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Abstract. Let K[k,t] be the complete graph on k vertices from which a set of edges,
induced by a clique of order t, has been dropped. In this note we give two explicit
upper bounds for R(K[k1,t1], . . . ,K[kr,tr]) (the smallest integer n such that for any r-edge
coloring of Kn there always occurs a monochromatic K[ki,ti] for some i). Our first upper
bound contains a classical one in the case when k1 = · · · = kr and ti = 1 for all i. The
second one is obtained by introducing a new edge coloring called χr-colorings. We finally
discuss a conjecture claiming, in particular, that our second upper bound improves the
classical one in infinitely many cases.

Keywords: Ramsey number, recursive formula.
MSC2010: 05C55, 05D10.

1. Introduction

Let Kn be a complete graph and let r > 2 be an integer. A r-edge coloring of a graph
is a surjection from E(G) to {0, . . . , r − 1} (and thus each color class is not empty). Let
k > t > 1 be positive integers. We denote by K[k,t] the complete graph on k vertices from
which a set of edges, induced by a clique of order t, has been dropped, see Figure 1.

(a) (b)

Figure 1. (a) K[5,3] and (b) K[4,2]

Let k1, . . . , kr and t1, . . . , tr be positive integers with ki > ti for all i ∈ {1, . . . , r}. Let
R([k1, t1], . . . , [kr, tr]) be the smallest integer n such that for any r-edge coloring of Kn

there always occurs a monochromatic K[ki,ti] for some i.
In the case when ki = ti for some i, we set

R([k1, t1], . . . , [ki−1, ti−1], [ti, ti], [ki+1, ti+1], . . . , [kr, tr]) 6 ti.

We note that equality is reached at min
16i6r

{ti|ti = ki}. Since the set of all the edges of

K[ti,ti] (which is empty) can always be colored with color i. We also notice that the case
R([k1, 1], . . . , [kr, 1]) is exactly the classical Ramsey number r(k1, . . . , kr) (the smallest
integer n such that for any r-edge coloring of Kn there always occurs a monochromatic
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Kki for some i). We refer the reader to the excellent survey [8] on Ramsey numbers for
small values.

In this note, we investigate general upper bounds for R([k1, t1], . . . , [kr, tr]). In the next
section we present a recursive formula that yields to an explicit general upper bound
(Theorem 2.2) generalizing the well-known explicit upper bound due to Graham and
Rödl [5] (see equation 3). We also improve our explicit upper bound when r = 2 for
certain values of ki, ti (Theorems 2.4 and 2.5).

In Section 3, we shall present another general explicit upper bound forR([k1, t1], . . . , [kr, tr])
(Theorem 3.8) by introducing a new edge coloring called χr-colorings. We end by dis-
cussing a conjecture that is supported by graphical and numerical results.

2. Upper bounds

The following recursive inequality is classical in Ramsey theory

r(k1, k2, . . . , kr) 6 r(k1 − 1, k2, . . . , kr) + r(k1, k2 − 1, . . . , kr) + · · ·+(1)

+r(k1, k2, . . . , kr − 1)− (r − 2)

In the same spirit, we have the following.

Lemma 2.1. Let r > 2 and let k1, . . . , kr and t1, . . . , tr be positive integers with ki >

ti + 1 > 2 for all i. Then,

R([k1, t1], . . . , [kr, tr]) 6 R([k1 − 1, t1], [k2, t2], . . . , [kr, tr])
+R([k1, t1], [k2 − 1, t2], . . . , [kr, tr])

...
+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2).

A similar recursive inequality has been treated in [9] in a more general setting (by consid-
ering a family of graphs intrinsically constructed via two operations disjoin unions and
joins, see also [6] for the case r = 2). Although the latter could be used to obtain Lemma
2.1, the arguments used here give a different and a more straight forward proof.

Proof of Lemma 2.1. Let us take any r-edge coloring of KN with

N > R([k1 − 1, t1], [k2, t2], . . . , [kr, tr]) + · · ·+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2).

