
HAL Id: hal-00847764
https://hal.science/hal-00847764v1

Submitted on 24 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoMMEDIA: Separating Scaramouche from Harlequin
to Accurately Estimate Items Frequency in Distributed

Data Streams
Emmanuelle Anceaume, Yann Busnel

To cite this version:
Emmanuelle Anceaume, Yann Busnel. CoMMEDIA: Separating Scaramouche from Harlequin to Ac-
curately Estimate Items Frequency in Distributed Data Streams. 2013. �hal-00847764�

https://hal.science/hal-00847764v1
https://hal.archives-ouvertes.fr

CoMMEDIA: Separating Scaramouche from
Harlequin to Accurately Estimate Items
Frequency in Distributed Data Streams

Emmanuelle Anceaume1 and Yann Busnel2?

1 IRISA / CNRS Rennes (France), emmanuelle.anceaume@irisa.fr
2 LINA / Université de Nantes (France), Yann.Busnel@univ-nantes.fr

Abstract. In this paper, we investigate the problem of estimating the
number of times data items that recur in very large distributed data
streams. We present an alternative approach to the well-known Count-
Min Sketch in order to reduce the impact of collisions on the accuracy
of the estimation. We propose to decrease, for each concerned item,
the over-estimation that results from these collisions. Our sketch, called
CoMMEDIETTA, keeps track of the most frequent items of the stream,
and removes their weight from the one of the items with which these
frequent items collide. By doing so, we significantly improve upon the
Count-Min Sketch by achieving a randomized (ε, δ)-approximation al-
gorithm. We then propose to judiciously distribute this local sketch to
estimate the global frequency of any item that may recur in multiple
streams. This distributed sketch, called CoMMEDIA (for Count-Min
Sketch-based Estimation of Data Items Arrival frequency), organizes
nodes of the system in a distributed hash table (DHT) such that each
node implements a tiny local sketch on a reduced number of items. By
doing so we guarantee a significantly more accurate estimation of item
frequencies. Simulations both on synthetic and real traces confirm the
accuracy of CoMMEDIA.

Keywords: Distributed data streams, approximation algorithm, data
items frequency distribution, decentralized data structures.

1 Introduction

Large-scale distributed networks and huge data flows have become the norm
in the last decade. Handling large-scale networks has led to the construction of
various kinds of efficient overlay networks. These overlays essentially allow nodes
to reach any destination in the network using a sub linear number of hops in the
size of the network. Data flows bring a huge amount of information that need
the design of online algorithms to accurately estimate statistics.

Two main approaches exist to monitor in real time massive data streams.
The first one consists in regularly sampling the input streams so that only a

?
Contact author: LINA / Université de Nantes – 2, rue de la Houssinière – BP 92208 – 44322
Nantes Cedex 03 – France – Fax: +33 (0)2 51 12 58 12

2 Emmanuelle Anceaume and Yann Busnel

limited amount of data items is locally kept [1, 2]. This allows to exactly com-
pute functions on these samples. However, accuracy of this computation fully
depends on the volume of data that has been sampled and their locations in the
stream. Worse, an adversary can easily take advantage of the sampling policy
to hide its packets among the other packets of the stream. The second approach
consists in scanning each piece of data of the input stream on the fly, and in
locally keeping compact synopses or sketches that contain the most important
information about data items. Actually, a rich body of algorithms and techniques
have been proposed for the past several years to efficiently compute statistics on
massive data streams. These include the computation of the number of different
data items in a given stream [3–5], the frequency moments [6], the most frequent
data items [6, 7], or the entropy of the stream [8, 9]. In particular, estimating the
number of times items recur in data streams is a very often sought statistics as
it allows, for example, to efficiently detect worms and deny of service attacks
in intrusion detection services, or to perform in real time traffic engineering in
network applications. The Count-Min Sketch [10] is the synopsis which so far
has been proven to be the best one in terms of space and time performance to
estimate data item frequency. Briefly, the Count-Min Sketch (abbreviated as CM
sketch in the following) is a fixed size array of t × k counters associated with t
pairwise independent hash functions, one per line of the array. Each hash func-
tion hi maps items of the stream uniformly onto 1, . . . , k. Each time an item v is
read from the input stream, the corresponding location under hi, for i = 1, . . . , t,
is incremented by some constant value. Upon receipt of a request to know the
current frequency of a given item v in the stream, CM returns the minimum
value among the t concerned entries of the array.

However, because k is typically much smaller than items identifier space,
hash collisions do occur. This affects the accuracy of the estimation when items
frequently recur in the input stream, that is when the size m of the input stream
becomes large. To circumvent this saturation issue Dimitropoulos et al [11] keep
only fresh items of the input stream so that the number of distinct items that
appear in the sketch does not increase with the size of the stream. While effec-
tive to decrease the number of collusions, such an approach opens the door to
adversarial behaviors, and in particular dormant attacks, where the adversary
from time to time floods the stream with its own items, eclipsing accordingly
most of the other items in the sketch.

