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be the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped. In this note we give two explicit upper bounds for R(K [k1,t1] , . . . , K [kr,tr] ) (the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K [ki,ti] for some i). Our first upper bound contains a classical one in the case when k 1 = • • • = k r and t i = 1 for all i. The second one is obtained by introducing a new edge coloring called χ r -colorings. We finally discuss a conjecture claiming, in particular, that our second upper bound improves the classical one in infinitely many cases.

Introduction

Let K n be a complete graph and let r 2 be an integer. A r-edge coloring of a graph is a surjection from E(G) to {0, . . . , r -1} (and thus each color class is not empty). Let k t 1 be positive integers. We denote by K [k,t] the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped, see Figure 1 Let k 1 , . . . , k r and t 1 , . . . , t r be positive integers with k i t i for all i ∈ {1, . . . , r}. Let R([k 1 , t 1 ], . . . , [k r , t r ]) be the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K [k i ,t i ] for some i. In the case when k i = t i for some i, we set

R([k 1 , t 1 ], . . . , [k i-1 , t i-1 ], [t i , t i ], [k i+1 , t i+1 ], . . . , [k r , t r ]) t i .
We note that equality is reached at min

1 i r {t i |t i = k i }.
Since the set of all the edges of K [t i ,t i ] (which is empty) can always be colored with color i. We also notice that the case R([k 1 , 1], . . . , [k r , 1]) is exactly the classical Ramsey number r(k 1 , . . . , k r ) (the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K k i for some i). We refer the reader to the excellent survey [START_REF] Radziszowski | Small Ramsey numbers[END_REF] on Ramsey numbers for small values. In this note, we investigate general upper bounds for R([k 1 , t 1 ], . . . , [k r , t r ]). In the next section we present a recursive formula that yields to an explicit general upper bound (Theorem 2.2) generalizing the well-known explicit upper bound due to Graham and Rödl [START_REF] Graham | Numbers in Ramsey theory[END_REF] (see equation 3). We also improve our explicit upper bound when r = 2 for certain values of k i , t i (Theorems 2.4 and 2.5). In Section 3, we shall present another general explicit upper bound for R([k 1 , t 1 ], . . . , [k r , t r ]) (Theorem 3.8) by introducing a new edge coloring called χ r -colorings. We end by discussing a conjecture that is supported by graphical and numerical results.

Upper bounds

The following recursive inequality is classical in Ramsey theory

r(k 1 , k 2 , . . . , k r ) r(k 1 -1, k 2 , . . . , k r ) + r(k 1 , k 2 -1, . . . , k r ) + • • • + (1) +r(k 1 , k 2 , . . . , k r -1) -(r -2)
In the same spirit, we have the following.

Lemma 2.1. Let r 2 and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers with

k i t i + 1 2 for all i. Then, R([k 1 , t 1 ], . . . , [k r , t r ]) R([k 1 -1, t 1 ], [k 2 , t 2 ], . . . , [k r , t r ]) +R([k 1 , t 1 ], [k 2 -1, t 2 ], . . . , [k r , t r ]) . . . +R([k 1 , t 1 ], [k 2 , t 2 ], . . . , [k r -1, t r ]) -(r -2).
A similar recursive inequality has been treated in [START_REF] Shi | A bound for multicolor Ramsey numbers[END_REF] in a more general setting (by considering a family of graphs intrinsically constructed via two operations disjoin unions and joins, see also [START_REF] Huang | New upper bounds for Ramsey numbers[END_REF] for the case r = 2). Although the latter could be used to obtain Lemma 2.1, the arguments used here give a different and a more straight forward proof. Proof of Lemma 2.1. Let us take any r-edge coloring of

K N with N R([k 1 -1, t 1 ], [k 2 , t 2 ], . . . , [k r , t r ]) + • • • + R([k 1 , t 1 ], [k 2 , t 2 ], . . . , [k r -1, t r ]) -(r -2).
Let v a vertex of K N and let Γ i (v) be the set of all vertices joined to v by an edge having color i for each i = 1, . . . , r. We claim that there exists index 1 i r such that

Γ i (v) R([k 1 , t 1 ], . . . , [k i -1, t i ], . . . , [k r , t r ]).
Otherwise,

