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Abstract 

Using the knowledge gained from the wave chaos theory, 

we present a simple modification of the shape of a 

reverberation chamber (RC) consisting in inserting a 

metallic hemisphere on a cavity wall. The presented 

simulation results show a significant improvement of the 

field statistical properties, and this without resorting to a 

mode stirrer.  

1. Introduction 

The reverberation chambers, widely used for 

electromagnetic compatibility studies or antenna 

characterisation [1], are resonant cavities, usually of 

rectangular shape and equipped with a stirrer in motion 

having a complex shape. They are used beyond a minimum 

frequency from which the fields are statistically isotropic 

and uniform on a stirrer rotation [2]. As it appears that these 

statistical requirements correspond to the properties of most 

modes of a chaotic cavity [3], we propose the use of a 

chaotic cavity as a reverberation chamber cavity. Indeed, in 

a chaotic cavity, generic modes (also called ergodic modes, 

see e.g. [4]) display Gaussian statistics for each component. 

This statistical behavior can be met at relatively low 

frequency, thereby leading  to statistically isotropic fields 

and random polarizations even for an unstirred cavity field. 

Thus, the statistical behavior of each individual ergodic 

mode might constitute the keystone of an effective reduction 

of the lowest usable frequency (LUF) in chaotic RCs [5].  

 The application of the wave chaos theory to 

electromagnetic systems comes from the analogy between 

the Schrödinger’s and Helmholtz’s equations in the case of a 

flat cavity [3]. The Schrödinger equation being scalar, the 

small cavity height allows the problem reduction to a 2D 

system with a single field component, so that most studies of 

chaotic electromagnetic cavities were carried out in 2D [6]. 

However, a few studies of 3D cavities showed similar 

properties [7]. 

 Drawing inspiration from a 2D chaotic cavity, we 

studied a parallelepipedic cavity provided with a metal half-

sphere on one wall (fig.1). Its dimensions are: W = 0.785m 

along (Ox), L = 0.985m along (Oy) and H = 0.995m along 

(Oz). The hemisphere centred at (31W/42, 3L/4, H) has a 

radius of R = 0.15m. To evaluate how well the cavity is 

operating, the distributions of the six field components are 

examined and compared to those obtained with the cavity 

without hemisphere.  

  

 

 
 

Figure 1: Cavity with hemisphere and 3D grid for field 

values extraction. 

 

The simulations are performed using HFSS 

software, by searching for eigenmodes. The first 232 modes 

of the empty parallelelipedic cavity as well as the first 232 

modes of the cavity loaded by a hemisphere are studied here. 

Their resonant frequencies vary between 214MHz and 

1GHz. To study the field distributions, the values of the 

three electric field components are recorded for each mode 

at 1001 points within the cavity volume. These points are 

taken on a 3D grid included in the cavity (Fig. 1). The 

distance between two adjacent lines as well as between the 

3D grid and the cavity walls is of 50mm. The fields 

associated to each eigenmode are normalized so that the 

mean of the square electric field amplitude on the grid points 

is unitary. 

Using simulation results, we first of all focus on the 

distribution of each field component and determine if a 

Gaussian law is followed. We then examine the isotropy of 

the fields associated to the cavity resonances while 

considering the difference between the standard deviations 

of each component. Besides, the invariance of the field 

statistical properties through a rotation of the orthonormal 

basis is used as a test of the field isotropy.  

2. Field distribution 

We first examine the distribution of the three field 

components for each eigenmode. The orthonormal basis is 

defined according to the cavity edges as reported in Fig. 1. 

In a well-operating reverberation chamber, as for the ergodic 

modes of a chaotic cavity, a normal distribution is expected 

for each field component. 

W=785mm L=985mm 

H=985mm 
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 We focus, as an example, on the mode at 995MHz, 

but similar results are obtained with other modes. The 

mapping of electric field (Fig.2) indicates that the 

disturbance associated with the hemisphere is global, as the 

distribution is no longer regular as in the empty cavity 

(Fig.3). From the 1001 values of the electric field 

components, we plot the associated histograms as well as 

the closest normal distributions (for Ex in Figs.2-3). 

Visually there is a good agreement between theoretical and 

empirical laws after the insertion of the hemisphere. The 

Kolmogorov-Smirnov (KS) at 95% confidence is used to 

determine whether the two laws are close enough. The 

answer is 0 if they match and 1 otherwise. In the presented 

case of Fig. 2, the answer is 0, whereas it is 1 in Fig. 3. 

