
Supplemental Material to Spin Drag of a Fermi Gas in a Harmonic Trap

I. DERIVATION OF THE TRANSPORT
EQUATION FROM BOLTZMANN’S EQUATION

We consider an ensemble of spin 1/2 fermions of mass
m. In the dilute limit, the statistical properties of the
system are fully captured by the single-particle phase-
space densities fs(r,p, t) of the spin species s = ±. In
the presence of a trapping potential V , the evolution of
fs is given by Boltzmann’s equation

∂tfs +
p

m
· ∂rfs + F · ∂pfs = Icoll[fs, f−s], (1)

where F = −∂rV is the trapping force and Icoll is the
collision operator. For low-temperature fermions, colli-
sions between same-spin particles are suppressed and at
low phase-space densities, the collision operator is given
by

Icoll[fs, f−s](r,p1) =∫
d3p2d

2Ω′vrel
dσ

dΩ′ (fs,3f−s,4 − fs,1f−s,2) ,
(2)

where p1 and p2 (p3 and p4) are ingoing (outgoing)
momenta satisfying energy and momentum conservation,
vrel = |p2 − p1|/m is the relative velocity, dσ/dΩ′ is the
differential cross-section towards the solid angle Ω′ and
fs,i stands for fs(r,pi).
When the populations of the two spin states are

equal, the equilibrium solution of Eq. (1) is given by
the Maxwell-Boltzmann distribution f+ = f− = f0 =
A exp

[
−β(p2/2m+ V )

]
, where β = 1/kBT and A is an

integration constant such that
∫
d3rd3pf0 is the popula-

tion of one spin state. We consider a spin perturbation
of the form fs(r,p, t) = f0(r,p) (1 + sα(r,p, t)). As-
suming the perturbation is small enough, we can expand
Boltzmann’s equation in α and to first order we obtain

∂tα+
p

m
· ∂rα+ F · ∂pα = −C[α], (3)

where, for s-wave collisions, the linearized collisional op-
erator C is given by

C[α](r,p1) =

∫
d3p2f0(r,p2)vrelσ(vrel) (α1 − α2) , (4)

and as above αi = α(r,pi). In experiments, the trap
can be described by a cylindrically-symmetric harmonic
potential with frequency ωz along the symmetry axis z
and ω⊥ in the transverse (x, y) plane. In the rest of this
Supplemental Material, we work in a unit system where
m = kBT = ω⊥ = 1 and we then write V (x, y, z) =
(ω2

zz
2 + ρ2)/2, with ρ = (x, y).

We look for exponentially decaying solutions corre-
sponding to small deviations from equilibrium, and there-

fore take α(r,p, t) = e−γtα̃(r,p). Eq. (3) then becomes[
−γ + pz∂z − ω2

zz∂pz

]
α̃ = − [Π · ∂ρ − ρ · ∂Π + C] α̃,

(5)
where Π = (px, py) is the projection of the momentum in
the (x, y) plane. We note that in the rhs of Eq. (5) the
only z-dependence is in the linearized collisional opera-
tor C, from f0 ∝ exp(−ω2

zz
2/2). Let C = n̄0(z)C̃, where

n̄0(z) =
∫
d2ρd3pf0(r,p) = n̄0(0)e

−ω2
zz

2/2 is the equilib-

rium 1D-density and C̃ no longer acts on the coordinate
z. Taking z′ = ωzz, we obtain

[−γ + ωz(pz∂z′ − z′∂pz )] α̃ = −Ln̄0(z′)[α̃], (6)

with

Ln̄0(z′) = n̄0(z
′)C̃ +Π · ∂ρ − ρ · ∂Π. (7)

Note that Ln̄0(z′) depends on the axial coordinate z′ only
through the axial density. In particular, z′ is only a pa-
rameter of the operator since we neither integrate nor
differentiate with respect to this coordinate.