N -1 = d(v) = r j=1 Γ j (v) r j=1 (R([k 1 , t 1 ], . . . , [k i -1, t i ], . . . , [k r , t r ]) -1) = r j=1 (R([k 1 , t 1 ], . . . , [k i -1, t i ], . . . , [k r , t r ]) -r N + (r -2) -r = N -2 which is a contradiction. Now, suppose that Γ i (v) R([k 1 , t 1 ], . . . , [k i -1, t i ], . . . , [k r , t r ]) for an index i. By def- inition of R([k 1 , t 1 ], . . . , [k i -1, t i ], . . . , [k r , t r ]
) we have that the complete graph induced by Γ i (v) contains either a subset of vertices inducing a copy K [k j ,t j ] having all edges with color j, for some j = i, and we are done or a subset of vertices inducing K [k i -1,t i ] having all edges with color i. Adding vertex v to K [k i -1,t i ] we obtain the desired copy of K [k i ,t i ] having all edges colored with color i. ⊓ ⊔ 

{t i } k 1 + • • • + k r -(t 1 + • • • + t r ) k 1 -t 1 , k 2 -t 2 , . . . . . . , k r -t r
where

n 1 +n 2 +•••+nr n 1 ,n 2 ,......,nr
is the multinomial coefficient defined by

n 1 +n 2 +•••+nr n 1 ,n 2 ,......,nr = (n 1 +•••+nr)! n 1 !n 2 !•••nr! , for all nonnegative integers n 1 , . . . , n r .
Proof. We suppose that t 1 , . . . , t r are fixed. We proceed by induction on k 1 + • • • + k r , using Lemma 2.1. In the case where k j = t j , for some j ∈ {1, . . . , r}, we already know that

R ([k 1 , t 1 ], . . . , [k j-1 , t j-1 ], [t j , t j ], [k j+1 , t j+1 ], . . . , [k r , t r ]) = t j , and, since k i -t i 0 for all i, k 1 + • • • + k i-1 + k i+1 + • • • + k r -(t 1 + • • • + t i-1 + t i+1 + • • • + t r ) k 1 -t 1 , . . . , k j-1 -t j-1 , 0, k j+1 -t j+1 . . . . . . , k r -t r 1. Therefore R ([k 1 , t 1 ], . . . , [k r , t r ]) = t j max 1 i r t i k 1 + • • • + k r -(t 1 + • • • + t r ) k 1 -t 1 , k 2 -t 2 , . . . . . . , k r -t r in this case. Now, suppose that k i > t i
for all i ∈ {1, . . . , r}. By Lemma 2.1 and by induction hypothesis, we obtain that

R([k 1 , t 1 ], . . . , [k r , t r ]) R([k 1 -1, t 1 ], [k 2 , t 2 ], . . . , [k r , t r ]) +R([k 1 , t 1 ], [k 2 -1, t 2 ], . . . , [k r , t r ]) . . . +R([k 1 , t 1 ], [k 2 , t 2 ], . . . , [k r -1, t r ]) -(r -2) max 1 i r t i k 1 + • • • + k r -(t 1 + • • • + t r ) -1 k 1 -t 1 -1, k 2 -t 2 , . . . . . . , k r -t r + k 1 + • • • + k r -(t 1 + • • • + t r ) -1 k 1 -t 1 -1, k 2 -t 2 -1, . . . . . . , k r -t r . . . + k 1 + • • • + k r -(t 1 + • • • + t r ) -1 k 1 -t 1 -1, k 2 -t 2 , . . . . . . , k r -t r -1 -(r -2) max 1 i r t i k 1 + • • • + k r -(t 1 + • • • + t r ) k 1 -t 1 , k 2 -t 2 , . . . . . . , k r -t r ,
since we have the following multinomial identity

n 1 + n 2 + • • • + n r n 1 , n 2 , . . . . . . , n r = r i=1 n 1 + n 2 + • • • + n r -1 n 1 , . . . , n i-1 , n i -1, n i+1 , . . . , n r
for all positive integers n 1 , n 2 , . . . , n r . Theorem 2.2 is a natural generalization of the only known explicit upper bound for classical Ramsey numbers. Indeed, an immediate consequence of the above theorem (when t = 1) is the following classical upper bound due to Graham and Rödl [5, (2.48)] that was obtained by using (1).

( 2)

R ([k 1 , 1], . . . , [k r , 1]) k 1 + • • • + k r -r k 1 -1, . . . , k r -1 • Let R r ([k, t]) = R([k, t], . . . , [k, t] r
).

