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Faraday and Cotton-Mouton Effects of Helium at λ = 1064nm

A. Cadène1, D. Sordes1, P. Berceau1, M. Fouché1, R. Battesti1, and C. Rizzo1∗
1Laboratoire National des Champs Magnétiques Intenses,

(UPR 3228, CNRS-UPS-UJF-INSA), 31400 Toulouse, France.
(Dated: July 24, 2013)

We present measurements of the Faraday and the Cotton-Mouton effects of helium gas at
λ = 1064 nm. Our apparatus is based on an up-to-date resonant optical cavity coupled to longitu-
dinal and transverse magnetic fields. This cavity increases the signal to be measured by more than
a factor of 270 000 compared to the one acquired after a single path of light in the magnetic field
region. We have reached a precision of a few percent both for Faraday effect and Cotton-Mouton
effect. Our measurements give for the first time the experimental value of the Faraday effect at
λ=1064 nm. This value is compatible with the theoretical prediction. Concerning Cotton-Mouton
effect, our measurement is the second reported experimental value at this wavelength, and the first
to agree at better than 1σ with theoretical predictions.

I. INTRODUCTION

In 1845 Faraday discovered that a magnetic field af-
fects the propagation of light in a medium [1]. In par-
ticular, he observed that a magnetic field parallel to the
light wave vector k induces a polarization rotation of a
linearly polarized light. This effect is known nowadays as
the Faraday effect. With such experiments, Faraday was
looking for the proof that light and magnetic field have a
common origin. These revolutionary findings have been
one of the most important steps towards Maxwell’s the-
ory of electromagnetism.
At the very beginning of the 20th century, Kerr [2] and

Majorana [3] discovered that a linearly polarized light,
propagating in a medium in the presence of a magnetic
field, also acquires an ellipticity when the field is perpen-
dicular to k. In the following years, this phenomenon has
been studied in details by A. Cotton and H. Mouton [4]
and it is known nowadays as the Cotton-Mouton effect.
Faraday and Cotton-Mouton effects are both due to

the fact that the magnetic field creates an anisotropy in
the medium which then becomes birefringent. The term
birefringent indicates that different states of polarization
do not have the same propagation velocity. The Faraday
effect corresponds to a magnetic circular birefringence,
i.e. the index of refraction n− for left circularly polarized
light is different from the index of refraction n+ for right
circularly polarized light. The difference ∆nF = n−−n+

is proportional to the longitudinal magnetic field B‖:

∆nF = kFB‖, (1)

where kF is the circular magnetic birefringence per Tesla.
On the other hand, the Cotton-Mouton effect corre-
sponds to a magnetic linear birefringence, i.e. the index
of refraction n‖ for light polarized parallel to the mag-
netic field is different from the index of refraction n⊥ for
light polarized perpendicular to the magnetic field. The
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difference ∆nCM = n‖−n⊥ is proportional to the square

of the transverse magnetic field B2
⊥:

∆nCM = kCMB
2
⊥, (2)

where kCM is the linear magnetic birefringence per Tesla
squared.
Such magnetic birefringences are usually very small

(∆nF,∆nCM ≪ 1) for magnetic fields available in labo-
ratories, especially in the case of dilute matter. Magnetic
birefringence measurements are therefore an experimen-
tal challenge. The value of the birefringence depends
on the microscopic matter response properties like (hy-
per)susceptibilities. In the case of dilute matter, these
responses can be calculated ab initio using the computa-
tional methods developed in the framework of quantum
chemistry [5]. Experimental measurements are then a
fundamental test of our knowledge of the interaction of
electromagnetic fields and matter.
Among all known gases, helium presents the small-

est Faraday and Cotton-Mouton effects. Ab initio cal-
culations of the helium Faraday effect at λ = 1064nm,
with λ the light wavelength, have been published only
recently [6]. From the experimental point of view, even
if Faraday effect measurements in helium dates back to
the 50s [7], no measurement has yet been reported at
λ = 1064nm. Helium Cotton-Mouton effect has been
first measured at λ = 514.5nm in 1991 [8]. At the same
time, the first numerical calculation at a different wave-
length in the coupled Hartree-Fock approximation was
published [9]. Actually, these two first values were not
in agreement. While some other theoretical calculations
exist in literature [10], only three more experimental val-
ues have been published since 1991 [8, 11, 12], with only
one at λ = 1064nm [12].
Ab initio calculations of both Faraday and Cotton-

Mouton effect of helium are benchmark tests for compu-
tational methods. In practice they can be considered as
error free, especially when compared with the error bars
associated with the experimental values. Experimental
measurement precision has therefore to be as good as
possible to be able to test the different computational
methods.
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Experimentally, one generally measures the Faraday
effect by measuring the polarization rotation angle θF,
related to the circular birefringence by the formula:

θF = π
LB

λ
∆nF, (3)

where LB is the length of the magnetic field region. The
Cotton-Mouton effect is measured through the induced
ellipticity related to the linear birefringence by the for-
mula:

ψ = π
LB

λ
∆nCM sin 2θP, (4)

where θP is the angle between light polarization and the
magnetic field. Experiments are difficult because one
needs a high magnetic field coupled to optics designed
to detect very small variations of light velocity. One also
needs a LB as large as possible. To this end, optical cav-
ities are used to trap light in the magnetic field region
and therefore increase the ellipticity to be measured (see
e.g. Ref. [8]).
In this paper, we present measurements of the Fara-

day and the Cotton-Mouton effects of helium gas at
λ = 1064nm. Our apparatus is based on an up-to-date
resonant optical cavity coupled to longitudinal and trans-
verse magnetic fields. This cavity increases the signal to
be measured by more than a factor of 270 000 compared
to the one acquired after a single path of light in the mag-
netic field region. This allows us to reach a measurement
precision of a few percent both for Faraday effect and
Cotton-Mouton effect. Our results are finally compared
to the theoretical predictions and they agree to within
better than 1σ.