Two properties of Ln̄ will be used below: (i) its ker-
nel is spanned by the functions of z′ only [3] and (ii)
due to atom number conservation, we have for any α̃,∫
d2ρd3pf0Ln̄[α̃] = 0. We look for solutions of Eq. (6)

in the limit of a very elongated trap ωz → 0. If we
focus on the slow axial spin dynamics of the cloud stud-
ied experimentally in [1], we have also γ → 0 and we
can therefore expand γ and α̃ as γ =

∑
n≥1 γnω

n
z and

α̃(r,p) =
∑

n≥0 ω
n
z an(r,p). Note that we are ultimately

interested in the coefficient γ2, since we take ΓSD = ω2
z/γ

as in [1]. Inserting these expansions in Eq. (6) we get to
zero-th order Ln̄[a0] = 0 [4]. According to property (i),
a0 is thus a function of z′ only. It is determined explicitly
by the study of the next order terms of the expansion.
For n = 1 we obtain

−γ1a0 + pz∂z′a0 = −Ln̄0(z′)[a1]. (8)

Using property (ii), we see readily that γ1 = 0, which
then leads to the following relation:

pz∂z′a0 = −Ln̄0(z′)[a1]. (9)

Consider a uniform density n̄ and assume for a mo-
ment that we know the solution χn̄(ρ,p) of the integro-
differential equation pz = Ln̄[χn̄] (the properties of χn̄

will be discussed below). Since n̄0(z
′) is only a parame-

ter, and by linearity of L, the solution of Eq. (9) is thus
a1 = −χn̄0(z′)∂z′a0.

Having expressed a1 as a function of a0, we close the
set of equations by considering the n = 2 term of the
expansion. It reads:

(−γ2a0 + (pz∂z′ − z′∂pz )a1) = −Ln̄0(z′)[a2]. (10)
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Using the expression of a1 as well as the property (ii), we
obtain after integration by parts

γ2n̄0(z
′)a0(z

′) + ∂z′ (G(z′)∂z′a0(z
′)) = 0, (11)

where

G(z′) ≡
∫

d2ρd3pf0pzχn̄0(z′)(ρ,p). (12)

We now show that G defined above can be identified
with the spin conductance of an ideal gas of 1D density n̄
in a cylindrical harmonic trap. Indeed, by definition, the
conductance is obtained by solving Boltzmann’s equation
in a cylindrical trap in the presence of a spin pulling
force Fs = sF0ez. Expanding Eq. (1) to first order in
perturbation, and taking as above fs = f0(1 + sα(ρ,p)),
we see that α is solution of

F0pz = Ln̄[α]. (13)

We recognize here the same equation as for the definition
of χ and we then have α = F0χñ. Since the particle flux
is given by Φ =

∫
d3pd2ρf0αpz, we see finally that, as

claimed above, G = Φ/F0 =
∫
d2ρd3pf0pzχñ(ρ,p).

II. SPIN DRAG COEFFICIENT FOR THE
MAXWELLIAN GAS

Consider the special case of the radially trapped
Maxwellian gas for which σ(p) = Λ/p where Λ is some
constant. This model is useful to interpolate between
the weakly interacting (σ =const.) and the strongly in-
teracting (σ ∝ 1/p2) limits. Taking the ansatz α(r,p) =
F0pzH(ρ,Π)/2, Boltzmann’s equation for spin excita-
tions turns into

1

2
(Π · ∂ρ − ρ · ∂Π)H(ρ,Π)− 1 = −Γ0

2
e−ρ2/2H(ρ,Π),

(14)
with Γ0 = Λn0 the damping rate of the spin excitations
of a homogeneous gas of density n0. Using the rotational
invariance around the z axis, the phase space density can
be expressed using the new variables

h = (Π2 + ρ2)/2

u = (Π2 − ρ2)/2

v = Π · ρ.

Let u+ iv = Reiφ. Eq. (14) then becomes

∂φH(h,R, φ)− 1 = −Γ0e
−h/2

2
eR cosφ/2H(h,R, φ). (15)

Moreover, in these new variables, we have∫
d2Πd2ρ · · · = 2π

∫ ∞

h=0

∫ 1

x=0

∫ 2π

φ=0

xdxhdh dφ√
1− x2

· · · .