In this paper, we present an alternative approach to reduce the impact of
collisions on the accuracy of the estimation. We propose to decrease, for each
concerned item, the over-estimation that results from these collisions. Our sketch,
called in the following CoMMEDIETTA, keeps track of the most frequent items
of the stream, and removes their weight from the one of the items with which
these frequent items collide. By doing so, we significantly improve upon the
Count-Min Sketch by achieving a randomized (ε, δ)-approximation algorithm
(see Section 2.3). We then propose to judiciously distribute this local sketch to
estimate the global frequency of any item that may recur in multiple streams.
This distributed algorithm, called CoMMEDIA (for Count-Min Sketch-based Es-

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 3

timation of Data Items Arrival frequency), organizes nodes of the system in
a distributed hash table (DHT) such that each node implements a tiny local
sketch on a reduced number of items. By doing so we guarantee a significantly
more accurate estimation of item frequencies. Finally, simulations both on syn-
thetic and real traces that exhibit skews in various ways confirm the accuracy
of CoMMEDIA.

The remaining of the paper is organized as follows. Section 2 presents the
model this work relies on. Section 3 describes and analyzes CoMMEDIETTA,
the local sketch that accurately estimates item frequencies. Section 4 presents
a simple way to distribute sketches among all the nodes to so that distributed
streams can be efficiently monitored both in time and space. Section 5 evaluates
the minimum effort the adversary needs to exert to bias items frequency estima-
tion. Finally, extended simulations have been conducted in different adversarial
contexts and the main lessons drawn from these simulations are presented in
Section 6, while Section 7 concludes.

2 Model and Background

2.1 Model

We present the computation model under which we analyze our algorithms. We
consider a large scale system S, such that each node i ∈ S receives a large
sequence σ(i) of data items or symbols < u, v, w, . . . > drawn from a large uni-
verse N (these data items can for example model TCP/IP packets, HTTP re-
quests [12]). For a given stream σ(i), i ∈ S, we denote by m(i) the size of σ(i) that
is the number of items in it and n(i) the number of distinct items. The number
of times item u appears in a stream is called the frequency of item u, and is de-
noted by fu. Items arrive regularly and quickly, and due to memory constraints,
items must be processed sequentially and in an online manner. In the following
we only focus on the frequency estimations of the items that effectively appear
in the stream [10]. We refer the reader to [13] for a detailed description of data
streaming models and algorithms.

2.2 Adversary

We assume the presence of malicious (i.e., Byzantine) nodes that collectively try
to subvert the system by manipulating the prescribed protocol. We model these
adversarial behaviors through an adversary that fully controls and manipulates
these malicious nodes. We suppose that the adversary is strong in the sense that
it may actively tamper with the data stream of any node i by observing, and
injecting a potentially large number ` of items. Indeed, the goal of the adver-
sary is to judiciously increase the frequency of its ` items to bias the frequency
estimation of the items generated by correct nodes. The number ` is chosen by
the adversary according to the parameters of the sketches at correct nodes. By
correct, we mean a node present in the system which is not malicious. Note that

4 Emmanuelle Anceaume and Yann Busnel

correct nodes cannot a priori distinguish items sent by correct nodes from the
ones sent by malicious ones. Classically, we assume that the adversary can nei-
ther drop a message exchanged between two correct nodes nor tamper with its
content without being detected. This is achieved by assuming the existence of a
signature scheme (and the corresponding public-key infrastructure) ensuring the
authenticity and integrity of messages. This refers to the authenticated Byzan-
tine failure model [14]. We finally suppose that any algorithm run by any correct
node is public knowledge to avoid some kind of security by obscurity. However
the adversary has not access to the local random coins used in the algorithms.

2.3 Preliminaries

We first present notations and background on data streams analysis that make
this paper self-contained.

2-universal Hash Functions In the following, we use hash functions randomly
picked from a 2-universal hash functions family. A collection H of hash functions
h : {1, . . . ,M} → {0, . . . ,M ′} is said to be 2-universal if for every two different
items x, y ∈ [M], Ph∈H{h(x) = h(y)} ≤ 1

M ′ , which is the probability of collision
obtained if the hash function assigned truly random values to any x ∈ [M].

Randomized (ε, δ)-approximation Algorithm A randomized algorithm A is said
to be an (ε, δ)-approximation of a function φ on σ if for any sequence of items in

the input stream σ, A outputs φ̂ such that P{| φ̂− φ |> εφ} < δ, where ε, δ > 0
are given as parameters of the algorithm.

3 The CoMMEDIETTA sketch

Prior to describing our distributed sketch algorithm (cf. Section 4), we describe
and analyze the accuracy of the local sketch CoMMEDIETTA. We suppose that
CoMMEDIETTA is fed with the input stream denoted by σ.

3.1 Building blocks

We first describe two algorithms that form the building blocks of CoMMEDIETTA.
The first one, proposed by Cormode and Muthukrishnan [10], estimates items
frequency of all the nodes of a stream. The second one is due to Misra and
Gries [15] and allows to deterministically output most frequent items. Both al-
gorithms have been designed in the stream data model (cf. Section 2.1).