II. EXPERIMENTAL SETUP AND SIGNAL

ANALYSIS

A. Apparatus

Our apparatus is described in details in Refs. [13, 14].
Briefly, as shown in Fig. 1, 30mW linearly polarized light
provided by a Nd:YAG laser (λ = 1064nm) is injected
into a high finesse Fabry-Pérot cavity consisting of the
mirrors M1 and M2. The laser frequency is locked onto
the cavity using the Pound-Drever-Hall method [15]. To
this end, the laser passes through an electro-optic mod-
ulator (EOM) creating sidebands at 10 MHz. The beam
reflected by the cavity is detected by the photodiode Phr.
This signal is used to adjust the laser frequency with a
bandwidth of 80 kHz thanks to an acousto-optic modu-
lator (AOM) and with a bandwidth of a few kHz thanks
to the piezoelectric element of the laser. A slow control
with a bandwidth of a fewmHz is also applied thanks to
the Peltier element of the laser.
Before entering the optical cavity, the light is linearly

polarized by the polarizer P. The light transmitted by the
cavity is then analyzed with the analyzer A crossed at
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FIG. 1: Experimental setup. EOM = electro-optic modula-
tor; AOM = acousto-optic modulator; PDH = Pound-Drever-
Hall; Ph = photodiode; P = polarizer; A = analyzer. See text
for more details.

maximum extinction. Both polarizations are extracted:
parallel and perpendicular to P. The extraordinary beam
(power Ie), corresponding to the light polarization per-
pendicular to P, is collected by the low noise photodiode
Phe, while the ordinary beam (power It), correspond-
ing to the light polarization parallel to P, is detected by
Pht. All the optical components from the polarizer P
to the analyzer A are placed in a high vacuum chamber
which can be filled with high purity gases. During this
work, magneto-optical measurements have been done us-
ing a bottle of helium gas with a global purity higher
than 99.9999%. This bottle is connected to the chamber
through a leak valve allowing to inject less than 10−3 atm
of gas.

Magnets providing a field perpendicular to the light
wave vector k and a field parallel to k surround the vac-
uum pipe. The transverse magnetic field (B⊥ ⊥ k) used
for Cotton-Mouton effect measurements is created thanks
to pulsed coils described in Refs. [14, 16] and briefly de-
tailed in section IVA. For the Faraday effect measure-
ments, a modulated longitudinal magnetic field (B‖ ‖ k)
is applied thanks to a solenoid. More details are given in
section IIIA.

B. Fabry-Pérot cavity

A key element of the experiment is the Fabry-Pérot
cavity. Its aim is to accumulate the effect of the mag-
netic field by trapping the light between two ultra high
reflectivity mirrors M1 and M2. The length of the
cavity is Lc = (2.2713 ± 0.0006)m. This corresponds
to a cavity free spectral range of ∆FSR = c/2nLc =
(65.996±0.017)MHz, with c the speed of light in vacuum
and n the index of refraction of the medium in which the
cavity is immersed. This index of refraction will be con-
sidered equal to one. All theses parameters and their
uncertainties were measured previously. Details concern-
ing the measurement are given in Ref. [13]. Using the
Jones matrix formalism, we can calculate the total ac-
quired ellipticity due to the Cotton-Mouton effect Ψ(t).
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It is linked to the ellipticity without any cavity ψ(t) by:

Ψ(t) =
2F

π
ψ(t), (5)

Likewise, the total rotation angle ΘF(t) due to the Fara-
day effect is:

ΘF(t) =
2F

π
θF(t). (6)

where F is the finesse of the cavity and θF(t) the rotation
angle without any cavity.

1. Cavity birefringence

The cavity induces a total static ellipticity Γ. This is
due to the mirrors intrinsic phase retardation [17]. Each
mirror can be regarded as a wave plate and combination
of both wave plates gives a single wave plate. The total
phase retardation δeq and the axis orientation of the wave
plate equivalent to the cavity depend on the phase retar-
dation of each mirror and on their relative orientation
[18, 19]. Thus the value of Γ can be adjusted by rotating
the mirrors M1 and M2 around the z-axis corresponding
to the axis of light propagation.
We first set Γ = 0. To this end, we align the axis of the

equivalent wave plate on the incident polarization. This
is done by rotating the mirrors while the laser frequency
is locked onto the cavity. As the polarizers are crossed at
maximum extinction, we can measure the extinction ratio
σ2 of the polarizers by measuring the following ratio:

σ2 =
Ie
It

∣

∣

∣

Γ=0
. (7)

The value of σ2 is regularly measured, in particular before
each shot for the Cotton-Mouton effect measurements.
This extinction ratio can typically vary from 4× 10−7 to
8× 10−7.
As shown in Ref. [14], because of the ellipticity noise,

the optical sensitivity improves when Γ decreases. Start-
ing from Γ = 0 and rotating M1 in the clockwise or
counterclockwise direction, we choose the sign of Γ as
well as its value, with typically Γ2 ∼ σ2. The sign of
Γ is known by filling the vacuum chamber with nitrogen
gas and by measuring its Cotton-Mouton effect, whose
sign and value are perfectly known. This measurement
has already been done with this experiment and results
are reported in Ref. [13]. We performed several measure-
ments with different signs and values of Γ, showing that
this parameter is perfectly controlled. The value and the
sign of Γ are set before each magnetic shot.
The static birefringence of the cavity changes the inci-

dent linear polarization into an elliptical polarization of
ellipticity Γ. But it also induces a rotation angle ǫ of the
major axis of the ellipse compared with the P polarizer
axis. The value of this angle can be calculated consid-
ering the Fabry-Pérot cavity as an equivalent wave plate

of phase retardation δeq. The angle between the inci-
dent linear polarization and the fast axis of the equiva-
lent wave plate corresponds to ϕ, as represented in Fig. 2.
The ellipticity induced by the wave plate is given by:

Γ =
sin(2ϕ) sin(δeq)

2
. (8)

As we set Γ ≪ 1, the fast axis is almost aligned with P
and thus, we have ϕ ≪ 1. Assuming that δeq ≪ 1, we
get:

ϕ =
Γ

δeq
. (9)

We also have:

tan(2θ) = tan(2ϕ) cos(δeq), (10)

θ = ϕ
(

1−
δ2eq
2

)

, (11)

where θ is the angle between the major axis of the ellipse
and the fast axis of the wave plate. Combining Eqs. (9)
and (11), we obtain the angle ǫ between the major axis
of the elliptical polarization and the incident linear po-
larization:

ǫ = θ − ϕ = −
Γδeq
2

. (12)

The value of the phase retardation of our cavity is about
|δeq| ∼ 0.1 rad. This has been inferred by measuring the
value of Γ as a function of the mirrors’ orientation, as
explained in details in Ref. [17]. With a typical value
of |Γ| varying from 8 × 10−4 to 3 × 10−3, we obtain
40 µrad < |ǫ| < 150 µrad.

FIG. 2: Rotation of the major axis of the elliptical polariza-
tion due to the static birefringence of the Fabry-Pérot cavity.
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2. Cavity finesse and cavity filtering

The finesse of the cavity is inferred from the measure-
ment of the photon lifetime τ inside the cavity. At t = t0
the intensity of the laser, previously locked onto the cav-
ity resonance, is switched off. The exponential decay of
the intensity of the ordinary beam for t > t0 is fitted
with:

It(t) = It(t0)e
−(t−t0)/τ , (13)

to obtain τ . The cavity finesse is related to the photon
lifetime through:

F =
πcτ

Lc
. (14)

The value of the photon lifetime is regularly checked
during data taking. In this experiment, it ranges from
1.06ms to 1.12ms, corresponding to a finesse of 438 000
to 465 000. During a run of data taking, the relative
variation of the photon lifetime does not exceed 2% at
1σ confidence level.
Due to the photon lifetime, the cavity acts as a first

order low pass filter, as explained in details in Ref. [20].
Its complex response function H(ν) is given by:

H(ν) =
1

1 + i ν
νc

, (15)

with ν the frequency and νc = 1/4πτ ≃ 70Hz the cavity
cutoff frequency. This filtering has to be taken into ac-
count in particular for the time dependent magnetic field
applied inside the Fabry-Pérot cavity.
The cavity also acts as a first order low pass filter for

the ordinary beam It(t) compared to the beam incident
on the cavity. But, due to the cavity birefringence, the
cavity acts as a second order low pass filter for the ex-
traordinary beam Ie(t). This effect is explained in details
in Ref. [20]. The second order low pass filter represents
the combined action of two successive identical first or-
der low pass filters. Their complex response function is
given by Eq. (15). While the first one characterizes the
usual cavity behavior, we can interpret the second filter
in terms of pumping or filling: due to the mirror birefrin-
gence, some photons of the ordinary beam are gradually
converted into the extraordinary beam at each reflection.
Thus, if we want to directly compare It(t) and Ie(t), one
has to apply the first order low pass filter to It(t). The
filtered signal It,f(t) is then used for the analysis.

C. Signals

The ellipticity Ψ(t) and the rotation of the polariza-
tion ΘF(t) induced by the transverse and the longitu-
dinal magnetic fields can be related to the ratio of the
extraordinary and ordinary powers as follows:

Ie(t)

It,f(t)
= σ2 + [Γ + Ψ(t)]2 + [ǫ+ΘF(t)]

2. (16)

This formula, which can be obtained using the Jones for-
malism, clearly shows that our experiment is sensitive to
both ellipticities and rotations.

III. FARADAY EFFECT OF HELIUM GAS

As stated above, the Faraday effect corresponds to a
magnetic circular birefringence ∆nF induced by a longi-
tudinal magnetic field B‖. Form Eqs. (1), (3) and (6),
we deduce that the polarization rotation to be measured
depends on kF as follows:

ΘF(t) = 2F
LB

λ
kFB‖(t). (17)

For historical reasons, Faraday effect is usually given in
terms of the Verdet constant V [21], that is related to the
Faraday constant as:

V =
πkF
λ
. (18)

Eq. (17) becomes:

ΘF(t) =
2F

π
V B‖(t)LB. (19)

A. Magnetic field

To measure the Faraday effect, we need a longitudinal
magnetic field. It is delivered thanks to a 300mm long
solenoid. Its diameter is 50mm and it corresponds to 340
loops of copper wire. The magnetic field profile along the
longitudinal z-axis has been measured with a gaussmeter.
Fig. 3 shows the normalized profile. We define B‖,0 as the
maximum magnetic field, thus at the center of the coil,
and LB as the equivalent magnetic length such that:

∫ +∞

−∞

B‖(z)dz ≡ B‖,0LB. (20)

This equivalent magnetic length has been calculated by
numerically integrating the measured field. Taking into
account the experimental uncertainties, we obtain LB =
(0.308± 0.006)m at 1σ. We can reach a maximum mag-
netic field of about 4.3mT corresponding to an injected
current of 3A.
To measure the magnetic field during operation, we

measure the current injected into the coil. The form fac-
tor B‖/I has been determined experimentally using the
gaussemeter and an ammeter. This form factor remains
constant for frequency modulation ranging from DC to
50Hz. Finally we have estimated the relative uncertainty
u(B‖)/B‖ = 1.4% at 1σ, taking into account the uncer-
tainties coming from the gaussmeter, the ammeter and
from a possible small misalignment of the laser beam in-
side the solenoid.
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FIG. 3: Normalized profile of the longitudinal magnetic field
inside the solenoid along the longitudinal z-axis. The crosses
correspond to the measurements.