Let v a vertex of KN and let Γi(v) be the set of all vertices joined to v by an edge having
color i for each i = 1, . . . , r. We claim that there exists index 1 6 i 6 r such that

Γi(v) > R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr]).

Otherwise,

N − 1 = d(v) =
r∑

j=1

Γj(v) 6
r∑

j=1

(R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr])− 1)

=
r∑

j=1

(R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr])− r

6 N + (r − 2)− r = N − 2

which is a contradiction.

Now, suppose that Γi(v) > R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr]) for an index i. By def-
inition of R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr]) we have that the complete graph induced
by Γi(v) contains either a subset of vertices inducing a copy K[kj ,tj ] having all edges with
color j, for some j 6= i, and we are done or a subset of vertices inducing K[ki−1,ti] having
all edges with color i. Adding vertex v to K[ki−1,ti] we obtain the desired copy of K[ki,ti]

having all edges colored with color i. ⊓⊔
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2.1. Explicit general upper bound. Lemma 2.1 yield us to the following general upper
bound for R([k1, t1], . . . , [kr, tr]). The latter was not treated in [9] at all (in fact, suitable
values/bounds needed to upper bound the recursion given in [9] for R([k1, t1], . . . , [kr, tr])
seem to be very difficult to estimate).

Theorem 2.2. Let r > 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr be positive
integers such that ki > ti for all i ∈ {1, . . . , r}. Then,

R ([k1, t1], . . . , [kr, tr]) 6 max
16i6r

{ti}

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)

where
(
n1+n2+···+nr

n1,n2,......,nr

)
is the multinomial coefficient defined by

(
n1+n2+···+nr

n1,n2,......,nr

)
= (n1+···+nr)!

n1!n2!···nr!
,

for all nonnegative integers n1, . . . , nr.

Proof. We suppose that t1, . . . , tr are fixed. We proceed by induction on k1 + · · · + kr,
using Lemma 2.1. In the case where kj = tj, for some j ∈ {1, . . . , r}, we already know
that

R ([k1, t1], . . . , [kj−1, tj−1], [tj, tj], [kj+1, tj+1], . . . , [kr, tr]) = tj,

and, since ki − ti > 0 for all i,
(
k1 + · · ·+ ki−1 + ki+1 + · · ·+ kr − (t1 + · · ·+ ti−1 + ti+1 + · · ·+ tr)

k1 − t1, . . . , kj−1 − tj−1, 0, kj+1 − tj+1 . . . . . . , kr − tr

)

> 1.

Therefore

R ([k1, t1], . . . , [kr, tr]) = tj 6 max
16i6r

ti

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)

in this case. Now, suppose that ki > ti for all i ∈ {1, . . . , r}. By Lemma 2.1 and by
induction hypothesis, we obtain that

R([k1, t1], . . . , [kr, tr]) 6 R([k1 − 1, t1], [k2, t2], . . . , [kr, tr])
+R([k1, t1], [k2 − 1, t2], . . . , [kr, tr])

...
+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2)

6 max
16i6r

ti

((
k1 + · · ·+ kr − (t1 + · · ·+ tr)− 1

k1 − t1 − 1, k2 − t2, . . . . . . , kr − tr

)

+

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)− 1

k1 − t1 − 1, k2 − t2 − 1, . . . . . . , kr − tr

)

...

+

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)− 1

k1 − t1 − 1, k2 − t2, . . . . . . , kr − tr − 1

))

− (r − 2)

6 max
16i6r

ti

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)

,

since we have the following multinomial identity
(
n1 + n2 + · · ·+ nr

n1, n2, . . . . . . , nr

)

=
r∑

i=1

(
n1 + n2 + · · ·+ nr − 1

n1, . . . , ni−1, ni − 1, ni+1, . . . , nr

)

for all positive integers n1, n2, . . . , nr. �
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Theorem 2.2 is a natural generalization of the only known explicit upper bound for classical
Ramsey numbers. Indeed, an immediate consequence of the above theorem (when t = 1) is
the following classical upper bound due to Graham and Rödl [5, (2.48)] that was obtained
by using (1).