Estimating the frequency of each data item For any item v in the input stream
σ, the algorithm proposed by Cormode and Muthukrishnan [10] outputs an

estimation f̂
(CM)

v of the number of times v has occurred in the stream so far,
i.e., the frequency of v. The error of the estimator in answering a query for

f̂
(CM)

v is within an error ε(m − fv) with probability 1 − δ. The estimation is

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 5

Algorithm 1: Count-Min Sketch [10]

Input: An input stream σ; precision parameters k and t;

Output: The estimate f̂v for the frequency of any item v read from the input
stream

1 C[1..t][1..k]← 0;
2 Choose t 2-universal hash functions h1, . . . , ht : {1, . . . , N} → {1, . . . , k};
3 for v ∈ σ do
4 for i = 1 to t do
5 C[i][hi(v)]← C[i][hi(v)] + 1;

6 Upon query of f̂
(CM)

v : return min1≤i≤t C[i][hi(v)];

computed by maintaining a two-dimensional array C of k × t counters with
k = de/εe and t = dlog2(1/δ)e, and by using a collection of 2-universal hash
functions {h1, . . . , ht}. Each time an item v is read from the input stream, this
causes one counter per line to be incremented. When a query is issued to get the

estimate f̂
(CM)

v , the returned value is equal to the minimum among the t values of
C[i][hi(v)] (1 ≤ i ≤ t). Algorithm 1 presents the pseudo-code of the Count-Min
Sketch algorithm. The update time per element is significantly sub-linear in the
size of the sketch [10].

Theorem 1 ([10]). The Count-Min Sketch algorithm with parameters k =

de/εe and t = dlog2(1/δ)e returns for any item v an estimate f̂
(CM)

v such that

P{| f̂ (CM)

v − fv |> ε(m− fv)} < δ with O(1/ε log(1/δ) logm) bits of space.

Determining the most frequent data items The problem of determining the most
frequent items in a stream has also been studied extensively in the data stream
literature. Thereafter, we propose an enhanced version of the Misra and Gries [15]
algorithm. The basic Misra and Gries algorithm is deterministic, and outputs
the items that occur more than m/a times in a stream for a given a. It maintains
a counters such that for each counter, its key is the item read from the stream
and its value is related to the frequency of items. Initially, all the counters are
set to (⊥, 0). Afterwards, when an item is read from the stream, if that item has
already a counter associated to it, then this counter is incremented. If this is
not the case and if there are still free counters available, then one of these free
counters is allocated to this new item and its value is set to 1. Otherwise, all the
allocated counters are decremented by one, and if after this operation some of
them are equal to 0 then their keys are erased and the counters are released. We
improve upon this algorithm by augmenting each counter with a second value
that allows to wait as most as possible before removing an item from A. In some
sense, this second value keeps track of the randomness with which items are
received in the stream. The pseudo-code of this enhanced Misra Gries algorithm
is presented in Algorithm 2.

6 Emmanuelle Anceaume and Yann Busnel

Algorithm 2: Enhanced Misra-Gries

Input: An input stream σ; a precision parameter a;
Output: a frequent items in σ and an estimate of their frequency

1 for j ∈ [0. . a] do A[j]← (⊥,⊥,⊥);
2 for v ∈ σ do
3 if ∃j such that A[j] = (v,−,−) then Increment the first value of A[j];
4 else
5 if ∃j such that A[j] = (⊥,⊥,⊥) then A[j] = (v, 1, 0);
6 else
7 if ∃j such that A[j] = (−, κ, κ) with κ ∈ N then
8 Pick j′ at random among {j | A[j] = (−, κ, κ), κ ∈ N};
9 A[j′] = (v, 0, 1);

10 else
11 for j = 1 to a do Increment the second value of A[j];

12 Upon query of f̂
(MG)

v : if ∃j such that A[j] = (v,−,−) then return first value of
A[j] else return 0;

Theorem 2. The enhanced Misra and Gries algorithm with parameter a re-

turns for any item v an estimate f̂
(MG)

v such that fv − m(a−H)
a(a+2−H) ≤ f̂

(MG)

v ≤ fv with

O(a(logm + log n)) bits of space, where H corresponds to the number of heavy
hitters (i.e., items with frequency greater than m/a).

Proof. Due to space constraints, the proof of this theorem, largely inspired
from [15], is provided in Appendix A.

Note that the lower bound of f̂
(MG)

v is reached with a very low probability as
it requires that item v be replaced by a new arriving one in A each time it is
possible. This happens with a probability in the order of magnitude of a−m/a.
The interested reader is invited to consult the proof in Appendix A.

3.2 The CoMMEDIETTA sketch: splitting Scaramouche from
Harlequin

As said in the Introduction, in CM Sketch, heavy hitters significantly bias the
estimation of the frequency of other items with which heavy hitters collide.
This mays lead to a noticeable over-estimation of their frequency. As will be
shown in Section 5, this feature can be fully exploited by the adversary to bias
items frequency estimation. By simply removing the weight of heavy hitters from
the one of the items with which these frequent items collide, CoMMEDIETTA

improves upon the CM Sketch by being a (ε, δ)-approximation algorithm.
Pseudo-code of CoMMEDIETTA is presented in Algorithm 3. It consists of

two phases. The first one is executed upon receipt of item u, v, . . . of the stream,
while the second one returns the frequency estimation of any item u. Instead of

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 7

Algorithm 3: CoMMEDIETTA

Input: An input stream σ, precision parameters k, t and a;
Output: Estimation of the frequency of any item v in σ

1 Initialize data structures A and C as respectively presented in Algorithms 1
and 2;

2 for v ∈ σ do
3 Task T1 :
4 Update sketch C with v as described in Algorihm 1;