Faraday effect measurements were performed at room
temperature T = 293K in an air-conditioned room.
When a current is injected into the solenoid, the tem-
perature increases inside the coil. Nevertheless, for a
maximum current of 3A, the increase is lower than 2K.
This will be taken into account in the final uncertainty.

B. Analysis of Faraday signal

The magnetic field at the center of the coil is modu-
lated at the frequency ν: B‖ = B‖,0 sin(2πνt + φ). The
rotation of the polarization due to the Faraday effect is
thus given by:

ΘF = Θ0 sin(2πνt+ φ), (21)

with Θ0 =
2F

π
V B‖,0LB. (22)

Expanding Eq. (16), we obtain:

Ie(t)

It,f(t)
= σ2+ǫ2+2ǫΘF(t)+Θ2

F(t)+Γ2+2ΓΨ(t)+Ψ2(t).

(23)
We define the ratio between the Faraday and the Cotton-
Mouton signals as:

RF/CM =
2ǫΘF +Θ2

F

2ΓΨ+Ψ2
. (24)

For the Faraday measurements, our typical static elliptic-
ity is Γ = 3× 10−3 rad, and Eq. (12) gives |ǫ| = 150µrad.
We evaluate the value of RF/CM using the theoretical
values of the Verdet and Cotton-Mouton constants of he-
lium which are given later in this article. For this exper-
iment, our typical helium pressure is 30 × 10−3 atm and
the cavity finesse is of the order of 465 000 corresponding
to a cavity cutoff frequency of about 70Hz. The solenoid
mainly induces a longitudinal magnetic field, but, for the
sake of argument, let’s perform the calculation with the
same value 4.3mT for the longitudinal and the transverse

magnetic field. One gets: RF/CM ∼ 106. The Cotton-
Mouton effect is thus negligible. Eq. (23) thus becomes:

Ie(t)

It,f(t)
= σ2 + Γ2 + [ǫ +ΘF(t)]

2. (25)

This equation results in three main frequency compo-
nents:

IDC = σ2 + Γ2 + ǫ2 +
Θ2

0

2
, (26)

Iν =
2ǫΘ0

√

1 +
(

ν
νc

)2
sin

[

2πνt+ φ− arctan
( ν

νc

)]

, (27)

I2ν = −
Θ2

0

2
√

1 +
(

2ν
νc

)2
cos

[

4πνt+ 2φ− arctan
(2ν

νc

)]

.

(28)

As mentionned before, the cavity acts as a first-order low-
pass filter, with a cavity cutoff frequency νc. This filter-
ing has been taken into account in Eqs. (27) and (28).
The amplitude of the ν-component, Iν depends on Θ0

but also on ǫ whose value is not precisely known. On
the other hand, I2ν only depends on Θ0. Consequently it
is the only component used to measure the Verdet con-
stant. The amplitude of the 2ν frequency component,
proportional to (B‖,0LB)

2, is measured as a function of

the magnetic field amplitude. We fit our data byKVB
2
‖,0.

The Verdet constant V finally depends on the measured
experimental parameters as follows, using Eq. (22) and
the amplitude of the 2ν-component given in Eq.(28):

V (T, P ) =

√

KV

2

[

1 + (8πτν)
2
]1/4

2τ∆FSRLB
. (29)

C. Results

1. Our result

We report in Fig. 4 the Fourier transform of
Ie/It,f −DC-signal with about 60× 10−3 atm of helium
and with B‖,0LB = 1.3 × 10−3Tm. The magnetic fre-
quency modulation is fixed to ν = 18Hz in order to have
the 2ν frequency lower than the cavity cutoff frequency.
We can observe both components at frequencies ν and
2ν. During the Faraday data taking, the photon lifetime
was τ = (1.12±0.02)ms corresponding to a cavity finesse
of (465 000± 8 000).
We plot in Fig. 5 the amplitude of the 2ν component

as a function of B‖,0. We fit our data by a quadratic law

KVB
2
‖,0. We also study the ν frequency component as a

function of the magnetic field amplitude. According to
the relation (27), we obtain a linear dependance. By fit-
ting these data by a linear equation and using the value
of the Verdet constant measured with the 2ν frequency
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FIG. 5: Amplitude of the 2ν frequency component as a fonc-
tion of B‖,0 with about 60 × 10−3 atm of helium. The solid
line corresponds to the quadratic fit of the experimental data.

component, we infer the value of the ǫ parameter. We ob-
tain ǫ ≃ 10−4 rad, in agreement with the value calculated
with Eq. (12).
We performed Faraday constant measurements at dif-

ferent pressures from 10−2 to 6 × 10−2 atm. They are
summarized in Fig. 6. We measure the gas pressure in
the chamber with pressure gauges which have a relative
uncertainty given by the manufacturer of 0.2%. In this
range of pressure, helium can be considered as an ideal
gas and the pressure dependence of the Verdet constant
is thus linear. As shown in Fig. 6, our data are correctly
fitted by a linear equation. Its V -axis intercept is con-
sistent with zero within the uncertainties. Its slope gives
the normalized Verdet constant at λ = 1064nm and at
T = (294± 1)K:

V = (3.87± 0.12)× 10−5 atm−1rad.T−1m−1. (30)

With a scale law on the gas density and considering an
ideal gas, this corresponds to a normalized Verdet con-
stant at T = 273.15K of:

V = (4.17± 0.13)× 10−5 atm−1rad.T−1m−1. (31)