 

Besides the normal distribution of its components, 

the field is also required to be isotropic in a well-operating 

reverberation chamber. We recall that an ergodic field is 

also isotropic. The field isotropy will be studied in more 

details in the second part of this paper, but we will first of 

all eliminate the null components because of the strong 

degradation of the field isotropy they imply. Whereas the 

field components that vanish are analytically known for the 

empty cavity, they have to be determined numerically in the 

modified cavity. As the field values issued from simulations 

are never strictly null, a criterion is necessary to decide if a 

component can be considered or not as null. The criterion of 

Eq. 1 to consider a field component Ei as null has been 

determined by examining the empty cavity simulation 

results, where the null components are analytically known: 
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where µ(x) indicates the mean value of x. 

This special treatment of the null field components is 

particularly important, as it appears from the simulations of 

the parallelelipedic cavity, that the KS test answer is 0 for 

the numerical noise associated to these null components. 

The latter would indeed appear as being Gaussian 

distributed if they were not eliminated before applying the 

KS test. To avoid this problem and show the presence of 

these modes degrading the field isotropy, the response of 

the KS test has been modified by associating the value -1 to 

null components.  

 

The nullity and KS tests were performed with the 

first 232 eigenmodes of both cavities. The results obtained 

for the Ex components of the eigenmodes are given in Fig. 4 

for the empty cavity and in Fig. 5 in the presence of the 

hemisphere. The increase of the number of zero-answers 

due to the hemisphere insertion clearly appears. Moreover, 

the Gaussian character of the field improves with increasing 

frequency in the modified cavity whereas it seems almost 

completely absent in the empty cavity. The same tests 

performed on Ey and Ez components of the modes confirm 

these remarks. 

The results obtained for the three electric field 

components are summarized in Table I. It can firstly be 

noticed that, whereas each field component is null for about 

28.4% of the modes within the empty cavity, it almost never 

occurs within the modified cavity. The normal law is widely 

followed by the field components in the presence of the 

hemisphere, with a success ratio of the KS test above 72%, 

whereas the test response is predominantly 1 without the 

hemisphere.  

 

 

       
Figure 2: Electric field amplitude and associated distribution 

of Ex component at 995MHz (230
th

 mode) for the cavity 

with an hemisphere 

 

   
 

Figure 3: Electric field amplitude and associated distribution 

of Ex component at 993MHz (230
th

 mode) for the empty 

cavity.  

 

 
Mode order 

Figure 4: KS test for Ex components of the empty cavity 

modes. 

 

 
Mode order 

Figure 5: KS test for Ex components of the modes obtained 

with a hemisphere. 
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Table 1: Results (%) of the KS test performed on the 

distribution of the three field components for the 232 resonant 

modes of the empty and modified cavities. 

 

 Null (-1) KS_95%= 1 KS_95% = 0 

Ex 23.71 69.4 6.9 

Ey 25.43 48.71 25.86 
Empty 

cavity 
Ez 30.6 38.79 30.6 

Ex 2.59 23.28 74.14 

Ey 1.72 20.26 78.02 

With 

! 

sphere Ez 2.59 24.57 72.84 
 

 

As for an ergodic mode the three field components are 

normally distributed, we now define a global homogeneity 

indicator of the three field properties. It takes the value of -1 

if at least one component is null, 0 if each component is 

non-null and follows a normal distribution, and 1 if no 

component is null and at least one of the components does 

not follow a normal distribution 

 

 
Mode order 

Figure 6: Global homogeneity test of all modes, empty 

cavity 

 

 
Mode order 

Figure 7: Global homogeneity test of all modes, cavity with 

! sphere 

 

In the empty cavity, many components are either null or do 

not follow a normal distribution (Fig.6). In the cavity with a 

hemisphere null components get extremely rare with 

increasing frequency; many of them follow a normal 

distribution (Fig. 7). Table 2 summarizes the results of this 

global test for all the modes in both cavities. It clearly 

indicates that the insertion of the hemisphere drastically 

decreases the number of modes having a null component 

and increases the number of modes with three normally 

distributed components. 

 

Table 2: Results (%) of the global homogeneity test 

performed on the modes 

Modes 0 1 -1 

Empty cavity 0.42 58.9 40.68 

c. with ! sphere 50 43.97 6.03 

 

If the field is isotropic then it presents the same distribution 

regardless of the chosen orthonormal coordinate system. To 

verify this property, we modify the first chosen coordinate 

system of Fig. 1 by performing a rotation of "r=30° about 

the Ox axis, of r=20° about the Oy axis and of r=60° 

about the Oz axis. The already presented tests are then 

applied, for each eigenmode of both cavities, to the three 

components related to this new basis. The results obtained 

for the global homogeneity indicator of the modified cavity 

are presented in Fig. 8. 

 

 
Mode order 

Figure 8: Global homogeneity test for the modified cavity, 

after basis rotation. 

 

The coordinate system rotation eliminates the null 

components; similarly, the analytical field expressions in the 

empty cavity indicate that no null component remains in this 

case. The variation of the number of zero answers from  

50% in the initial coordinate system to 63.8% after basis 

rotation indicates that some modes associated to a zero 

answer are not ergodic as their field distributions are 

sensitive to the chosen projection basis. 