5 Task T2 :
6 Update sketch A with v as described in Algorithm 2;

7 Upon query of f̂u: return min1≤i≤t

(
C[i][hi(u)]−

∑
v∈A\{u}, hi(v)=hi(u)

f̂
(MG)

v

)
;

directly returning the minimum among the t values of C[i][hi(u)] (1 ≤ i ≤ t) as
done in the Count-Min Sketch, the weight imposed by highly frequent items that
collide with u are removed from the t involved counters in C. It is important to
remark that both CoMMEDIETTA CM Sketch cannot prevent queries for items
that have not appeared in the stream so far to be issued. Of course, the returned
values do not make any sense. However this does not jeopardize correctness of
both sketches (see Theorem 3) as frequency estimations are guaranteed solely
for all the items that have appeared in the stream.

3.3 Analysis of CoMMEDIETTA

In this section, we prove that for any ε and δ, and for any data item u read from
the input stream, CoMMEDIETTA gives an (ε, δ)-approximation of fu.

Theorem 3. CoMMEDIETTA, run with parameters k = de/εe, t = dlog2(1/δ)e
and a = dεn(1 − 1/m)e, returns for any item u an estimate f̂u such that

P

{
f̂u − fu ≥ εfu

}
≤ δ using O

(
1
ε log 1

δ logm+ εn
(
1− 1

m

)
(logm+ log n)

)
bits

of space.

Proof. From algorithm 3, the estimation f̂u item u overestimates its real fre-
quency fu. Indeed, every counter C[i][hi(u)] is equal to the sum of the exact
frequencies of all data item that collide with u, that is that share the same
hashed value as u (i.e., all v ∈ σ such that hi(v) = hi(u)). Moreover, the en-
hanced Misra-Gries algorithm underestimates the frequency of heavy hitters,

i.e., f̂
(MG)

v ≤ fv (see Theorem 2). Thus, as f̂
(MG)

v = 0 for any v /∈ A, we have

f̂u = min
i∈{1,...,t}

C[i][hi(u)]−
∑

v∈A\{u}

f̂
(MG)

v 1hi(v)=hi(u)

= min
i∈{1,...,t}

fu +
∑

v∈N\{u}

(
fv − f̂

(MG)

v

)
1hi(v)=hi(u)

 ≥ fu. (1)

8 Emmanuelle Anceaume and Yann Busnel

Let Xu be the random variable that represents the excess of f̂u with respect
to fu. From Relation (1), let us first analyze the excess of a given i ∈ {1, . . . , t}.
We denote by Xu,i the random variable that measures this specific excess. We

have Xu,i =
∑
v∈N\{u}

(
fv − f̂

(MG)

v

)
1hi(v)=hi(u) and Xu = mini∈{1,...,t}Xu,i.

By the 2-universality property of the family from which hash function hi is
drawn, we have E[hi(v) = hi(u)] ≤ 1/k. Thus, by linearity of the expectation,we
get that

E[Xu,i] =
∑

v∈N\{u}

E

[(
fv − f̂

(MG)

v

)
1hi(v)=hi(u)

]
≤ m− fu

k
−

∑
v∈N\{u}E

[
f̂

(MG)

v

]
k

.

(2)
As k increases, the error made by the Count-Min Sketch diminishes, which

imposes less constraints on the accuracy that must be guaranteed by the en-

hanced Misra-Gries algorithm. As f̂
(MG)

v = 0 for any v /∈ A and f̂
(MG)

v ≥ fv−m(a−
H)/(a2 + 2a− aH) (see Theorem 2), we have∑

v∈N\{u}

f̂
(MG)

v =
∑

v∈A\{u}

f̂
(MG)

v ≥
∑

v∈A\{u}

fv −m
aH −H2

a2 + 2a− aH
.

By Algorithm 2, data structure A contains heavy hitters. Thus the lower bound
for

∑
v∈A\{u} fv is reached in presence of a uniform stream. We then have

min
∑
v∈A\{u} fv = (a− 1)m/n. By choosing a = dεn(1− 1/m)e and k = de/εe,

and from fu ≥ 1 for every u, it is easily checked that
∑

v∈N\{u} f̂
(MG)

v

k ≥ m−2fu
k .

From Relation (2), we get that

E[Xu,i] ≤
m− fu
k

− m− 2fu
k

=
fu
k
.

Since for every u in the stream, fu ≥ 1 and Xu,i ≥ 0 for any i ∈ {1, . . . , t},
we can apply the Markov’s inequality. Moreover, as k = de/εe, we get

P {Xu,i ≥ εfu} ≤
E[Xu,i]

εfu
≤ fu
kεfu

≤ 1

2
. (3)

Relation (3) holds for any i ∈ {1, . . . , t}. The CoMMEDIETTA sketch owns t
such estimators, mutually independent. By Relation 1, we are able to estimate
the excess of CoMMEDIETTA as the minimum of Xu,i over all i ∈ {1, . . . , t}.
Then, we obtain