The uncertainty is given at 1σ. It is calculated from the
relative A and B-type uncertainties summarized in Ta-
ble I and detailed in Ref. [13]. Using Eq. (18), we can also

Parameter Relative A-type Relative B-type
uncertainty uncertainty

τ 2× 10−2

KV 8× 10−3

B‖,0 1.4× 10−2

LB 2.0× 10−2

∆FSR 3× 10−4

P 2× 10−3

TABLE I: Parameters and their respective relative A and B-
type uncertainties at 1σ that have to be measured to infer the
value of the normalized Verdet constant V .
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FIG. 6: Verdet constant of helium as a function of pressure.
The solid line corresponds to the linear fit of the experimental
data.

give the normalized Faraday constant. At T = 273.15K,
one gets:

kF = (1.41± 0.04)× 10−11 atm−1T−1. (32)

2. Comparison

Our value of the normalized Verdet constant can be
compared to other published values. Ref. [7] presents the
most extensive experimental values in helium. They have
been measured at different wavelengths, from 363 nm to
900nm, and they correspond to the open triangles in
Fig. 7 at T = 273.15K. As stated by the authors in
Refs. [7, 22], “the average absolute probable error is con-
sidered to be about 1%”, but “the scale of measurement
was determined by a comparison of these results with
accepted values for water”. This is an important differ-
ence from our experiment since we do not need to cali-
brate our setup with another gas. All parameters from
which the measured Verdet constant depends are accu-
rately monitored, yielding therefore a Verdet constant of
high precision and accuracy.
As far as we know, no value has been reported at

1064nm, our working wavelength. Nevertheless, it can be
quadratically interpolated from the data of Ref. [7] with
a fit A/λ2 (solid line in Fig. 7). This gives a normalized
Verdet constant at λ = 1064nm and T = 273.15K of
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•: Theoretical predictions at T = 273.15K reported in
Ref. [6]. Inset : Zoom around λ = 1064 nm. The error bar
corresponds to the 1σ uncertainty of our measurement.

Ref. V × 105 Remarks
[atm−1rad.T−1m−1]
Theoretical values

[6] 4.06
[23] 4.09 ± 0.02 quadratically interpolated

Experimental values

[7] 4.15 ± 0.05
quadratically interpolated
not absolute: scaled to
water

This work 4.17 ± 0.13

TABLE II: Experimental and theoretical values of the nor-
malized Verdet constant at T = 273.15K, λ = 1064 nm and
with uncertainties at 1σ.

V = (4.15± 0.05)× 10−5 atm−1rad.T−1m−1. The uncer-
tainty is the one given by the fit. This value is compatible
with ours, which is represented as the open circle in the
inset of Fig. 7.

We finally compared our value with the theoretical pre-
dictions at T = 273.15K. The most recent ones were pub-
lished in 2005 [6] exploiting a four-component Hartree-
Fock calculations and in 2012 [23] using a relativistic
particle hole configuration interaction method. Ref. [6]
gives values at different wavelengths that are plotted in
Fig. 7 with the filled points. The value at λ = 1064nm
is V = 4.06 × 10−5 atm−1rad.T−1m−1 and it is plotted
in Fig. 7 with the filled point. Ref. [23] does not give a
value at 1064nm, but it can be obtained by a quadratic
interpolation the data provided by the authors. One ob-
tains V = (4.09 ± 0.02)× 10−5 atm−1rad.T−1m−1, with
an uncertainty given by the fit. Both theoretical values
are compatible with our experimental Verdet constant.
All these theoretical and experimental values are sum-
marized in Table II.

IV. COTTON-MOUTON EFFECT OF HELIUM

GAS

The Cotton-Mouton effect consists in a linear birefrin-
gence ∆nCM induced by a transverse magnetic field B⊥.
From Eqs. (4) and (5) we deduce that the ellipticity Ψ(t)
to be measured is linked to kCM by:

Ψ(t) = 2F
LB

λ
kCMB

2
⊥(t) sin 2θP. (33)

The angle θP is adjusted to 45 degrees with the experi-
mental procedure explained in Ref. [13].

A. Magnetic field

One can see that Ψ is proportional to B2
⊥LB. In order

to have Ψ as high as possible, we have to maximize this
parameter. This is fulfilled using pulsed fields delivered
by one magnet, named X-coil, especially designed by the
LNCMI. The principle of this magnet and its properties
are described in details in Refs. [14, 16]. It can provide
a maximum field of more than 14T over an equivalent
length LB of 0.137m [13]. The high voltage connections
can be remotely switched to reverse the direction of the
field. Thus we can set B parallel or anti-parallel to the
x-direction, as shown in Fig. 1.

The pulsed coil is immersed in a liquid nitrogen cryo-
stat to limit its heating. A pause between two pulses
is necessary to let the magnet cool down to the equi-
librium temperature. We do not need to use the coil
at its maximum field since the sensitivity of our exper-
iment is largely sufficient. We have chosen to apply a
maximum field of 3T in order to limit the ageing of the
magnet. From one shot to another, a relative variation of
the maximum of the field lower than 1.5% was observed
due to a variation of the power supply voltage.

The pulse duration is less than 10ms, with the max-
imum of the field reached within 2ms. Since the pulse
duration is of the same order of magnitude as the photon
lifetime inside the cavity, the filtering of the Fabry-Pérot
cavity has to be taken into account for the magnetic field,
as said in section II B 2. We calculate the filtered field
B2

⊥,f from B2
⊥ by using the first-order low pass filter cor-

responding to the cavity. The time profiles of B2
⊥ and

B2
⊥,f are shown in Fig. 8, for a maximum field of 3T.

