρµ)t, where t = [1 , ε∂xζ]T is a tangent vector to the

(physical) free surface {z = εζ(x)} (see Figure 8). Now, using the expression (2.6)

{z = εζ(x)}

t
nΣbott

Ω
{(σµ(x),ρµ(x))}

t̃ = J−1
Σbott

t
JTΣbott

n

�Ω

Figure 8. Tangent and normal vectors to the free surface and the
transformed free surface.

for JTΣbott
, we get (

JTΣbott

|det JΣbott |
◦ (σµ, ρµ)

)
I−1
µ t = I−1

µ t̃.

Equality (3.4) is then obtained from this last relation by noting that t̃ = [σ′µ , ρ′µ]T

and using again the expression (2.6) for JTΣbott
. �
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Remark 3.2. A Dirichlet-Neumann operator G̃µ[ζ̃]ψ̃µ associated with the transformed
Laplace problem with flat bottom (2.7) can be defined as

G̃µ[ζ̃]ψ̃µ = ∂z̃φ̃|z̃=ζ̃µ
− µ∂x̃ζ̃µ∂x̃φ̃|z̃=ζ̃µ . (3.5)

It is worth noticing that both quantities Gµ[εζ, βb]ψ and G̃µ[ζ̃]ψ̃µ do not coincide
since the µ-conformal diffeomorphism Σbott acts on the horizontal coordinate when
straightening the bottom. More precisely, we can rewrite the above result as

Gµ[εζ, βb]ψ = σ′µ

(
G̃µ[ζ̃]ψ̃µ)

)
◦ σµ, (3.6)

where we recall that σµ is related to Σbott through

∀x ∈ R, (σµ(x), ρµ(x)) = Σ−1
bott(x, εζ(x))

so that σµ can be considered as the horizontal deformation of the free surface
{z = εζ} due to the straightening of the bottom.

Since we have transformed the Laplace problem with flat bottom (2.7) into the
elliptic problem (2.10) on the flat strip using the trivial diffeomorphism Σsurf , we
know that the Dirichlet-Neumann operator G̃µ[ζ̃]ψ̃µ coincides with the Dirichlet-
Neumann operator that comes from this straightened elliptic problem on the flat
strip (see e.g. [13, Remark 3.7]). Combining this expression with the previous
relationship (3.6) between Gµ[εζ, βb]ψ and G̃µ[ζ̃]ψ̃µ yields the desired expression of
Gµ[εζ, βb]ψ in terms of the solution φ to the elliptic problem (2.10) on S.

Proposition 3.3. Assume that ∂xψ ∈ H1/2(R) and that ζ ∈ Ht0+1(R) for some
t0 > 1/2. Then, the Dirichlet-Neumann operator can be written in terms of the
transformed potential on the flat strip as

Gµ[εζ, βb]ψ = σ′µ ez̃ · P̃∇x̃,z̃φ ◦ (σµ, 0). (3.7)

3.2. Asymptotic analysis of the Dirichlet-Neumann operator. Let us sum-
marize the situation so far. Owing to an ad hoc straightening of the bottom, we
have first reduced the Laplace problem with polygonal bottom (2.1) to the same
Laplace equation on the flat bottom domain Ω̃ with transformed Dirichlet data ψ̃µ
at the surface. Then we have seen that this transformed Laplace problem can in
turn be reduced to a variable coefficients elliptic problem on the flat strip, namely
equation (2.10), and that the Dirichlet-Neumann operator can be expressed in terms
of the solution φ of this elliptic problem. Our strategy here is to use this expression
to derive an asymptotic expansion of Gµ[εζ, βb]ψ in shallow water regime. To do
so, we first construct an approximate solution φapp to (2.10) and then replace the
transformed potential φ in (3.7) with this approximate potential.

3.2.1. Asymptotic expansion of the transformed potential. We look for an asymptotic
expansion of the transformed potential φ of the form

φapp = φ0 + µφ1. (3.8)
This expansion is constructed as an approximate solution of the transformed elliptic
problem on the flat strip, that is such that

∇x̃,z̃ · P̃∇x̃,z̃φapp = O(µ2) in S,

φ = ψ̃µ on {z̃ = 0},
∂nφ̃ = 0 on {z̃ = −1}.