Corollary 2.3. Let k t 2 and r 2 be integers. Then,

R r ([k, t]) t r(k -t) k -t, . . . , k -t .
An immediate consequence of the above corollary (again when t = 1) is the following upper bound

(3) R r ([k, 1]) (rk -r)! ((k -1)!) r • 2.2. Case r = 2. When r = 2, it is the exact values of the recursive sequence generated from u t,k = u k,t = t(= R 2 ([t, t]
)) for all k t and following the recursive identity

u k 1 ,k 2 = u k 1 -1,k 2 + u k 1 ,k 2 -1 for all k 1 , k 2 t + 1. We investigate with more detail the cases R([s, 2], [t, 2]) (resp. R([s, 2], [t, 1]
)), that is, the smallest integer n such that for any 2-edge coloring of K n there always occurs a monochromatic K s -{e} or K t -{e} (resp. a monochromatic K s -{e} or K t )). These cases have been extensively studied and values/bounds for specific s and t are known, see Table 1 obtained from [START_REF] Radziszowski | Small Ramsey numbers[END_REF]. (a) The result is obvious for k = 2. First, let us show that R( [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF], [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF]) = 3. For, we notice that K [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF] is the graph consisting of three vertices, one of degree 2 and two of degree 1, and so R( [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF], [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF]) > 2. Now, for any 2-coloring of the edges of K 3 there is always a vertex with two incident edges with the same color, giving the desired K [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF] . Suppose now that k 4. We first prove that R([3, 2], [k, 2]) 2k -3. For, we iterate inequality of Lemma 2.1 obtaining

K 3 \ {e} K 4 \ {e} K 5 \ {e} K 6 \ {e} K 7 \ {e} K 8 \ {e} K 9 \ {e} K 10 \ {e} K 11 \ {e} K 3 \
R([3, 2], [k, 2]) R([2, 2], [k, 2]) + R([3, 2], [k -1, 2]) = 2 + R([3, 2], [k -1, 2]) 2 + R([2, 2], [k -1, 2]) + R([3, 2], [k -2, 2]) = 2 + 2 + R([3, 2], [k -2, 2]) • • • 2 + • • • + 2 k-3 +R([3, 2], [3, 2]) = 2(k -3) + 3 = 2k -3. Now, we show that R([3, 2], [k, 2]) > 2k -4.
For, take a perfect matching of K 2(k-2) . We color the edges belonging to the matching in red and all others in blue. We have neither a red K [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF] red (since there are not vertex with two incident edges in red) nor a blue K [k,2] since any subset of k vertices forces to have at least two red edges.

(b) It is known [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF] that R([4, 2], [START_REF] Shi | An upper bound formula for Ramsey numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF]) 41. By using the latter and the recurrence of Lemma 2.1, we obtain

R([4, 2], [k, 2]) k i=11 R([3, 2], [i, 2]) + R([4, 2], [10, 2]) k i=11 (2i -3) + 41 = k 2 -2k -39,
for all integers k 11. (c) It is known [START_REF] Huang | New upper bounds for Ramsey numbers[END_REF] that R([5, 2], [START_REF] Lefmann | On Erdős-Rado numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF]) 66. By using the latter and the recurrence of Lemma 2.1, we obtain [START_REF] Radziszowski | Small Ramsey numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF]) 34 + 104 = 138, and, for all integers k 10, [START_REF] Radziszowski | Small Ramsey numbers[END_REF][START_REF] Boza | Nuevas Cotas Superiores de Algunos Números de Ramsey del Tipo r(K m , K ne)[END_REF]) 8200 and the recurrence of Lemma 2.1 as follows [START_REF] Radziszowski | Small Ramsey numbers[END_REF][START_REF] Boza | Nuevas Cotas Superiores de Algunos Números de Ramsey del Tipo r(K m , K ne)[END_REF]), for all integers k 9 and for all i ∈ {4, 5, . . . , 11}. For instance, for i = 4, we obtain that