B. Analysis of Cotton-Mouton signal

As mentioned in section II C, the ratio of power Ie and
It,f is linked to the birefringence Ψ(t) to be measured as
follows:

Ie(t)

It,f(t)
= σ2 + [Γ + Ψ(t)]2 + [ǫ+ΘF(t)]

2, (34)
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where ΘF(t) is the rotation angle due to a longitudinal
component of the pulsed magnetic field inducing a Fara-
day effect in helium. This component B‖(t) is firstly due
to the X-structure of the coil. It is around 230 times
smaller than the transverse field, i.e. around 10mT for
a pulse of 3T. Moreover a contribution to B‖ appears
if the cryostat is not perfectly aligned with the optical
axis. The diameter of the cryostat is 60 cm. A typi-
cal misalignment of 2mm over this length, i.e. around
3mrad, leads to a longitudinal component of 10mT. Fi-
nally the estimated longitudinal magnetic field is about
20mT. It can be present during a shot over an equivalent
length LB = 0.137m.

Using Eq. (19) and the value of the Verdet constant
given in Eq. (30), we can calculate the rotation of the
polarization ΘF due to B‖. It is about 30mrad per at-
mosphere of helium gas. We then calculate the ratio of
the Faraday effect over the Cotton-Mouton effect RF/CM,
given by Eq. (24). Since the static ellipticity is typically
|Γ| ≃ 8×10−4 rad corresponding to ǫ ≃ 40µrad as stated
in section II B 1, this ratio goes from 200 at 40×10−3 atm
to 2600 at 550× 10−3 atm. This shows that the Faraday
effect component is not negligible and thus need to be
taken into account.

From Eq. (34), we obtain:

Ie(t)

It,f(t)
= σ2+Γ2+ǫ2+2ΓΨ(t)+Ψ2(t)+2ǫΘF(t)+Θ2

F(t).

(35)
This formula shows that the angle ǫ carries the Faraday
effect of the gas. During a Cotton-Mouton effect mea-
surement we want to have the Faraday effect as small as
possible. We therefore minimize ǫ before the shot, once
the value of Γ is set, by turning the analyzer A. As we
can see in Fig. 2, it consists in aligning A, which has been
initially adjusted at 90 degrees compared to the incident
polarization, on the minor axis of the elliptical polar-
ization. Nevertheless, in order to take into account the
imperfections of this experimental adjustment, we still
keep ǫ in the formula, assuming that ǫ2 ≪ Γ2.

To extract the ellipticity Ψ(t), we calculate the follow-

ing Y (t) function:

Y (t) =

Ie(t)
It,f (t)

−DC

2|Γ|
(36)

= γΨ(t) +
Ψ2(t)

2|Γ|
+ γ

|ǫ|ΘF(t)

2|Γ|
+

Θ2
F(t)

2|Γ|
,

where γ corresponds to the sign of Γ. DC is the static
signal:

DC = σ2 + Γ2 + ǫ2 =
〈 Ie(t)

It,f(t)

〉

t<0
, (37)

and it is measured just before each shot, the magnetic
field being applied at t = 0. We also measure the ex-
tinction ratio σ2 before each shot using the experimental
procedure described in section II B 1. The absolute value
of the static ellipticity is then calculated as follows:

|Γ| =

√

〈 Ie(t)

It,f(t)

〉

t<0
− σ2. (38)

Two parameters are adjustable in the experiment: the
sign γ of the static ellipticity Γ and the direction of the
transverse magnetic field. We acquire signals for both
signs of Γ and both directions of B: parallel to x is de-
noted as > 0 and antiparallel is denoted as < 0. This
gives four data series: (Γ > 0, B⊥ > 0), (Γ > 0, B⊥ < 0),
(Γ < 0, B⊥ < 0) and (Γ < 0, B⊥ > 0). For each series,
signals calculated with Eq. (36) are averaged and denoted
as Y>>, Y><, Y<< and Y<>. The first subscript corre-
sponds to Γ > 0 or < 0 while the second one corresponds
to B parallel or antiparallel to x.
The Y signals are the sum of different effects with dif-

ferent symmetries, denoted as S:

Y>> = a>>S++ + b>>S+− + c>>S−− + d>>S−+,

Y>< = a><S++ − b><S+− − c><S−− + d><S−+,

Y<< = a<<S++ − b<<S+− + c<<S−− − d<<S−+,

Y<> = a<>S++ + b<>S+− − c<>S−− − d<>S−+.

(39)

The first subscript in S corresponds to the symmetry
towards the sign of Γ and the second one towards the
direction of B. The subscript + indicates an even parity
while the subscript − indicates an odd parity. In practice
w>> ≃ w>< ≃ w<< ≃ w<> (with w = a, b, c or d) de-
pend on the experimental parameters. These values are
not perfectly equal because the experimental parameters
slightly vary from one shot to another, in particular the
value of |Γ|.
Possible physical effects contributing to the different

S signals are summarized in Tab. III. The S+− signal
does not appear in Eq. (36) but it has to be taken into
account. It corresponds to a signal with an odd parity
towards the direction of B and an even parity towards
the sign of Γ that could be, for example, a spurious effect
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on the photodiodes Pht and Phe induced by the magnetic
field.
Linear combinations of the Y signals allow to highlight

the effect corresponding to the different symmetries:

J1 =
Y>> + Y>< + Y<< + Y<>

4
,

= a S++ +∆b1 S+− +∆c1 S−− +∆d1 S−+,

J2 =
Y>> − Y>< − Y<< + Y<>

4
,

= b S+− +∆a2 S++ +∆c2 S−− +∆d2 S−+,

J3 =
Y>> − Y>< + Y<< − Y<>

4
,

= c S−− +∆a3 S++ +∆b3 S+− +∆d3 S−+,

J4 =
Y>> + Y>< − Y<< − Y<>

4
,

= d S−+ +∆a4 S++ +∆b4 S+− +∆c4 S−−.