(2) R ([k1, 1], . . . , [kr, 1]) 6

(
k1 + · · ·+ kr − r

k1 − 1, . . . , kr − 1

)

·

Let Rr([k, t]) = R([k, t], . . . , [k, t]
︸ ︷︷ ︸

r

).

Corollary 2.3. Let k > t > 2 and r > 2 be integers. Then,

Rr([k, t]) 6 t

(
r(k − t)

k − t, . . . , k − t

)

.

An immediate consequence of the above corollary (again when t = 1) is the following
upper bound

(3) Rr([k, 1]) 6
(rk − r)!

((k − 1)!)r
·

2.2. Case r = 2. When r = 2, it is the exact values of the recursive sequence generated
from ut,k = uk,t = t(= R2([t, t])) for all k > t and following the recursive identity uk1,k2 =
uk1−1,k2 + uk1,k2−1 for all k1, k2 > t+ 1.

We investigate with more detail the cases R([s, 2], [t, 2]) (resp. R([s, 2], [t, 1])), that is,
the smallest integer n such that for any 2-edge coloring of Kn there always occurs a
monochromatic Ks − {e} or Kt − {e} (resp. a monochromatic Ks − {e} or Kt)). These
cases have been extensively studied and values/bounds for specific s and t are known, see
Table 1 obtained from [8].

K3 \ {e} K4 \ {e} K5 \ {e} K6 \ {e} K7 \ {e} K8 \ {e} K9 \ {e} K10 \ {e} K11 \ {e}
K3 \ {e} 3 5 7 9 11 13 15 17 19
K4 \ {e} 5 10 13 17 28 [29,38] 34 41
K5 \ {e} 7 13 22 [31,39] [40,66]
K6 \ {e} 9 17 [31,39] [45,70] [59,135]
K7 \ {e} 13 28 [40,66] [59,135] 251

K3 5 7 11 17 21 25 31 37 [42,45]
K4 7 11 19 [30,33] [37,52] 75 105 139 184
K5 9 16 [30,34] [43,67] 112 183 277 409 581
K6 11 21 [37,53] 110 205 373 621 1007 1544
K7 13 [28,30] [51,83] 193 392 753 1336 2303 3751
K8 15 42 123 300 657 1349 2558 4722 8200

Table 1. Known bounds and values of R([s, 2], [t, 2]) and R([s, 2], [t, 1]).

Lemma 2.1 allows to give (old) and new upper bounds for infinitely many cases.

Theorem 2.4.

(a) [8, 3.1 (a)] R([3, 2], [k, 2]) = 2k − 3 for all k > 2,
(b) R([4, 2], [k, 2]) 6 k2 − 2k − 39 for all k > 10,
(c) R([5, 2], [8, 2]) 6 104 and R([5, 2], [k, 2]) 6 1

3
k3 − 1

2
k2 − 239

6
k + 294 for all k > 9,

(d) R([6, 2], [k, 2]) 6 1
12
k4 − 241

12
k2 + 274k − 1009 for all k > 8,
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(e) R([7, 2], [k, 2]) 6 1
60
k5 + 1

24
k4 − 20

3
k3 + 3047

24
k2 − 17507

20
k + 2064 for all k > 7.