(3.9)

To find this approximate solution, we plug the above expression for φapp into the
elliptic operator from (3.9), expand the resulting expression in powers of µ and
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then choose φ0 and φ1 so as to cancel the leading order terms. Mimicking the
computations of [13, Lemma 3.42], the resulting approximate solution is given by

φ0(x̃, z̃) = ψ̃µ(x̃), (3.10)

φ1(x̃, z̃) = −
( z̃2

2 + z̃
)(

1 + ζ̃µ(x̃)
)2
∂2
x̃ψ̃µ(x̃). (3.11)

Remark 3.4. It is noteworthy to note that, in the expansion (3.8), both functions
φ0 and φ1 also depend on µ.
3.2.2. Asymptotic expansion of the Dirichlet-Neumann operator. Given the previous
approximate (transformed) potential φapp, we may now compute a formal expansion
of Gµ[εζ, βb]ψ. More precisely, using φapp in the expression of the Dirichlet-Neumann
operator on the flat strip given in Proposition 3.3, we get

Gµ[εζ, βb]ψ = Gappψ +O(µ2), (3.12)
where Gapp is defined, according to (3.7), as

Gappψ = σ′µ ez̃ · P̃∇x̃,z̃φapp ◦ (σµ, 0). (3.13)
Computing the right hand side with the help of the explicit expressions (3.10)-(3.11)
for the functions φ0 and φ1 and then using that, from their definitions, ψ̃µ ◦ σµ = ψ

and ζ̃µ ◦ σµ = ρµ, we find

Gappψ = −µ∂x
(

1 + ρµ
σ′µ

∂xψ

)
+O(µ2). (3.14)

Due to the dependence on µ of the diffeomorphism Σsurf , we need to make additional
assumptions to establish an error estimate for the above approximate Dirichlet-
Neumann operator. More precisely, we assume that the transformed free surface
satisfies the following conditions uniformly with respect to µ:
(A1) There exists h̃min > 0, independent on µ, such that 1 + ρµ ≥ h̃min.
(A2) There exists r̃ > 0, independent on µ, such that |ρµ|W 1,∞ ≤ r̃.
(A3) There exists δ > 0, independent on µ, such that σ′µ > δ.
As will be made clear in the proof of the following proposition, these extra assump-
tions give control on both the coercivity of the elliptic operator in (3.9) and on the
O(µ2) right hand side of this approximate equation.
Proposition 3.5. Let s ∈ N∗, ζ ∈ Hs+5/2(R) and ∂xψ ∈ Hs+7/2(R) be such that
(A1)-(A3) are satisfied and that σ′µ ∈W s,∞(R).Then the following estimate on the
remainder holds ∣∣∣∣Gµ[εζ, βb]ψ + µ∂x

(
1 + ρµ
σ′µ

∂xψ

)∣∣∣∣
Hs

≤ µ2C0, (3.15)

where C0 is a constant of the form

C0 = C
(1
δ
,

1
h̃min

, r̃,
∣∣∣∂x̃ψ̃µ∣∣∣

Hs+7/2
,
∣∣∣ζ̃µ∣∣∣

Hs+5/2
,
∣∣σ′µ∣∣W s,∞

)
,

and C is a nondecreasing function of its arguments.
Proof. From the definition of Gappψ and Proposition 3.3, we have

Gµ[εζ, βb]ψ − Gappψ = σ′µ ez̃ · P̃∇x̃,z̃(φ− φapp) ◦ (σµ, 0).
Now, from the construction of the approximate potential φapp, one can check that
u = φ− φapp solves 

∇x̃,z̃ · P̃∇x̃,z̃u = µ2Rµ in S,
u = 0 on {z̃ = 0},
∂nu = 0 on {z̃ = −1},

(3.16)
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with Rµ satisfying

|Rµ|L2(−1,0 ; Hs+1/2(R)) ≤ C
(∣∣∣∂x̃ψ̃µ∣∣∣

Hs+7/2
,
∣∣∣ζ̃µ∣∣∣

Hs+5/2

)
. (3.17)

Then, since
Gµ[εζ, βb]ψ − Gappψ = σ′µ ez̃ · P̃∇x̃,z̃u ◦ (σµ, 0), (3.18)

one may feel inclined to deduce a control of the latter from (3.16) by resorting to
elliptic estimates together with a trace inequality. Actually, since the coercivity
constant of P̃ depends on µ (it is of order O(µ)), a straightforward application of
such estimates does not directly yield (3.15). To face this difficulty, the idea is to
consider the contribution of the shallowness parameter in the elliptic problem (3.16).
More precisely, following for instance [1], the elliptic operator from (3.16) can be
written as

∇x̃,z̃ · P̃∇x̃,z̃ = ∇µx̃,z̃ · P̃µ∇µx̃,z̃,
where the twisted gradient operator ∇µx̃,z̃ is defined as ∇µx̃,z̃ = [√µ∂x̃ , ∂z̃]T and with

P̃µ =

 1 + ζ̃µ −√µ(z̃ + 1)∂x̃ζ̃µ

−√µ(z̃ + 1)∂x̃ζ̃µ
1+µ(z̃+1)2

(
∂x̃ζ̃µ

)2

1+ζ̃µ

 .
The advantage is that the matrix P̃µ at the core of this twisted formulation satisfies
the following coercivity estimate

∀θ ∈ R2, kµ P̃µθ · θ ≥ |θ|2 ,
with a constant kµ of the form

kµ = 2
(
1 +

∣∣∣ζ̃µ∣∣∣
L∞

)
+ 4
h̃min

(
1 + µ

∣∣∣∂x̃ζ̃µ∣∣∣2
L∞

)
.