(40)

with ∆wi ≃ 0 (w = a, b, c or d and i = 1, 2, 3 or 4).
The signal we want to measure is Ψ(t) which corresponds
to the main part of S−+(t), thus proportional to B2

⊥,f .
We can write:

J4 = αB2
⊥,f +∆a4 S++ +∆b4 S+− +∆c4 S−−,

≃ αB2
⊥,f . (41)

We fit the function J4 by αB
2
⊥,f to obtain α. The Cotton-

Mouton constant kCM finally depends on the measured
experimental parameters as follows:

kCM(T, P ) =
α

4πτ∆FSR

λ

LB

1

sin 2θP
. (42)

The terms T and P correspond to the gas temperature
and pressure.

S signal Physical effect
S++(t) Θ2

F(t), Ψ
2(t)

S+−(t) B effects on photodiodes...
S−−(t) γΘF(t)
S−+(t) γΨ(t)

TABLE III: Possible physical effects contributing to the S
signals.

C. Results

1. Our result

We have taken data for helium pressures ranging from
40×10−3 atm to 550×10−3 atm. Before injecting the gas,
we pumped the vacuum chamber and the initial pres-
sure was about 10−10 atm. Several series of four shots

(Γ > 0, B⊥ > 0; Γ > 0, B⊥ < 0; Γ < 0, B⊥ < 0
and Γ < 0, B⊥ > 0) have been acquired for each pres-
sure. The vacuum chamber was pumped between two
measurements at different pressures, which made them
totally independent. The temperature of the gas during
the magnetic pulse was measured previously [13] and was
T = (293 ± 1)K. For this set of measurement the mean
photon lifetime inside the cavity is τ = (1.06± 0.02)ms,
corresponding to a finesse of 438 000± 8 000.
The signals Y>>, Y><, Y<< and Y<> obtained for a

pressure of 550× 10−3 atm are plotted in Fig. 9. We cal-
culate the signals expected from the theoretical predic-
tion considering only the Cotton-Mouton effect [5]. The
theoretical signals (dashed line) are superimposed to the
experimental data (solid line). One can see that the Y
signals do not match at all with the expected signals. A
more refined study is thus needed to extract the Cotton-
Mouton effect. The Y signals are in fact linear combi-
nations of different effects with different symmetries to-
wards the sign of Γ and the direction of B, as predicted
in Eqs. (39).
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FIG. 9: Time evolution of the Y (t) signals at a pressure of
550×10−3 atm. Solid black curve: experimental data, dashed
curve: expected signal from the theoretical prediction consid-
ering only the Cotton-Mouton effect.

We then calculate the corresponding J signals, plotted
in Fig. 10. In order to validate the physical origin of J1,
J2, J3 and J4, we have studied the evolution of the value
of their maximum as a function of pressure. They are
shown in Fig. 11. In this range of pressure, helium can be
considered as an ideal gas and the pressure dependence
of the Faraday and Cotton-Mouton effects is thus linear.
We see that the maxima of J3 and J4 are proportional to
the pressure, which is consistent with the Faraday effect
due to the residual longitudinal magnetic field B‖ and
the Cotton-Mouton effect due to the transverse magnetic
field B⊥. The maximum of J1 increases with the square
of the pressure. It confirms that this signal contains the
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terms Θ2
F and Ψ2. The value of the J2 maximum does

not have a clear dependence with the pressure. Moreover
the shape of J2(t) is not the same from a pressure to
another. Finally, the J2 signals can be fitted by a linear
combination of J1, J3 and J4. Thus, we deduce that J2 is
essentially a linear combination of the other signals, and
that the signal bS+− is almost zero.
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FIG. 10: Time evolution of the J(t) signals at a pressure of
550× 10−3 atm.
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FIG. 11: Evolution of the maximum of the J(t) signals as a
function of pressure.

Thus we can write:

J1 ≃ a S++,

J2 ≃ ∆a2 S++ +∆c2 S−− +∆d2 S−+,

J3 ≃ c S−−,

J4 ≃ d S−+. (43)

The main contribution to J4 comes from the Cotton-
Mouton effect. We thus fit J4(t) with αB2

⊥,f(t). The

value of kCM is then calculated thanks to Eq. (42).
For the lowest pressures, the Cotton-Mouton signal,

proportional to αB2
⊥,f , also decreases. In this case,

∆a4 S++ and ∆c4 S−− are not completely negligible com-
pared to αB2

⊥,f . This is shown in Fig. 12 where a typical

signal obtained for a helium pressure of 162 × 10−3 atm
is plotted. We see that the fit of J4 with αB2

⊥,f does not
perfectly match the experimental data. To obtain a bet-
ter fit, we have to add parameters. To this end, we first
fix the value of α at the value obtained with the first fit
αB2

⊥,f . Then we fit J4 with αB2
⊥,f + α1J1 + α3J3. J2 is

not used in this fit because, as said before, it is mainly
a linear combination of the other signals. One can see in
Fig. 12 that this fit now matches much better the data.
We can conclude that, in this case, we have:

J4 = αB2
⊥,f +∆a4 S++ +∆c4 S−−, (44)

= αB2
⊥,f +

∆a4
a

J1 +
∆c4
c

J3, (45)

with α2 = ∆a4/a and α3 = ∆c4/c. This fit procedure
repeated for each pressure shows that we always have α2

and α3 lower than 0.1.
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FIG. 12: Gray: Time evolution of J4 for a pressure of 162 ×

10−3 atm. Black dashed curve: fit with αB2
⊥,f . White solid

curve: fit with αB2
⊥,f+α1J1+α3J3, the value of α being fixed

at the value obtained with the previous fit αB2
⊥,f .