Proof.
(a) The result is obvious for k = 2. First, let us show that R([3, 2], [3, 2]) = 3. For, we

notice that K[3,2] is the graph consisting of three vertices, one of degree 2 and two of
degree 1, and so R([3, 2], [3, 2]) > 2. Now, for any 2-coloring of the edges of K3 there
is always a vertex with two incident edges with the same color, giving the desired
K[3,2].
Suppose now that k > 4. We first prove that R([3, 2], [k, 2]) 6 2k − 3. For, we

iterate inequality of Lemma 2.1 obtaining

R([3, 2], [k, 2]) 6 R([2, 2], [k, 2]) +R([3, 2], [k − 1, 2])
= 2 +R([3, 2], [k − 1, 2])
6 2 +R([2, 2], [k − 1, 2]) +R([3, 2], [k − 2, 2])
= 2 + 2 +R([3, 2], [k − 2, 2])
6 · · · 6 2 + · · ·+ 2

︸ ︷︷ ︸

k−3

+R([3, 2], [3, 2])

= 2(k − 3) + 3 = 2k − 3.

Now, we show that R([3, 2], [k, 2]) > 2k−4. For, take a perfect matching of K2(k−2).
We color the edges belonging to the matching in red and all others in blue. We have
neither a red K[3,2] red (since there are not vertex with two incident edges in red) nor
a blue K[k,2] since any subset of k vertices forces to have at least two red edges.

(b) It is known [3] that R([4, 2], [10, 2]) 6 41. By using the latter and the recurrence of
Lemma 2.1, we obtain

R([4, 2], [k, 2]) 6
k∑

i=11

R([3, 2], [i, 2]) +R([4, 2], [10, 2])

6
k∑

i=11

(2i− 3) + 41 = k2 − 2k − 39,

for all integers k > 11.
(c) It is known [6] that R([5, 2], [7, 2]) 6 66. By using the latter and the recurrence of

Lemma 2.1, we obtain

R([5, 2], [8, 2]) 6 R([4, 2], [8, 2]) +R([5, 2], [7, 2]) 6 38 + 66 = 104,

R([5, 2], [9, 2]) 6 R([4, 2], [9, 2]) +R([5, 2], [8, 2]) 6 34 + 104 = 138,

and, for all integers k > 10,

R([5, 2], [k, 2]) 6

k∑

i=10

R([4, 2], [i, 2]) +R([5, 2], [9, 2])

6

k∑

i=10

(i2 − 2i− 39) + 138

=
1

3
k3 −

1

2
k2 −

239

6
k + 294.

(d) It is known [6] that R([6, 2], [7, 2]) 6 135. By using the latter and the recurrence of
Lemma 2.1, we obtain

R([6, 2], [8, 2]) 6 R([5, 2], [8, 2]) +R([6, 2], [7, 2]) 6 104 + 135 = 239,
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and, for all integers k > 9,

R([6, 2], [k, 2]) 6

k∑

i=9

R([5, 2], [i, 2]) +R([6, 2], [8, 2])

6

k∑

i=9

(
1

3
i3 −

1

2
i2 −

239

6
i+ 294

)

+ 239

=
1

12
k4 −

241

12
k2 + 274k − 1009.

(e) It is known [10] that R([7, 2], [7, 2]) 6 251. By using the latter and the recurrence of
Lemma 2.1, we obtain for all integers k > 8,

R([7, 2], [k, 2]) 6

k∑

i=8

R([6, 2], [i, 2]) +R([7, 2], [7, 2])

6

k∑

i=8

(
1

12
i4 −

241

12
i2 + 274i− 1009

)

+ 251

=
1

60
k5 +

1

24
k4 −

20

3
k3 +

3047

24
k2 −

17507

20
k + 2064.

�

Theorem 2.5.

(a) R([3, 2], [k, 1]) = 2k − 1 for all k > 2,
(b) R([4, 2], [k, 1]) 6 k2 − 22 for all k > 8,
(c) R([5, 2], [k, 1]) 6 1

