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RAMSEY FOR COMPLETE GRAPHS WITH DROPPED CLIQUES

JONATHAN CHAPPELON, LUIS PEDRO MONTEJANO,
AND JORGE LUIS RAMÍREZ ALFONSÍN

Abstract. Let K[k,t] be the complete graph on k vertices from which a set of edges,
induced by a clique of order t, has been dropped. In this note we give two explicit
upper bounds for R(K[k1,t1], . . . ,K[kr,tr]) (the smallest integer n such that for any r-edge
coloring of Kn there always occurs a monochromatic K[ki,ti] for some i). Our first upper
bound contains a classical one in the case when k1 = · · · = kr and ti = 1 for all i. The
second one is obtained by introducing a new edge coloring called χr-colorings. We finally
discuss a conjecture claiming, in particular, that our second upper bound improves the
classical one in infinitely many cases.

1. Introduction

Let Kn be a complete graph and let r > 2 be an integer. A r-edge coloring of a graph
is a surjection from E(G) to {0, . . . , r − 1} (and thus each color class is not empty). Let
k > t > 1 be positive integers. We denote by K[k,t] the complete graph on k vertices from
which a set of edges, induced by a clique of order t, has been dropped, see Figure 1.

(a) (b)

Figure 1. (a) K[5,3] and (b) K[4,2]

Let k1, . . . , kr and t1, . . . , tr be positive integers with ki > ti for all i ∈ {1, . . . , r}. Let
R([k1, t1], . . . , [kr, tr]) be the smallest integer n such that for any r-edge coloring of Kn

there always occurs a monochromatic K[ki,ti] for some i.
In the case when ki = ti for some i, we set

R([k1, t1], . . . , [ki−1, ti−1], [ti, ti], [ki+1, ti+1], . . . , [kr, tr]) = ti

since the set of all the edges of K[ti,ti] (which is empty) can always be colored with
color i. We notice that the case R([k1, 1], . . . , [kr, 1]) is exactly the classical Ramsey
number r(k1, . . . , kr) (the smallest integer n such that for any r-edge coloring of Kn there
always occurs a monochromatic Kki for some i). We refer the reader to the excellent
survey [6] on Ramsey numbers for small values.

In this note, we investigate general upper bounds for R([k1, t1], . . . , [kr, tr]). In the next
section we present a recursive formula that yields to an explicit general upper bound
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(Theorem 2.2) generalizing the well-known explicit upper bound due to Graham and
Rödl [4] (see equation 2). We also improve our explicit upper bound when r = 2 for
certain values of ki, ti (Proposition 2.4).

In Section 3, we shall present another general explicit upper bound forR([k1, t1], . . . , [kr, tr])
(Theorem 3.8) by introducing a new edge coloring called χr-colorings. We end by dis-
cussing a conjecture that is supported by graphical and numerical results.

2. The upper bound

The following recursive inequality is classical in Ramsey theory

r(k1, k2, . . . , kr) 6 r(k1 − 1, k2, . . . , kr) + r(k1, k2 − 1, . . . , kr) + · · ·+(1)

+r(k1, k2, . . . , kr − 1)− (r − 2)

In the same spirit, we have the following.

Lemma 2.1. Let r > 2 and let k1, . . . , kr and t1, . . . , tr be positive integers with ki >
ti + 1 > 2 for all i. Then,

R([k1, t1], . . . , [kr, tr]) 6 R([k1 − 1, t1], [k2, t2], . . . , [kr, tr])
+R([k1, t1], [k2 − 1, t2], . . . , [kr, tr])

...
+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2).

Proof. Let us take any r-edge coloring of KN with

N > R([k1 − 1, t1], [k2, t2], . . . , [kr, tr]) + · · ·+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2).

Let v a vertex of KN and let Γi(v) be the set of all vertices joined to v by an edge having
color i for each i = 1, . . . , r. We claim that there exists index 1 6 i 6 r such that

Γi(v) > R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr]).

Otherwise,

N − 1 = d(v) =
r∑
j=1

Γj(v) 6
r∑
j=1

(R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr])− 1)

=
r∑
j=1

(R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr])− r

6 N + (r − 2)− r = N − 2

which is a contradiction.