P

{
f̂u − fu ≥ εfu

}
= P

{
min

i∈{1,...,t}
Xu,i ≥ εfu

}
= P {Xu,1 ≥ εfu, . . . , Xu,t ≥ εfu}

=
∏

i∈{1,...,t}

P {Xu,i ≥ εfu} ≤
1

2t
≤ δ

by definition of t, which concludes the proof. ut

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 9

4 CoMMEDIA: a distributed sketch for frequency
estimation

In the previous section, we have presented CoMMEDIETTA, a sketch that gives
for any ε and any δ an (ε, δ)-approximation of items frequency, for any item
received in an input stream. We are now ready to present CoMMEDIA, a dis-
tributed sketch that allows to estimate the global frequency of items that may
recur in distributed streams. CoMMEDIETTA combines the features of both the
streaming model and large scale distributed overlays. As in the streaming model,
the input is read on the fly and processed with a minimum workspace and time.
As in large scale overlays, the load of the system is partitioned among all the
nodes of the system. Specifically, all the nodes of the system self-organize in
a structured overlay. Structured overlays, also called Distributed Hash Tables
(DHTs), build their topology according to structured graphs. For most of them,
the following principles hold: The identifier space is partitioned among all the
nodes of the overlay. Nodes self-organize within the graph according to a dis-
tance function D based on nodes identifiers (e.g., two nodes are neighbors if
their identifiers share some common prefix), plus possibly other criteria such as
geographical distance. Each application-specific object, or data-item, is assigned
a unique identifier, called key, which is the hashed value of the object. In our
context, we consider that this hash function is picked among the 2-universal
family. Both keys and node identifiers belong to the same identifier space. Each
node owns a fraction of all the data items of the system. The mapping derives
from the distance function D. Following the seminal work of Plaxton et al [16],
diverse DHTs have been proposed (such as CAN [17], Chord [18], D2B [19]). All
these DHTs have been proven to be highly satisfactory in terms of both efficiency
and scalability (their key-based routing mechanism guarantees operations whose
complexity in messages and latency scale logarithmically with system size).

These principles directly apply to our context. All the nodes of S self-organize
in a DHT, and are responsible for the frequency estimation of all the items whose
key are closer to them according to the distance D implemented in the DHT.
Let Ii be the set of items whose keys are close to node i than to any other
nodes, and σ(i) denote the input stream of node i. Then, each node i ∈ S
locally maintains a CoMMEDIETTA sketch that solely estimates the frequency
of all the items that belong to Ii. For all the other items v that recur in σ(i)

but that do not belong to Ii, node i routes them to node j such that v ∈ Ij .
Finally, a query for getting any item v frequency estimation simply consists
in sending this query to the (single) node in charge of v. As will be shown in
Theorem 4, this construction first guarantees the (ε, δ)-approximation of items
frequency, and second is space-efficient. Indeed, the total workspace needed by
CoMMEDIA (that is the sum of each CoMMEDIETTA space implemented at each
node i ∈ S) is strictly equal to the workspace that would be needed by a single
CoMMEDIETTA to estimate the frequency of all the items recurring in the union
of all the distributed streams. These results are very interesting. First they show
that by judiciously splitting the estimation of item frequency over the nodes of
the system, one keeps the good performance of a (ε, δ)-approximation algorithm.

10 Emmanuelle Anceaume and Yann Busnel

Input stream !(3)

DHT

CoMMEDIATTA

C

A

Node 3

Input stream !(1)

Input stream !(6)

Node 6

Node 1
Node 2

Node 7

Node 4

Node 5

Input stream !(4)

Input stream !(5)

CoMMEDIATTA

C

A

CoMMEDIATTA

C

A

CoMMEDIATTA

C

A

CoMMEDIATTA

C

A

CoMMEDIATTA

C

A

CoMMEDIATTA

C

A

Input stream !(2)

Input stream !(7)

Fig. 1: CoMMEDIA structure, where each node runs a CoMMEDIETTA instance
over a DHT.

Second it shows that doing statistics over distributed streams does not bring any
additional cost with respect to a centralized approach in terms of space at the
expense of communication costs. Indeed, each time a node i receives in its input
stream an item v that does not belong to Ii, item v must be forwarded to the
node j such that j is closer to v key. Note that in expectation this is achieved
in a logarithmic number of hops in the size of S.

Theorem 4. Executing CoMMEDIA on s nodes, with parameters k = de/(sε)e,
t = dlog2(1/δ)e and a = dεn(1 − 1/m)/se for each CoMMEDIETTA instance,

returns for any item u an estimate f̂u such that P
{
f̂u − fu ≥ εfu

}
≤ δ us-

ing O
(

1
sε log 1

δ logm+ εn
s

(
1− 1

m

)
(logm+ log n)

)
bits of space per node (where

m =
∑
i∈S m

(i) and n represents the number of distinct data items that occur

on all streams σ(i)).

Proof. Let hDHT be the the hash function used for the key assignment in the
DHT. By the properties of hash functions, the key space can be split into s
mutually exclusive subsets forming a partition of N . Suppose now that all the
CoMMEDIETTA Count-Min arrays, spread over the s nodes, are concatenated
into a huge unique array whose size is equal to 1

ε × log 1
δ . The probability that

any two items u and v share the same cell on each line is equal to the probability
that both u and v are assigned to the same node (which is lower than 1/s by
the 2-Universality properties of hDHT) and that they share the same cell on
this node (which is lower than 1/k). By assumption, the t hash functions are
pairwise independent. By assumption of the theorem, k = de/(sε)e. Thus this
probability is lower than or equal to ε/e, which corresponds to the one of a
unique CoMMEDIETTA instance with parameter k = de/εe and t = dlog2(1/δ)e.