3
k3 + 1

2
k2 − 131

6
k + 95 for all k > 8,

(d) R([6, 2], [k, 1]) 6 1
12
k4 + 1

3
k3 − 127

12
k2 + 505

6
k − 208 for all k > 8,

(e) R([7, 2], [k, 1]) 6 1
60
k5 + 1

8
k4 − 10

3
k3 + 295

8
k2 − 10061

60
k + 287 for all k > 8,

(f) R([8, 2], [k, 1]) 6 1
360

k6 + 1
30
k5 − 55

72
k4 + 32

3
k3 − 11923

180
k2 + 2093

10
k − 239 for all k > 8,

(g) R([9, 2], [k, 1]) 6 1
2520

k7 + 1
144

k6 − 97
720

k5 + 331
144

k4 − 12241
720

k3 + 2671
36

k2 − 20351
140

k+24 for all
k > 8,

(h) R([10, 2], [k, 1]) 6 1
20160

k8+ 1
840

k7− 3
160

k6+ 19
48
k5− 3031

960
k4+ 4079

240
k3− 200713

5040
k2− 1019

28
k+408

for all k > 8,
(i) R([11, 2], [k, 1]) 6 1

181440
k9 + 1

5760
k8 − 31

15120
k7 + 11

192
k6 − 3827

8640
k5 + 5443

1920
k4 − 528539

90720
k3 −

9761
288

k2 + 965843
2520

k − 1183 for all k > 8.

Proof. For (a), the proof is analogous than the proof of Theorem 2.4 (a). For the other
items, we use the upper boundsR([4, 2], [8, 1]) 6 42, R([5, 2], [8, 1]) 6 123, R([6, 2], [8, 1]) 6
300, R([7, 2], [8, 1]) 6 657, R([8, 2], [8, 1]) 6 1349, R([9, 2], [8, 1]) 6 2558, R([10, 2], [8, 1]) 6
4722 and R([11, 2], [8, 1]) 6 8200 and the recurrence of Lemma 2.1 as follows

R([i, 2], [k, 1]) 6
k∑

j=9

R([i− 1, 2], [j, 1]) +R([i, 2], [8, 1]),

for all integers k > 9 and for all i ∈ {4, 5, . . . , 11}. For instance, for i = 4, we obtain that

R([4, 2], [k, 1]) 6
k∑

i=9

R([3, 2], [i, 1]) +R([4, 2], [8, 1])

6
k∑

i=9

(2i− 1) + 42 = k2 − 22.

for all integers k > 9. The proof for the other values of i is analogous. �
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Unfortunately, when r > 3 (similar as in the classical case) bounds obtained from Theorem
2.2 (resp. obtained from (2), in the classical case) are worse than the bounds obtained
from the recursion given in Lemma 2.1 (resp. from the recursion (1)).

3. χr-Colorings

An r-edge coloring ofKn is said to be a χr-coloring, if there exists a labeling of V (Kn) with
{1, . . . , n} and a function φ : {1, . . . , n} → {0, . . . , r − 1} such that for all 1 6 i < j 6 n

the edge {i, j} has color t if and only if φ(i) = t.

Remark 3.1. (a) Notice that the value φ(n) do not play any role in the coloring.

(b) A monochromatic edge coloring (all edges have the same color 0 6 t 6 r − 1 ) of Kn

is a χr-coloring. Indeed, it is enough to take any vertex labeling and to set φ(i) = t for
all i.

(c) There exist r-edge colorings of Kn that are not χr-coloring. For instance, it can be
checked that for any labeling of V (K3) there is not a suitable function φ giving three
different colors to the edges of K3.

Exemple 3.2. A 2-coloring of K3 with two edges of the same color and the third one
with different color is a χ2-coloring. Indeed, If the edges {1, 2} and {1, 3} are colored with
color 0 and the edge {2, 3} with color 1 then we take φ(1) = 0, φ(2) = 1 and φ(3) = 1.

Let k > 1 be an integer. Let χr(k) be the smallest integer n such that for any r-edge-
coloring of KN , N > n there exist a clique of order k in which the induced r-edge coloring
is a χr-coloring.

Remark 3.3. χr(k) always exists. Indeed, by Ramsey’s Theorem, for any r-edge coloring
of KN , N > Rr(Kk) there exist a clique order k that is monochromatic which, by Remark
3.1 (b), is a χr-coloring.