R([5, 2], [8, 2]) R([4, 2], [8, 2]) + R([5, 2], [7, 2]) 38 + 66 = 104, R([5, 2], [9, 2]) R([4, 2], [9, 2]) + R([5, 2],
R([5, 2], [k, 2]) k i=10 R([4, 2], [i, 2]) + R([5, 2], [9, 2]) k i=10 (i 2 -2i -39) + 138 = 1 3 k 3 - 1 2 k 2 -
k i=8 R([6, 2], [i, 2]) + R([7, 2], [7, 2]) k i=8 1 12 i 4 - 241 12 i 2 + 274i -1009 + 251 = 1 60 k 5 + 1 24 k 4 - 20 3 k 3 + 3047 24 k 2 - 17507 20 k + 2064. Theorem 2.5. (a) R([3, 2], [k, 1]) = 2k -1 for all k 2, (b) R([4, 2], [k, 1]) k 2 -22 for all k 8, (c) R([5, 2], [k, 1]) 1 3 k 3 + 1 2 k 2 -131 6 k + 95 for all k 8, (d) R([6, 2], [k, 1])
R([4, 2], [8, 1]) 42, R([5, 2], [8, 1]) 123, R([6, 2], [8, 1]) 300, R([7, 2], [8, 1]) 657, R([8, 2], [8, 1]) 1349, R([9, 2], [8, 1]) 2558, R([10, 2], [8, 1]) 4722 and R([11, 2],
R([i, 2], [k, 1]) k j=9 R([i -1, 2], [j, 1]) + R([i, 2],
R([4, 2], [k, 1]) k i=9 R([3, 2], [i, 1]) + R([4, 2], [8, 1]) k i=9 (2i -1) + 42 = k 2 -22.
for all integers k 9. The proof for the other values of i is analogous.

Unfortunately, when r 3 (similar as in the classical case) bounds obtained from Theorem 2.2 (resp. obtained from (2), in the classical case) are worse than the bounds obtained from the recursion given in Lemma 2.1 (resp. from the recursion (1)).

χ r -Colorings

An r-edge coloring of K n is said to be a χ r -coloring, if there exists a labeling of V (K n ) with {1, . . . , n} and a function φ : {1, . . . , n} → {0, . . . , r -1} such that for all 1 i < j n the edge {i, j} has color t if and only if φ(i) = t. Remark 3.1. (a) Notice that the value φ(n) do not play any role in the coloring. (b) A monochromatic edge coloring (all edges have the same color 0 t r -1 ) of K n is a χ r -coloring. Indeed, it is enough to take any vertex labeling and to set φ(i) = t for all i. (c) There exist r-edge colorings of K n that are not χ r -coloring. For instance, it can be checked that for any labeling of V (K 3 ) there is not a suitable function φ giving three different colors to the edges of K 3 . Exemple 3.2. A 2-coloring of K 3 with two edges of the same color and the third one with different color is a χ 2 -coloring. Indeed, If the edges {1, 2} and {1, 3} are colored with color 0 and the edge {2, 3} with color 1 then we take φ(1) = 0, φ(2) = 1 and φ(3) = 1.

Let k

1 be an integer. Let χ r (k) be the smallest integer n such that for any r-edgecoloring of K N , N n there exist a clique of order k in which the induced r-edge coloring is a χ r -coloring.

Remark 3.3. χ r (k) always exists. Indeed, by Ramsey's Theorem, for any r-edge coloring of K N , N R r (K k ) there exist a clique order k that is monochromatic which, by Remark 3.1 (b), is a χ r -coloring.

3.1. χ r -colorings versus Erdős-Rado's colorings. χ r -colorings can be considered as a generalization of the classical Ramsey's Theorem. We notice that this generalization is different from the one introduced by Erdős and Rado [START_REF] Erdős | A combinatorial theorem[END_REF] in which they consider colorings by using an arbitrarily number of colors (instead of fixing the number of colors r) of [n] k according to certain canonical patterns, see also [START_REF] Lefmann | On Erdős-Rado numbers[END_REF]. Indeed, in the case when k = 2 the canonical patterns (the edge-colorings of the complete graph) considered by Erdős and Rado are those colorings that can be obtained as follows : there exists a (possibly empty) subset I ⊆ {1, 2} such that the edges e, f ∈ [n] 2 have the same color if and only if e I = f I where {x 1 , x 2 } I = {x i ∈ [n] |i ∈ I}. In this case we have the following 4 coloring patterns: Contrary to χ r -colorings, the number of colors for Erdős-Rado's colorings is not fixed. So the existence of a Erdős-Rado's type coloring do not necessarily implies the existence of a χ r -coloring. Nevertheless if the number of colors, say r, is fixed then the patterns (a), (b) and (c) can essentially be considered as χ r -colorings (it is not the case for pattern (d)).

3.2.