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 11

Let us focus on the enhanced Misra-Gries algorithm ran on each node in S
with parameter a = d(1− 1/m)εn/se. Each node in charge of n/s items receives
a stream of size m/s in average. Thus according to Theorem 2, for every u in
the any stream, we have

fu ≥ f̂
(MG)

u ≥ fu −
m
s

(
a
s −

H
s

)
a
s

(
a
s + 2− H

s

) = fu −
m(a−H)

a(a+ 2s−H)
≥ fu −

m(a−H)

a(a+ 2−H)
.

Thus the guarantee brought by the union of all instances of the enhanced
Misra-Gries on each node in S is strictly equal to the one guaranteed by a single
CoMMEDIETTA instance with parameter a = dεn(1− 1/m)e.

Direct application of Theorem 3 concludes the proof. ut

5 Effort needed by the adversary to subvert CoMMEDIA

As previously said, we suppose that the adversary has enough resources to gen-
erate a large number of items, and to judiciously inject them in the input stream
σ(i) of any correct node i ∈ S, so that items frequency are over-estimated.

From Algorithm 3, this can be only achieved by increasing the error made on

the estimations f̂
(CM)

v of item v as by Theorem 2 we have that fu − m(a−H)
a(a+1) ≤ f̂

(MG)

u

holds with probability 1. Thus to disrupt the estimation f̂
(CM)

u of any item u, the
adversary has to generate sufficiently many items v1, . . . , v` such that for all the
lines s, s = 1, . . . , t of C array, there exists an item vj such that hs(vj) = hs(u).
Recall that the t hash functions are locally chosen, thus the adversary cannot
know which identifiers map to h1(u), . . . , ht(u). By injecting numerous times

these items v1, . . . , v`, the estimation f̂
(CM)

u will be arbitrarily overestimated. Note
that the adversary will blindly bias the frequency estimation of many items,
including its owns.

By conducting an analysis similar to the one achieved in [20], we can derive
the minimum effort that needs to be exerted by the adversary to make its attack
successful with probability 1 − η, where η < 1. This is achieved by modeling
an attack as a urn problem, where each entry of C is modeled as an urn and
each received distinct item as a ball. N` is the random variable that counts the
number of non empty urns among any set of k urns at time `. Let Uk be the
number of balls needed in order to obtain all the k urns occupied, i.e., with at
least one ball. It is easily checked that P{U1 = 1} = 1 and that, for ` ≥ k ≥ 2,
we have

Uk = ` =⇒ N`−1 = k − 1.

From [20], we get, for k ≥ 2 and ` ≥ k,

P{Uk = `} =
1

k`−1

k−1∑
r=0

(−1)r
(
k − 1

r

)
(k − 1− r)`−1.

Finally, we consider the integer Ek which counts the number of balls needed
to get a collision in all the k×t urns. Note that this number is independent of t as

12 Emmanuelle Anceaume and Yann Busnel

Table 1: Key values of Ek

k
10 50 250

(ε ∼ 0.3) (ε ∼ 0.05) (ε ∼ 0.01)

η 10−1 10−4 10−1 10−4 10−1 10−4

Ek 44 110 306 651 1, 617 3, 363

Table 2: Statistics of real data traces.

Data trace items distinct max. freq.

NASA (Jul.) 1,891,715 81,983 17,572
NASA (Aug.) 1,569,898 75,058 6,530
ClarkNet (Aug.) 1,654,929 90,516 6,075
ClarkNet (Sep.) 1,673,794 94,787 7,239
Saskatchewan 2,408,625 162,523 52,695

by definition, the t experiments in parallel are identical and independent. Thus,
filling entirely a set of k urns leads to obtain all the t sets of k urns occupied.
For given value of k and η ∈ (0, 1), integer Ek is defined by

Ek = inf

{
` ≥ k

∣∣∣∣∣∑̀
i=k

P{Uk = i} > 1− η

}
. (4)

Recall that parameters k of Algorithm 3 are common knowledge (except the
random local coins) and thus the adversary is capable of deriving Ek according
to the desired probability η. Finally, the adversary needs to inject in the input
stream Ek + a items to bias the frequency estimation of all the items that have
been received in the input streams.

The main results of this analysis are summarized in Table 1. The most impor-
tant one is that the effort that needs to be exerted by the adversary to subvert
the sampling service can be made arbitrarily large by any correct node by just
increasing the memory space of the sampler. The second one, which derives from
the first one, is the absence of relationship between the effort of the adversary
and the size of the population size.

6 Performance Evaluation of CoMMEDIA

In this section, we have conducted experiments to evaluate the CoMMEDIA

quality to estimate the frequency of items that recur in distributed streams.