3.1. χr-colorings versus Erdős-Rado’s colorings. χr-colorings can be considered as
a generalization of the classical Ramsey’s Theorem. We notice that this generalization is
different from the one introduced by Erdős and Rado [4] in which they consider colorings

by using an arbitrarily number of colors (instead of fixing the number of colors r) of
(
[n]
k

)

according to certain canonical patterns, see also [7]. Indeed, in the case when k = 2 the
canonical patterns (the edge-colorings of the complete graph) considered by Erdős and
Rado are those colorings that can be obtained as follows : there exists a (possibly empty)

subset I ⊆ {1, 2} such that the edges e, f ∈
(
[n]
2

)
have the same color if and only if eI = fI

where {x1, x2}I = {xi ∈ [n] |i ∈ I}. In this case we have the following 4 coloring patterns:

(a) If I = ∅ then two edges e, f have the same color if and only if e{∅} = ∅ = f{∅}, that is,
all the edges have the same color.

(b) If I = {1} then two edges e, f have the same color if and only if e{1} = f{1}, that is,
the smallest element of e is the same as the smallest element of f .

(c) If I = {2} then two edges e, f have the same color if and only if e{2} = f{2}, that is,
the largest element of e is the same as the largest element of f .

(d) If I = {1, 2} then two edges e and f have the same color if and only if e{1,2} = e =
f = f{1,2}, that is, all the edges have different colors.

Contrary to χr-colorings, the number of colors for Erdős-Rado’s colorings is not fixed. So
the existence of a Erdős-Rado’s type coloring do not necessarily implies the existence of a
χr-coloring. Nevertheless if the number of colors, say r, is fixed then the patterns (a), (b)
and (c) can essentially be considered as χr-colorings (it is not the case for pattern (d)).
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3.2. Values and bounds for χr(k). We clearly have that χr(2) = 2. For χr(3), we first
notice that χr(3) = Rr ([3, 2]) and that K[3,2] is a star K1,2(a graph on three vertices, one
of degree 2 and two of degree one). Now, Burr and Roberts [2] proved that

R (K1,q1 , . . . , K1,qn) =
n∑

j=1

qj − n+ ǫ

where ǫ = 1 if the number of even integers in the set {q1, . . . , qn} is even, ǫ = 2 otherwise.
Therefore, by applying the above formula when qi = 2 for all i, we obtain

(4) χr(3) =

{
r + 1 for r even,
r + 2 for r odd.

Theorem 3.4. Let r > 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr be positive
integers such that ki > ti for all i ∈ {1, . . . , r}. Then,

R([k1, t1], . . . , [kr, tr]) 6 χr

(
r∑

i=1

(ki − ti − 1) + 1 + max
16i6r

{ti}

)

.

Proof. Consider a χr-coloring of K
χr

(

r
∑

i=1

(ki−ti−1)+1+max16i6r{ti}

). Given the vertex labeling

of the χr-coloring, we consider the complete graph K ′ induced by the vertices with labels

1, . . . ,
r∑

i=1

(ki − ti − 1) + 1 (that is, we remove all the edges induced by the set of vertices

T1 with the max16i6r{ti} largest labels). By the pigeonhole principle, there is a set T2

of at least ki − ti + 1 − 1 vertices of K ′ with the same color for some i. Moreover, by
definition of χr-coloring any edge {v1, v2} with v1 ∈ T1 and v2 ∈ T2 has color i, giving the
desired monochromatic K[ki,ti]. �

The following result is an immediate consequence of Theorem 3.4.

Corollary 3.5. Let r, k > 2 be integers. Then,

Rr([k, 1]) 6 χr(r(k − 2) + 2) and Rr([k, 2]) 6 χr(r(k − 3) + 3).

Proposition 3.6. Let r, k > 2 be integers. Then,

χr(k) 6 rχr(k − 1)− r + 2.