 

The modes whose three components are non-null 

and normally distributed in both coordinate systems, as 

expected for Gaussian ergodic modes, are presented in Fig. 

9. For each mode, if the global homogeneity test takes the 

value 0 in both coordinate systems, then 0 is indicated, else 

1 is associated to this mode. The zero answer is obtained for 

38.8% of the modes. As already noticed, the field statistical 

properties improve with increasing frequency. From the 

130
th

 mode, the zero value appears for 73.5% of the modes. 
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Figure 9: Global homogeneity test for the modified cavity, 

in both bases. 

 

To further investigate the field isotropy, the standard 

deviations of the three field components will now be 

examined. 

 

3. Standard deviation and field isotropy 

The field isotropy implies an equality of the standard 

deviations of each field component. Therefore, we examine 

here the standard deviations of the three electric field 

components for each eigenmode, and use the difference 

between them as an indicator of the field istropy. The 

orthonormal basis as defined in Fig. 1 is chosen. 

The standard deviations are calculated from the components 

values at the 1001 points of the cavities. Their frequential 

variations are given in Figs. 10-11. 

 

 
 

Figure 10: Standard deviation of Ex, Ey and Ez for the empty 

cavity. 

 

 
 

Figure 11: Standard deviation of Ex, Ey and Ez for the cavity 

with an hemisphere.  

 

We notice a decrease of the standard deviations excursion 

with increasing frequency in the case of the  cavity with a 

hemisphere, whereas no noticeable evolution appears in the 

empty cavity. In the latter case, a large number of very small 

standard deviations are obtained, that correspond to the 

vanishing of the related field components. These very small 

values are fewer with the hemisphere. The corresponding 

null components, very detrimental to the field isotropy, have 

already be pointed out in Section 2. 

The value of 0.577 indicated in Fig. 11 corresponds to an 

ideal mode whose three components have a zero mean and 

identical standard deviations. It is expected in a chaotic 

cavity that the standard deviations fluctuate around this 

value. Between 700MHz (corresponding to the 76
th

 mode) 

and 1GHz, the mean values of the standard variations are of 

0.54 for Ex, 0.53 for Ey and 0.52 for Ez. 

Thus, in the ideal case of an istropic field, the standard 

deviations of the three electric field components are equal. 

To evaluate the istropy of the modes, we propose the 

indicator %& defined in Eq. 2. Its value, comprised between 

0 and 1, decreases when the three standard deviations 

become similar. %& is equal to 1 when one field component 

vanishes whereas, in the ideal isotropic case, it is vanishing. 
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Figure 12: %& versus frequency for the empty cavity  

 

 
Figure 13: %& versus frequency for the modified cavity  

 

Figure 12 indicates that in the empty parallelelipedic cavity, 

the variation domain of %& remains globally similar while 

the frequency increases. On the other hand, %& globally 

decreases with the frequency in the modified cavity (Fig. 

13). The difference between the parameters of both cavities 

clearly appears after 700MHz: whereas the mean value of 

%& between 700MHz and 1GHz is of 0.7985 for the empty 

cavity, it is of 0.5964 in the modified cavity. This is an 

indication of the improvement of the field isotropy due to 

the insertion of the hemisphere.  

 

4. Conclusion 

Drawing inspiration from studies developped in the field of 

wave chaos, a simple modification of the parallelipedic 

cavity has been proposed with the aim of obtaining 

homogeneous and isotropic fields. Through simulation 

results, it has been shown that the ratio of field components 

following a normal distribution drastically increases after 

this geometric modification, and that this ratio grows with 

increasing frequency. The field isotropy has also been 

discussed from three different points of view. First the 

modes presenting null components, which are very 

detrimental to the field isotropy, have been counted, and the 

reduction of their number in the modified cavity geometry 

is clearly demonstrated. Then, the invariance of the field 

statistical properties with respect to the orthonormal basis 

has been tested. Finally, the analysis of the standard 

deviations of the three components and, for each mode, of 

their dispersion, confirms the same trend. 

According to the presented results, the very simple cavity 

modification we propose permits a considerable 

improvement of the field statistical properties. The 

adaptation of this geometrical modification to reverberation 

chambers could be performed in two ways. The first one 

consists of inserting a metallic hemisphere within classical 

reverberation chambers equipped with a stirrer. In the 

second approach, the hemisphere is considered as a mode-

stirrer and moves on the cavity wall. In both approaches, it 

is expected that the spectral overlap of homogeneous and 

isotropic modes will lead to better statistical field properties 

than when the modes do not individually meet the required 

statistical properties. It would result in the improvement of 

the reverberation chambers operation and very likely in the 

decrease of their LUF. 
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