Settings of the Experiments. We have implemented CoMMEDIA and run a
series of experiments on different types of streams and for different parameters
settings. We have fed our algorithm with both real-world data sets and synthetic
traces that have been distributed over the nodes of the system. Real data give
a realistic representation of some existing systems, while the latter ones allow
to capture phenomenon which may be difficult to obtain from real-world traces,
and thus allow to check the robustness of our strategies. We have varied all the
significant parameters of our algorithm, that is the number of distinct data items
n in each stream, the size of the enhanced Misra-Gries memory a, the number
k of entries in each line of the Count-Min matrix, and the number t of lines
of this matrix. For each parameters setting, we have conducted and averaged
100 trials of the same experiment, leading to a total of more than 10, 000, 000
experiments for the evaluation of our algorithm. Real data have been downloaded

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 13

 1

 10

 100

 1000

 10000

 100000

N
A

SA
 (July)

N
A

SA
 (A

ug.)

C
larkN

et (A
ug.)

C
larkN

et (Sept.)

Saskatchew
an

F
re

q
u
en

cy

Count-Min Sketch
CoMMEDIA
Real frequencies

Fig. 2: Estimation of the range of frequencies of items that recur in real data
traces as computed by the Count-Min sketch and the CoMMEDIA sketch com-
pared to their real frequency. We have ε = 10−2 and δ = 10−9.

from the repository of Internet network traffic [21]. We have used three large
traces among the available ones, representing different periods of HTTP requests
to WWW server of respectively NASA Kennedy Space Center, ClarkNet provider
and University of Saskatchewan. Table 2 presents some statistics of these data
traces, in term of stream size, population size in each stream and the number of
occurrences of the most frequent item. Note that all these benchmarks share a
Zipfian behavior, with a lower α parameter for the University of Saskatchwan.

Main Lessons drawn from the Experiments. We now present the main lessons
drawn from these experiments. Due to space constrain, only a subset of all the
conducted experiments are included in this paper.

Figure 2 shows the quality of both the Count-Min sketch and the CoMMEDIA

one to estimate item frequency when fed with real traces. This figure confirms
first that estimations always over-estimate the real frequency of items. Second,
it shows that CoMMEDIA clearly improves upon the quality of Count-Min by
closely estimating the full range of frequencies of items, even for very low fre-
quencies.

Figure 3 represents a kind of isopleths in which the horizontal axis shows the
size a of the enhanced Misra-Gries array, the vertical axis represents the data
items, and the body of the graph depicts the frequency estimation of each item
while using CoMMEDIA. A lighter color is representative of a highly frequent
item. The figure on the left represents an attack, in which the adversary injects
massively more than 100 fake data items while all the other items occur rarely
and uniformly in the whole stream. The one on the right represents a classical
stream distribution following a Zipf law (i.e., no more than 20 items occur very
frequently). Results got with Count-Min correspond to the extreme left of each
isopleth (i.e., when a = 0), while the real item frequencies are shown at their
extreme right (i.e., when a = n = 1000). Both isopleth at the top of Figure 3 have
been obtained by using constant space with respect to the one used by Count-
Min. That is, for each size a = 0, . . . , 1000 of the enhanced Misra-Gries array,

14 Emmanuelle Anceaume and Yann Busnel

0 5 10 50 100 500 1000
a

 0

 200

 400

 600

 800

1000

0 5,000 10,000 15,000 20,000
Data item frequency

 0

 200

 400

 600

 800

1000

0 5,000 10,000 15,000 20,000
Data item frequency

0 5 10 50 100 500 1000
a

 0

 200

 400

 600

 800

1000

0 5,000 10,000 15,000 20,000 25,000
Data item frequency

 0

 200

 400

 600

 800

1000

0 5,000 10,000 15,000 20,000 25,000
Data item frequency

Fig. 3: Frequency distribution as a function of a. Settings: m = 100, 000; n =
1, 000; ε = 0.1; δ = 0.1.

the size of the data structure C is diminished accordingly. On the other hand,
for both isopleths at the bottom of the figure, the size of the Count-Min sketch
is kept constant, and the size a of A data structure is incremented from a = 0 to
a = 1000. The main result drawn from this figure is that both Count-Min and
thus CoMMEDIA initially over-estimate all the frequencies which explains why
the sum of all the estimates frequency greatly exceeds the size of the stream
(1000 × 10, 000 > m). However, by increasing a little bit the used space for
CoMMEDIA with respect to the one used for Count-Min, we obtain a significant
improvement of the frequency estimation. Indeed with a = 50 (k = 28, and
t = 8), we obtain a frequency estimation which is very close to the exact one.
On the other hand, the above isopleths are not so impressive, nevertheless from
a = 50, the estimation converges relatively fast to the exact ones.

7 Conclusion

In this paper we have investigating the problem of estimating on the fly the fre-
quency at which items recur in distributed streams. Our approach combines tools
and probabilistic algorithms from both the distributed community and the data
streaming one. By doing so, we have first improved upon the Count-Min sketch
which was, so far, the best sketch in terms of space and time performance to
estimate data item frequency. We have then presented a solution to monitor dis-
tributed streams by distributing local sketches over the nodes of the system. We
have proven that this distributed algorithm guarantees a (ε, δ)-approximation of
item frequency estimation in a space-efficient way. This has been validated with
experiments on both synthetic and real traces.