Proof. Consider a r-edge coloring of Krχr(k−1)−r+2 and let u be a vertex. Since d(u) =

rχr(k − 1) − r + 1 then there are at least
⌈
rχr(k−1)−r+1

r

⌉

= χr(k − 1) set of edges with

the same color all incident to u. Now, by definition of χr(k − 1), there is a clique H

of order k − 1 which edge coloring is a χr- coloring. So, there is a labeling π of V (H),
|V (H)| = k and a function φ giving such coloring. We claim that the r-edge coloring of
the clique H ′ = H ∪ u is a χr-coloring. Indeed, by taking the label π′(i) = π(i) + 1 for
all vertex i 6= u and π′(u) = 1 and the function φ′(1) = 1 and φ′(i) = φ(i − 1) for each
i = 2, . . . , k. �

Proposition 3.7. Let r, k > 2 be integers. Then,

χr(k) 6 g(k, r) =







rk−2 + rk−3 + · · ·+ r2 + r + 2 =
rk−1 − 1

r − 1
+ 1 for r odd,

rk−2 + rk−4 + rk−5 + · · ·+ r2 + r + 2 =
rk−3 − 1

r − 1
+ rk−2 + 1 for r even.

Proof. By equality (4) and by successive applications of Proposition 3.6. �
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Theorem 3.8. Let r > 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr be positive
integers such that ki > ti for all i ∈ {1, . . . , r}. Then,

R([k1, t1], . . . , [kr, tr]) 6 g(k, r)

where

k :=
r∑

i=1

(ki − ti − 1) + 1 + max
16i6r

{ti}.

Proof. By Theorem 3.4 and Proposition 3.7. �

We believe that the above upper bound for Rr([k, 1]) is smaller than the one given by
Corollary 2.3 (see equation (3)) for some values of k.

Conjecture 3.9. Let r > 3 be an integer. Then, for all 3 6 k 6 r3/2 + r − 1

g((r(k − 2) + 2, r) <

(
r(k − 1)

k − 1, k − 1, . . . . . . , k − 1

)

=
(rk − r)!

((k − 1)!)r
·

We have checked the validity of the above conjecture for all 3 6 r 6 150 by computer
calculations. Conjecture 3.9 is also supported graphically, by considering the continual
behaviour of

f(k, r) = g((r(k − 2) + 2, r)−
(rk − r)!

((k − 1)!)r
·

To see that, we may use the fact that Γ(z + 1) = z! when z is a nonnegative integer,
obtaining

f(k, r) = g((r(k − 2) + 2, r)−
Γ(r(k − 1) + 1)

Γr(k)

where Γ(z) is the well-known gamma function5, see Figure 2.

Figure 2. Behaviours of f(4, k) with 8 6 k < 10 (left) and f(5, k) with
12 6 k < 13 (right). We notice that due to the scaling used in the figures
(in order to plot the minimum) the function f seems very close to zero
but in fact it is very far apart, f(4, 8) 6 −1, 8 × 1029 for the left one and
f(5, 12) 6 −5, 7× 1072 for the right one.

We have also checked (by computer) that for each 3 6 r 6 150 there is an interval Ir
(increasing as r is growing) such that for each k > 3, k ∈ Ir the function g(r(k− 3)+3, r)
(resp. g(r(k− 4)+4, r)) is a smaller upper bound for Rr([k, 2]) (resp. for Rr([k, 3])) than

5The gamma function is defined as Γ(z) =
∫ +∞

0
tz−1e−tdt for any z ∈ C with Re(z) > 0. Moreover,

Γ(z + 1) = z! when z is a nonnegative integer.
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the corresponding ones obtained from Corollary 2.3. In view of the latter, we pose the
following

Question 3.10. Let t > 1 and r > 3 be integers. Is there a function c(r) such that for
all 3 6 k 6 c(r)

g(r(k − t) + t, r) < t

(
r(k − t)

k − t, k − t, . . . . . . , k − t

)

?
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