The value of kCM as a function of the pressure is shown
in Fig. 13. A linear fit of this data gives kCM = (2.19 ±
0.09)×10−16 T−2atm−1 at T = (293±1)K. Its kCM-axis
intercept is consistent with zero within the uncertainties.
The A-type uncertainties come from the fit and from

the photon lifetime with a relative variation lower than
2%. The B-type uncertainties have been evaluated pre-
viously and detailed in Ref. [13]. They essentially come
from the length of the magnetic field LB. They are sum-
marized in Table IV. We obtain for the value of the
Cotton-Mouton constant at T = (293± 1)K:

kCM = (2.19± 0.12)× 10−16T−2atm−1. (46)

The value of kCM normalized at 273.15K is calculated
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FIG. 13: Linear magnetic birefringence of helium gas as a
function of pressure. The solid line corresponds to the linear
fit of the experimental data.

Parameter Typical value
Relative B-type
uncertainty

α 10−5 radT−2 2.2× 10−2

∆FSR 65.996MHz 3× 10−4

LB 0.137m 2.2× 10−2

λ 1064.0 nm < 5× 10−4

sin 2θP 1.0000 9× 10−4

Total 3.1× 10−2

TABLE IV: Parameters that have to be measured to infer the
value of the Cotton-Mouton constant kCM and their respective
relative B-type uncertainty at 1σ.

with a scale law on the gas density:

kCM = (2.35± 0.13)× 10−16T−2atm−1, (47)

at λ = 1064nm, taking into account the uncertainty on
the temperature.

2. Comparison

The value of the Cotton-Mouton effect in helium is
calculated very precisely thanks to ab initio quantum
chemistry computational methods [5]. Theoreticians con-
centrate on the calculation of the hypermagnetizability
anisotropy ∆η while experimentalists measure the bire-
fringence ∆nCM = kCMB

2. The Cotton-Mouton con-
stant kCM is linked to ∆η by [10]:

kCM [atm−1T−2] =
6.18381× 10−14

T
∆η [a.u.] (48)

Few experiments were realized to measure the Cotton-
Mouton effect of helium. The results are summarized
in Table V. The theoretical values correspond to the
ones of Ref. [24]. The latter have been obtained using
the Full Configuration Interaction (FCI) method and the
most extended wave functions basis. They are expected
therefore to be very accurate.

Experimental results
Theoretical

prediction [24]

Ref. λ [nm] 1016 × kCM [T−2] 1016 × kCM [T−2]

[8] 514.5 1.80 ± 0.36 2.3959
[12] 532 2.08 ± 0.16 2.3966
[11] 790 3.95 ± 1.40 2.4018
[12] 1064 2.22 ± 0.16 2.4036

This work 1064 2.35 ± 0.13 2.4036

TABLE V: Experimental and theoretical values of Cotton-
Mouton constant for helium gas. Values are normalized for a
temperature of 273.15 K and a pressure of 1 atm. Uncertain-
ties are given at 1σ.

Our result is compatible at better than 1σ with the
theoretical prediction and is the most precise value of
kCM ever measured, as we can see in Fig. 14 that sum-
marizes the results for the Cotton-Mouton measurements
at 273.15K.
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FIG. 14: Comparison of reported values of Cotton-Mouton ef-
fect of helium gas. △: experimental values of helium Cotton-
Mouton constant reported in Refs. [8, 11, 12]. ◦: our ex-
perimental value. • and dashed line: theoretical predictions
reported in Ref. [24].
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V. DISCUSSIONS AND CONCLUSION

In this paper we report a new measurement of Fara-
day and Cotton-Mouton effects at λ = 1064nm. Both
measurements have precisions that are of the order of
a few percent, corresponding to one of the most precise
birefringence measurements. Our measurements are also
accurate and they are in agreement with theory at better
than 1σ.
As far as Faraday effect is concerned, our measurement

is the first at λ = 1064nm. It is worthwhile to stress that
our measurement is also absolute, while previous results
[7, 22] were given with respect to the Faraday effect of
water.
Our Cotton-Mouton measurement is the second exper-

imental value at λ = 1064nm but it is the first to agree so
well with the theoretical prediction. This definitely solves
the problem of the discrepancy between experiment and
theory originated from the first 1991 measurements and
calculation [10] and that still persisted (see TableV).
The measurement of such small Cotton-Mouton ef-

fects, as the helium one, is not only important to test
the quantum chemistry predictions. It is also a cru-
cial test for the apparata devoted to the search of vac-
uum magnetic birefringence. Quantum electrodynamics
predicts that a vacuum, as any other centro symmet-
ric medium, should exhibit a Cotton-Mouton effect [25].
This fundamental prediction has not yet been experimen-
tally proven. Several attempts have been made and a few

are still under way [25]. Vacuum Cotton-Mouton effect
should be about eight orders of magnitude smaller than
the one of helium at 1 atm. Measurement of the Cotton-
Mouton effect of helium is therefore compulsory in the
search for improving the sensitivity of such apparata.

Our experimental method based on pulsed fields cou-
pled to a Fabry-Pérot cavity seems very appropriate to
reach the sensitivity needed for vacuum measurement.
The measurements reported here validate the whole pro-
cedure of data taking and signal analysis that allow to
isolate the main effect from the spurious ones thanks to
signal symmetries. They are therefore a milestone in the
road towards vacuum linear magnetic birefringence.
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liard and C. Rizzo, Appl. Phys. B 97, 457 (2009).

[18] D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch and M.
Oger, Opt. Lett. 20, 671 (1995).

[19] F. Brandi, F. Della Valle, A.M. De Riva, P. Micossi,
F. Perrone, C. Rizzo, G.Ruoso and G. Zavattini, Appl.
Phys. B 65, 351 (1997).
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