Values and bounds for χ r (k). We clearly have that χ r (2) = 2. For χ r (3), we first notice that χ r (3) = R r ( [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF]) and that K [START_REF] Chvátal | Generalized Ramsey theory for graphs. II Small diagonal numbers[END_REF][START_REF] Burr | On Ramsey numbers for stars[END_REF] is a star K 1,2 (a graph on three vertices, one of degree 2 and two of degree one). Now, Burr and Roberts [START_REF] Burr | On Ramsey numbers for stars[END_REF] proved that R (K 1,q 1 , . . . , K 1,qn ) = n j=1 q jn + ǫ where ǫ = 1 if the number of even integers in the set {q 1 , . . . , q n } is even, ǫ = 2 otherwise. Therefore, by applying the above formula when q i = 2 for all i, we obtain (4) χ r (3) = r + 1 for r even, r + 2 for r odd.

Theorem 3.4. Let r 2 be a positive integer and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers such that k i t i for all i ∈ {1, . . . , r}. Then,

R([k 1 , t 1 ], . . . , [k r , t r ]) χ r r i=1 (k i -t i -1) + 1 + max 1 i r {t i } . Proof. Consider a χ r -coloring of K χr r i=1 (k i -t i -1)+1+max 1 i r {t i }
. Given the vertex labeling of the χ r -coloring, we consider the complete graph K ′ induced by the vertices with labels 1, . . . , r i=1 (k it i -1) + 1 (that is, we remove all the edges induced by the set of vertices T 1 with the max 1 i r {t i } largest labels). By the pigeonhole principle, there is a set T 2 of at least k it i + 1 -1 vertices of K ′ with the same color for some i. Moreover, by definition of χ r -coloring any edge {v 1 , v 2 } with v 1 ∈ T 1 and v 2 ∈ T 2 has color i, giving the desired monochromatic

K [k i ,t i ] .
The following result is an immediate consequence of Theorem 3.4. Proof. Consider a r-edge coloring of K rχr(k-1)-r+2 and let u be a vertex. Since d(u) = rχ r (k -1)r + 1 then there are at least rχr(k-1)-r+1 r = χ r (k -1) set of edges with the same color all incident to u. Now, by definition of χ r (k -1), there is a clique H of order k -1 which edge coloring is a χ r -coloring. So, there is a labeling π of V (H), |V (H)| = k and a function φ giving such coloring. We claim that the r-edge coloring of the clique H ′ = H ∪ u is a χ r -coloring. Indeed, by taking the label π ′ (i) = π(i) + 1 for all vertex i = u and π ′ (u) = 1 and the function φ ′ (1) = 1 and φ ′ (i) = φ(i -1) for each i = 2, . . . , k. Proof. By equality (4) and by successive applications of Proposition 3.6.

the corresponding ones obtained from Corollary 2.3. In view of the latter, we pose the following Question 3.10. Let t 1 and r 3 be integers. Is there a function c(r) such that for all 3 k c(r) g(r(kt) + t, r) < t r(kt) kt, kt, . . . . . . , kt ?

  .

Figure 1 .

 1 Figure 1. (a) K [5,3] and (b) K [4,2]

Lemma 2 .

 2 1 allows to give (old) and new upper bounds for infinitely many cases. Theorem 2.4. (a) [8, 3.1 (a)] R([3, 2], [k, 2]) = 2k -3 for all k 2, (b) R([4, 2], [k, 2]) k 2 -2k -39 for all k 10, (c) R([5, 2], [8, 2]) 104 and R([5, 2], [k, 2])

  (a) If I = ∅ then two edges e, f have the same color if and only if e {∅} = ∅ = f {∅} , that is, all the edges have the same color. (b) If I = {1} then two edges e, f have the same color if and only if e {1} = f {1} , that is, the smallest element of e is the same as the smallest element of f . (c) If I = {2} then two edges e, f have the same color if and only if e {2} = f {2} , that is, the largest element of e is the same as the largest element of f . (d) If I = {1, 2} then two edges e and f have the same color if and only if e {1,2} = e = f = f {1,2} , that is, all the edges have different colors.

Corollary 3 . 5 .Proposition 3 . 6 .

 3536 Let r, k 2 be integers. Then,R r ([k, 1]) χ r (r(k -2) + 2) and R r ([k, 2]) χ r (r(k -3) + 3). Let r, k 2 be integers. Then, χ r (k) rχ r (k -1)r + 2.

Proposition 3 . 7 .

 37 Let r, k 2 be integers. Then,χ r (k) g(k, r) =      r k-2 + r k-3 + • • • + r 2 + r + 2 = r k-1 -1 r -1 + 1 for r odd, r k-2 + r k-4 + r k-5 + • • • + r 2 + r + 2 = r k-3 -1 r -1 + r k-2 + 1 for r even.