(16)

where R = xh and the dots stand for any cylindrically
symmetric function of Π and ρ. In particular, the spin-
conductance is given by

G =
n0

2

∫
xdxhdh dφ√

1− x2
e−hH(h,R = xh, φ), (17)

We now turn to the solution of Eq. (15) where we focus on
the φ-dependence, since it is the only variable appearing
in the differential operator. Eq. (15) takes the general
form

H ′(φ) + µA(φ)H(φ) = 1, (18)

with µ = Γ0e
−h/2/2 and A = exp(R cos(φ)/2) is a 2π-

periodic function. Take

Kµ(φ) = exp

[
−µ

∫ φ

0

dφ′A(φ′)

]
, (19)

the general solution of (18) is

H(φ) = Kµ(φ)

∫ φ

φ0

dφ′

Kµ(φ′)
, (20)

where φ0 is an integration constant that can be de-
termined by imposing the periodicity of H. Taking
H(0) = H(2π), we have finally

H(φ) = Kµ(φ)

[∫ φ

0

dφ′

Kµ(φ′)
+

Kµ(2π)

1−Kµ(2π)

∫ 2π

0

dφ′

Kµ(φ′)

]
.

(21)
Let’s now discuss the behavior of the solutions in the
collisionless and hydrodynamic limits.

A. Collisionless limit µ → 0

In this limit, Kµ ≃ 1−µ
∫ φ

0
A(φ′)dφ′. The asymptotic

behavior of H is then dominated by the singularity due
to the denominator 1−Kµ(2π) that vanishes for µ = 0.
To leading order, we see that H does not depend on φ
and is given by

H =
1

µĀ
, (22)

where

Ā =
1

2π

∫ 2π

0

A(φ′)dφ′ = I0(R/2) (23)

is the average value of A (I0 is the zeroth-order modified
Bessel function of the first kind).

Using the actual values of µ and A we have

G ∼ n0

Γ0

∫ ∞

h=0

∫ 1

x=0

hdhxdx√
1− x2

2πe−h/2

I0(xh/2)
(24)

∼ 15.87

Λ
, (25)
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Note in particular that G does not depend on the density
of the cloud.
Within this limit the velocity field in the collisionless

regime is given by

v(ρ) =
F0

2πΓ0

∫
e(ρ

2−Π2)/4ΠdΠdθ

I0

(
1
2

√
Π2ρ2 cos2 θ + (Π2 − ρ2)2/4

)
(26)

B. Hydrodynamic limit µ → ∞

In the limit Γ0 → ∞ we may neglect the transport term
H ′ in (18), yielding H(φ) = 1/µA(φ) ∝ 1/Γ0. Taking

Γ(ρ) = Γ0e
−ρ2/2, the local spin damping rate, we recover

the expected result v(ρ) ∝ 1/Γ(ρ), that was obtained in
the main text using local density arguments.

III. A VARIATIONAL RESULT FOR THE
COLLISIONLESS SPIN CONDUCTANCE

The spin conductance in a transverse trap is obtained
by solving the linearized Boltzmann equation

(Π · ∂ρ − ρ · ∂Π)α− Fpz = −C[α], (27)

where C is the linearized collisional operator defined by

C[α](ρ,p1) =

∫
d3p2f0(ρ,p2)|p2−p1|σ [α(ρ,p1)− α(ρ,p2)] .

(28)
We recall that C is symmetric and positive for the scalar
product

⟨g1|g2⟩ =
∫

d2ρd3pg1(ρ,p)g2(ρ,p)f0(ρ,p), (29)

where f0(ρ,p) = n0e
−(p2+ρ2)/2/

√
2π

3
is the static phase-

space density, and n0 is the density at the center of the
trap.
The spin current is defined by Φ =

∫
d3pd2ρf0αpz =

⟨α|pz⟩ and the spin conductance is then G = Φ/F . Let-
ting α(ρ,p) = Fa(ρ,p) we have more simply G = ⟨pz|a⟩.
We work in the collisionless limit σ → 0 and we thus

take σ(prel) = εσ̂(prel) and C = εC2 where ε is small.
Following the results obtained for the Maxwellian gas,
we expand a as

a(ρ,p) =
a0(ρ,p)

ε
+ a1(ρ,p) + εa2(ρ,p) + . . . (30)

Inserting this expansion in Boltzmann’s equation, we ob-
tain to leading order

(Π · ∂ρ − ρ · ∂Π) a0 = 0. (31)

This equation is solved readily by introducing the vari-
ables (pz, h, x, φ) defined in the study of the Maxwellian
gas.