Now, since ez̃ · P̃∇x̃,z̃u = ez̃ · P̃µ∇µx̃,z̃u, we can apply the aforementioned elliptic
estimate and trace inequality to obtain from (3.17)∣∣∣ez̃ · P̃∇x̃,z̃u|z̃=0

∣∣∣
Hs
≤ µ2C

(
kµ,
∣∣∣∂x̃ψ̃µ∣∣∣

Hs+7/2
,
∣∣∣ζ̃µ∣∣∣

Hs+5/2

)
.

From (3.18), we deduce that

|Gµ[εζ, βb]ψ − Gappψ|Hs ≤ µ2C
(1
δ
,
∣∣σ′µ∣∣W s,∞ , kµ,

∣∣∣∂x̃ψ̃µ∣∣∣
Hs+7/2

,
∣∣∣ζ̃µ∣∣∣

Hs+5/2

)
.

(3.19)
To conclude, we first note that (3.14) can be written as

Gappψ = −µ∂x
(

1 + ρµ
σ′µ

∂xψ

)
− µ2σ′µ rµ ◦ σµ,

where rµ = (∂x̃ζ̃µ)2(1 + ζ̃µ)∂2
x̃ψ̃µ. From here, the desired estimate follows from

(3.19) by applying the triangle inequality. �

Comment. The main drawback of the estimate furnished by the previous proposition
is that the quantities that appear in the constant C0 in (3.15) depend on the
shallowness parameter. Actually, the µ-dependence is mainly due to the contribution
of the parametrization (σµ, ρµ) of the transformed free surface in Ω̃. Therefore, to
improve this estimate, one should more carefully focus on how the parametrization
(σµ, ρµ) depends on µ. To do so, recall first that as we mentioned in section 2.1.1,
the construction of the conformal mapping Σµ associated with the straightening
diffeomorphism Σbott hinges on the resolution of a Schwarz-Christoffel parameter
problem. Identifying R2 with the complex plane, denoting by a1, a2, ..., an ∈ C
the vertices of the (rescaled) polygonal bottom and α1π, α2π,..., αnπ its interior
angles (see Figure 9), this parameter problem actually consists in finding prevertices
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a1

a2 a3

a4ω1 ω2 ω3 ω4

Σµ

Figure 9. Solution of the Schwarz-Christoffel parameter problem
for a bottom with a rectangular hump.

ω1, ω2, ..., ωn ∈
{
z = −√µ

}
and a constant Λ ∈ C such that the desired conformal

mapping Σµ : C→ C satisfies

dΣµ
dω (ω) = Λ

n∏
k=1

(
(exp

(πωk√
µ

)
− exp

( πω√
µ

))αk−1
.

Hence, the parametrization (σµ, ρµ) of the transformed free surface Γ̃ satisfies the
ordinary differential equation

σ′µ + i
√
µρ′µ = Λ−1(1 + iε

√
µζ ′)

n∏
k=1

(
(exp

(πωk√
µ

)
− exp

(πσµ√
µ

)
exp(iπρµ)

)1−αk
.

In the case of a step this differential equation reads (see Example 2.1)

σ′µ + i
√
µρ′µ = (1 + iε

√
µζ ′)

(
1 + exp

(πσµ√
µ

)
exp(iπρµ)

1 + h2
0 exp

(πσµ√
µ

)
exp(iπρµ)

)1/2

.

A possible (but far from obvious), way to improve estimate (3.15) might be to
perform an asymptotic analysis of the solution of the previous differential equation
as µ→ 0.

4. A shallow-water model for polygonal bottoms

In this last section, we focus on the study of shallow water waves over the
polygonal bottom. Owing to the asymptotic analysis of the Dirichlet-Neumann
operator conducted in the previous section, we derive a shallow water model that
approximates, at order O(µ), the solutions of the water waves equations

∂tζ −
1
µ
Gµ[εζ, βb]ψ = 0,

∂tψ + ζ + ε

2 |∂xψ|
2 − εµ

( 1
µGµ[εζ, βb]ψ + ε∂xζ∂xψ

)2
2(1 + ε2µ |∂xζ|2)

= 0.
(4.1)

In the present case, since we consider a rough topography, we choose to work with
variables located at the surface, that is away from the singularities of the bottom.
Therefore the shallow water model is formulated in terms of the surface elevation
ζ and the horizontal velocity at the surface vs = (∂xΦ)|z=εζ . From the definition
of Gµ[εζ, βb]ψ, the vertical component of the velocity, on the other hand, can be
written