  2.1. Explicit general upper bound. Lemma 2.1 yield us to the following general upper bound for R([k 1 , t 1 ], . . . , [k r , t r ]). The latter was not treated in[START_REF] Shi | A bound for multicolor Ramsey numbers[END_REF] at all (in fact, suitable values/bounds needed to upper bound the recursion given in[START_REF] Shi | A bound for multicolor Ramsey numbers[END_REF] for R([k 1 , t 1 ], . . . , [k r , t r ]) seem to be very difficult to estimate). Let r 2 be a positive integer and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers such that k i t i for all i ∈ {1, . . . , r}. Then,

	Theorem 2.2. R ([k 1 , t 1 ], . . . , [k r , t r ]) max 1 i r

Table 1 .

 1 Known bounds and values of R([s, 2], [t, 2]) and R([s, 2], [t, 1]).

	{e}	3	5	7	9	11	13	15	17	19
	K 4 \ {e}	5	10	13	17	28	[29,38]	34	41	
	K 5 \ {e}	7	13	22	[31,39]	[40,66]				
	K 6 \ {e}	9	17	[31,39]	[45,70]	[59,135]				
	K 7 \ {e}	13	28	[40,66]	[59,135]	251				
	K 3	5	7	11	17	21	25	31	37	[42,45]
	K 4	7	11	19	[30,33]	[37,52]	75	105	139	184
	K 5	9	16	[30,34]	[43,67]	112	183	277	409	581
	K 6	11	21	[37,53]	110	205	373	621	1007	1544
	K 7	13	[28,30]	[51,83]	193	392	753	1336	2303	3751
	K 8	15	42	123	300	657	1349	2558	4722	8200

  For (a), the proof is analogous than the proof of Theorem 2.4 (a). For the other items, we use the upper bounds

	(e) R([7, 2], [k, 1]) (f ) R([8, 2], [k, 1]) (g) R([9, 2], [k, 1]) k 8,	1 12 k 4 + 1 3 k 3 -127 12 k 2 + 505 6 k -208 for all k 8, 1 60 k 5 + 1 8 k 4 -10 3 k 3 + 295 8 k 2 -10061 60 k + 287 for all k 8, 1 360 k 6 + 1 30 k 5 -55 72 k 4 + 32 3 k 3 -11923 180 k 2 + 2093 10 k -239 for all k 8, 1 2520 k 7 + 1 144 k 6 -97 720 k 5 + 331 144 k 4 -12241 720 k 3 + 2671 36 k 2 -20351 140 k + 24 for all
	(h) R([10, 2], [k, 1]) for all k 8,	1 20160 k 8 + 1 840 k 7 -3 160 k 6 + 19 48 k 5 -3031 960 k 4 + 4079 240 k 3 -200713 5040 k 2 -1019 28 k +408
	(i) R([11, 2], [k, 1]) 9761 288 k 2 + 965843 2520 k -1183 for all k 8. 1 181440 k 9 + 1 5760 k 8 -31 15120 k 7 + 11 192 k 6 -3827 8640 k 5 + 5443 1920 k 4 -528539 90720 k 3 -
	Proof.	

Theorem 3.8. Let r 2 be a positive integer and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers such that k i t i for all i ∈ {1, . . . , r}. Then,

where

Proof. By Theorem 3.4 and Proposition 3.7.

We believe that the above upper bound for R r ([k, 1]) is smaller than the one given by Corollary 2.3 (see equation ( 3)) for some values of k. Conjecture 3.9. Let r 3 be an integer. Then, for all 3 k r 3/2 + r -1

We have checked the validity of the above conjecture for all 3 r 150 by computer calculations. Conjecture 3.9 is also supported graphically, by considering the continual behaviour of

To see that, we may use the fact that Γ(z + 1) = z! when z is a nonnegative integer, obtaining

Γ r (k) where Γ(z) is the well-known gamma function 5 , see Figure 2. We have also checked (by computer) that for each 3 r 150 there is an interval I r (increasing as r is growing) such that for each k 3, k ∈ I r the function g(r(k -3) + 3, r) (resp. g(r(k -4) + 4, r)) is a smaller upper bound for R r ([k, 2]) (resp. for R r ([k, 3])) than 5 The gamma function is defined as Γ(z) = +∞ 0 t z-1 e -t dt for any z ∈ C with Re(z) > 0. Moreover, Γ(z + 1) = z! when z is a nonnegative integer.