In these coordinates, Eq. (31) becomes simply ∂φa0 =
0. The set F0 of solutions of Eq. (31) is thus composed
of functions whose value does not depend on the angle φ.
To get the actual expression of a0 we need to go one step
further in the expansion. At this order in ε, we have

∂φa1 − pz = −C2[a0]. (32)

To get rid of a1, we integrate over φ and use the fact that
the an are periodic functions of φ. We then obtain the
equation

C̄2[a0] = pz, (33)

with C̄2[a0] =
∫
dφC2[a0]/2π and where a0 is now the

only unknown.

We define on F0 the new scalar product

(a|b) = 4π2

∫
xdxhdh dpz√

1− x2
f0a(x, h, pz)b(x, h, pz), (34)

which is equivalent to the old scalar product ⟨a|b⟩. We
then see readily that (a|C̄[b]) = ⟨a|C[b]⟩. Using the prop-
erties of C, we deduce that C̄2 is a symmetric, positive
operator on F0. Eq. (33) then has the same structure
as the ones used to calculate transport coefficients in ho-
mogeneous systems. We can then use the usual tricks
to get a bound on the spin conductance [2]. We indeed
write that for any real λ and any function b ∈ F0, we
have (a0 + λb|C̄2[a0 + λb]) ≥ 0, and using the fact that
this second order polynomial in λ is always positive, we
obtain from the negativity of the discriminant that for
any b,

G ≥ (pz|b)2

(b|C̄[b])
=

⟨pz|b⟩2

⟨b|C[b]⟩
, (35)

the bound being reached for b = a0. We take as a vari-
ational ansatz b = pz, since as discussed earlier, the col-
lisionless regime is associated with a rather flat velocity
profile. We then obtain

G ≥

(∫
d2ρe−ρ2/2

)2∫
d2ρe−ρ2

n0

Γ0
= 4π

n0

Γ0
, (36)

with Γ0 the spin drag on the axis of the trap. The pref-
actor is 4π ≃ 12.56, not far from the result 15.87 found
analytically for the Maxwellian gas, and the bound is
indeed satisfied.

An improved variational bound can be obtained by us-
ing the exact result Eq. (26) found for the Maxwellian
gas to estimate the spin drag for constant-momentum or
unitary-limited cross-sections. For the Maxwellian gas,
this gives by definition the exact result, while for the
constant cross-section and the unitary gases, we obtain
respectively Γ ≥ 14.5/Γ0 and Γ ≥ 17/Γ0.
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FIG. 1: Spin conductance G for a constant cross-section.
Dots: Molecular Dynamics Simulation. Solid line: Padé’s
approximation.

IV. INTERPOLATION SCHEME FOR THE
SPIN CONDUCTANCE

We know that for a power-law cross-section [5], the
spin conductance G scales like n0(0)/Γ0f(1/Γ0) where f

obeys the following asymptotic behaviors:

1. In the collisionless limit, f converges to a constant
value (≃ 15.87 for the Maxwellian gas).

2. In the hydrodynamic limit, f has a logarithmic sin-
gularity and scales like 2π ln Γ0.

To interpolate between these two limits we make use
of the Bessel function K0 which vanishes at +∞ and
diverges as − lnx at x = 0. We thus approximate f by

f(x) = 2πK0(x) + 15.87
x+ a

x+ b
, (37)

where a and b are determined by fitting the results of
the molecular dynamics simulations (see Fig. 1). In the
case of a constant cross-section, we obtain a = 0.11 and
b = 0.52. We note that the largest relative error between
the Padé interpolation and the result of the molecular
simulation is observed for the largest values of Γ0 and
amounts to ≃ 6 % for Γ0 ≃ 10.
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