(∂zΦ)|z=εζ = µ

1
µGµ[εζ, βb]ψ + ε∂xψ∂xζ

1 + µε2(∂xζ)2 .
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Since Gµ[εζ, βb]ψ gives first contributions at O(µ), we deduce that (∂zΦ)|z=εζ is of
size O(µ). Since, by definition of ψ = Φ|z=εζ , we have ∂xψ = vs + ε∂xζ(∂zΦ)|z=εζ ,
we finally get ∂xψ = vs +O(µ). Plugging the latter in (3.14) yields

1
µ
Gµ[εζ, βb]ψ = −∂x

(
1 + ρµ
σ′µ

vs

)
+O(µ), (4.2)

where we recall that (σµ, ρµ) parametrizes the transformed free surface in Ω̃ and is
defined from the straightening diffeomorphism Σbott by

∀x ∈ R, (σµ(x), ρµ(x)) = Σ−1
bott(x, εζ(x)). (4.3)

Defining the transformed (variable) free surface coefficient Mµ = Mµ[εζ, βb] as

Mµ = 1 + ρµ
σ′µ

, (4.4)

then substituting expansion (4.2) into the first equation of (4.1), we get the following
approximate evolution equation for the elevation

∂tζ + ∂x(Mµvs) = O(µ).
Then, differentiating the second equation of (4.1) with respect to x and using both
∂xψ = vs +O(µ) and 1

µGµ[εζ, βb]ψ = O(1), we are left with the following shallow
water model with precision O(µ){

∂tζ + ∂x(Mµvs) = 0,
∂tvs + ∂xζ + εvs∂xvs = 0. (4.5)

Remark 4.1 (Flat bottom). In case the bottom is flat, the straightening diffeomor-
phism Σbott reduces to identity so that σµ(x) = x and ρµ(x) = εζ(x). Consequently
Mµ coincides with the water depth variable h = 1 + εζ and we recover the classical
Saint-Venant system {

∂tζ + ∂x(hvs) = 0,
∂tvs + ∂xζ + εvs∂xvs = 0. (4.6)

5. Conclusion

The main limitation of the shallow water model (4.5) is that the transformed free
surface coefficient Mµ depends on the variables (σµ, ρµ). This is problematic since,
due to the analytic intractability of the underlying Schwarz-Christoffel parameter
problem, we do not have analytical expression for the mapping Σ−1

bott. Therefore
Mµ = 1+ρµ

σ′
µ

cannot be explicitly written in terms of the variables ζ and vs. As said
above, a possible improvement could be provided by an asymptotic analysis of both
functions σµ and ρµ. Unfortunately, we have been unable thus far to find explicit
asymptotic expansions for these coefficients, even in the simple case of a step where
the expression of the straightening diffeomorphism Σbott is known. It is notable
that, for weakly nonlinear waves ε ∼ µ� 1, Nachbin [16] proposes an interesting
approximation of a coefficient similar to Mµ by a time independent coefficient3.

Given these limitations, we develop in [3] a different approach to study shallow
water flows over rough bathymetries. The starting point of this approach is the
shape analyticity of the Dirichlet-Neumann operator. More precisely, we know
how to find explicit expressions for the shape derivatives of the Dirichlet-Neumann
operator around ζ = 0 and b = 0. We will see that these expressions only involve

3The idea at the basis of this approximation is to evaluate Σ−1
bott in (4.3) not on the free surface

points (x, εζ(x)) but on the undisturbed surface points (x, 0). Setting (σ0(x), 0) = Σ−1
bott(x, 0), this

amounts to replace Mµ in (4.5) by the time independent coefficient M0 = 1
σ′

0
.
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infinitely smooth contributions of the bottom. Therefore, we propose a more formal
approach which consists in first approximating the Dirichlet-Neumann operator by
its Taylor expansion around ζ = 0 and b = 0 and then studying the shallow water
asymptotic of the latter expansion.

Let us conclude by remarking that, even if the computation of the transformed
free surface coefficient Mµ is not obvious (it requires to evaluate the inverse of the
Schwarz-Christoffel mapping Σµ at the free surface), it can be achieved numerically
by using for instance the Schwarz-Christoffel Toolbox of Driscoll and Trefethen [7,
Appendix], thus making possible the development of a numerical method for (4.5).
More details about the numerical method for (4.5) are given in the appendix of
[3], in which we use equations (4.5) as a reference model to assess the performance
of the formal approach developed therein. As an illustration, Figure 10 shows the
time history of the surface elevation computed by (4.6) in the particular case of a
rectangular bottom.

z

0 10 20 30 40 50 60

−1

−0.5

0

0.5

x

20 25 30 35 40
1

1.1

1.2

1.3

1.4

x

ζ

Figure 10. Wave passing over a rectangular hump. Top: to-
pography and initial condition. Bottom: time series of surface
elevation.
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