References

1. Subhabrata, B.K., Krishnamurthy, E., Sen, S., Zhang, Y., Chen, Y.: Sketch-based
change detection: Methods, evaluation, and applications. In: Internet Measurement
Conference. (2003) 234–247

CoMMEDIA: Estimation of Items Frequency in Distributed Data Streams 15

2. Karamcheti, V., Geiger, D., Kedem, Z., Muthuskrishnan, S.: Detecting malicious
network traffic using inverse distribution of packet contents. In: Proc. of the work-
shop on Mining Network Data (MineNet) co-located with ACM SICOMM. (2005)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
distinct elements in a data stream. In: Proc. of the 6th International Workshop
on Randomization and Approximation Techniques (RANDOM), Springer-Verlag
(2002) 1–10

4. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences 31(2) (1985) 182–209

5. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
element problem. In: Proc. of the Symposium on Principles of Databases (PODS).
(2010)

6. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: Proc. of the 28th annual ACM symposium on Theory of
computing (STOC). (1996) 20–29

7. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theoretical Computer Science 312(1) (2004) 3–15

8. Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algorithm for com-
puting the entropy of a stream. In: ACM-SIAM Symposium on Discrete Algo-
rithms. (2007) 328–335

9. Lall, A., Sekar, V., Ogihara, M., Xu, J., Zhang, H.: Data streaming algorithms for
estimating entropy of network traffic. In: Proc. of the joint international conference
on Measurement and modeling of computer systems (SIGMETRICS), ACM (2006)

10. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. Journal of Algorithms 55(1) (2005) 58–75

11. Dimitropoulos, X., Stoecklin, M., Hurley, P., Kind, A.: The eternal sunshine of the
sketch data structure. Computer Networks 52(17) (2008)

12. Demaine, E.D., López-Ortiz, R., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: In Proceedings of the 10th Annual European
Symposium on Algorithms, Springer-Verlag (2002) 348–360

13. Muthukrishnan: Data Streams: Algorithms and Applications. Now Publishers Inc.
(2005)

14. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
15. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Programming

2(2) (1982) 143–152
16. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated

objects in a distributed environment. In: Proceedings of the 9th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA). (1997)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of the ACM SIGCOMM. (2001)

18. Stoica, I., Liben-Nowell, D., Morris, R., Karger, D., Dabek, F., Kaashoek, M.F.,
Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In: Proceedings of the ACM SIGCOMM. (2001)

19. Fraigniaud, P., Gauron, P.: D2B: a de Bruijn based content-addressable network.
Theoretical Computer Science 355(1) (2006) 65–79

20. Anceaume, E., Busnel, Y., Sericola, B.: Uniform node sampling service robust
against collusions of malicious nodes. In: Proc. of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), Budapest,
Hungary (June 2013)

21. the Internet Traffic Archive: http://ita.ee.lbl.gov/html/traces.html.
Lawrence Berkeley National Laboratory (April 2008)

16 Emmanuelle Anceaume and Yann Busnel

A Appendix

Theorem 2. The enhanced Misra and Gries algorithm with parameter a re-

turns for any item u an estimate f̂
(MG)

u such that fu− m(a−H)
a(a+2−H) ≤ f̂

(MG)

u ≤ fu with

O(a(logm + log n)) bits of space, where H corresponds to the number of heavy
hitters (i.e., items with frequency greater than m/a).

Proof. Consider the tuple array A used in Algorithm 2. Each entry of A stores
a key (i.e., an item) requiring dlog ne bits, and two values that call for at most
dlogme bits. Since there are at most a key/values tuple in A at any time, the
total space required is O(a(logm+ log n)) bits.

Consider now the quality of the Misra-Gries sketch. Let v be a given heavy
hitter v in the stream (that is, fv ≥ m/a).

First of all, by the last line of Algorithm 2, each item that does not belong to
A is associated with a 0 output. Moreover, the first value of v tuple is incremented
only when an occurrence of v effectively occurs in the stream. Thus, we have

f̂
(MG)

u ≤ fu.
On the other hand, whenever the second value of v tuple is incremented,

a− 1 other second values are also incremented, corresponding to distinct items
in the stream. Since the stream consists of m data items, there can be at most
m/a such decrements. A grouping argument is used to argue that any item
which occurs more than m/a times must be stored by the algorithm when it
terminates [15]. Thus, in the best case scenario, the v tuple is never overwritten
during the execution, and the first value of this tuple is exactly fv.

Let us consider now the worst case scenario in which v tuple is overwritten
regularly from A. In such a scenario, each time v is written in A, it will be
replaced by another item as soon as possible. In order to overwrite v tuple from
A, then a − 1 other distinct values have to occur right after the insertion of v
into A. Indeed, they need to fill all the possible a slots of A, plus another distinct
item from the current keys of A to increment the second value of v tuple and
finally, a last distinct one to enter in A at the exact place of v. Then, in order to
“forget” about a unique occurrence of v , it requires a sequence of a+ 2 distinct
items (including v) in the stream.

Let H denote the number of heavy hitters in the stream. More formally, we
have H =| {u | fu ≥ m/a} |. Thus, as the stream consists of m items, we have
at most m−Hm/a slots for the above scenario to hold. The c+ 2 distinct items
required for this scenario can obviously be picked among the heavy hitters. Then,
the maximum occurrence of v that can be hiden using Algorithm 2 is given by

1

a+ 2−H

(
m−Hm

a

)
=

m

a+ 2−H

(
a−H
a

)
=

m(a−H)

a(a+ 2−H)

that concludes the proof. ut