Now, suppose that Γi(v) > R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr]) for an index i. By def-
inition of R([k1, t1], . . . , [ki − 1, ti], . . . , [kr, tr]) we have that the complete graph induced
by Γi(v) contains either a subset of vertices inducing a copy K[kj ,tj ] having all edges with
color j, for some j 6= i, and we are done or a subset of vertices inducing K[ki−1,ti] having
all edges with color i. Adding vertex v to K[ki−1,ti] we obtain the desired copy of K[ki,ti]

having all edges colored with color i. �

A similar recursive inequality has been treated in [7] in a more general setting (by consid-
ering a family of graphs intrinsically constructed via two operations disjoin unions and
joins, see also [5] for the case r = 2). Although the latter could be used to obtain Lemma
2.1, the arguments used here give a different and a more straight forward proof. Moreover,
our approach yield us to the following general upper bound for R([k1, t1], . . . , [kr, tr]). The
latter was not treated in [7] at all (suitable values/bounds needed to upper bound the
recursion given in [7] for such general family seem to be very difficult to estimate).
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Theorem 2.2. Let r > 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr be positive
integers such that ki > ti for all i ∈ {1, . . . , r}. Then,

R ([k1, t1], . . . , [kr, tr]) 6 max
16i6r
{ti}

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)
where

(
n1+n2+···+nr

n1,n2,......,nr

)
is the multinomial coefficient defined by

(
n1+n2+···+nr

n1,n2,......,nr

)
= (n1+···+nr)!

n1!n2!···nr!
,

for all nonnegative integers n1, . . . , nr.

Proof. We suppose that t1, . . . , tr are fixed. We proceed by induction on k1 + · · · + kr,
using Lemma 2.1. In the case where kj = tj, for some j ∈ {1, . . . , r}, we already know
that

R ([k1, t1], . . . , [kj−1, tj−1], [tj, tj], [kj+1, tj+1], . . . , [kr, tr]) = tj,

and, since ki − ti > 0 for all i,(
k1 + · · ·+ ki−1 + ki+1 + · · ·+ kr − (t1 + · · ·+ ti−1 + ti+1 + · · ·+ tr)

k1 − t1, . . . , kj−1 − tj−1, 0, kj+1 − tj+1 . . . . . . , kr − tr

)
> 1.

Therefore

R ([k1, t1], . . . , [kr, tr]) = tj 6 max
16i6r

ti

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)
in this case. Now, suppose that ki > ti for all i ∈ {1, . . . , r}. By Lemma 2.1 and by
induction hypothesis, we obtain that

R([k1, t1], . . . , [kr, tr]) 6 R([k1 − 1, t1], [k2, t2], . . . , [kr, tr])
+R([k1, t1], [k2 − 1, t2], . . . , [kr, tr])

...
+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2)

6 max
16i6r

ti

((
k1 + · · ·+ kr − (t1 + · · ·+ tr)− 1

k1 − t1 − 1, k2 − t2, . . . . . . , kr − tr

)

+

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)− 1

k1 − t1 − 1, k2 − t2 − 1, . . . . . . , kr − tr

)
...

+

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)− 1

k1 − t1 − 1, k2 − t2, . . . . . . , kr − tr − 1

))
− (r − 2)

6 max
16i6r

ti

(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)
,

since we have the following multinomial identity(
n1 + n2 + · · ·+ nr
n1, n2, . . . . . . , nr

)
=

r∑
i=1

(
n1 + n2 + · · ·+ nr − 1

n1, . . . , ni−1, ni − 1, ni+1, . . . , nr

)
for all positive integers n1, n2, . . . , nr. �

Let Rr([k, t]) = R([k, t], . . . , [k, t]︸ ︷︷ ︸
r

).
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Corollary 2.3. Let k > t > 2 and r > 2 be integers. Then,

Rr([k, t]) 6 t

(
r(k − t)

k − t, . . . , k − t

)
.

An immediate consequence of the above corollary (when t = 1) is the following classical
upper bound due to Graham and Rödl [4] that was obtained by using (1).

(2) Rr([k, 1]) 6
(rk − r)!

((k − 1)!)r
·

2.1. Case r = 2. When r = 2, it is the exact values of the recursive sequence generated
from ut,k = uk,t = t(= R2([t, t])) for all k > t and following the recursive identity uk1,k2 =
uk1−1,k2 + uk1,k2−1 for all k1, k2 > t+ 1.

We investigate with more detail the cases R([s, 2], [t, 2]) (resp. R([s, 2], [t, 1])), that is,
the smallest integer n such that for any 2-edge coloring of Kn there always occurs a
monochromatic Ks − {e} or Kt − {e} (resp. a monochromatic Ks − {e} or Kt)). These
cases have been extensively studied and values/bounds for specific s and t are known, see
Table 1 obtained from [6].

K3 \ {e} K4 \ {e} K5 \ {e} K6 \ {e} K7 \ {e} K8 \ {e} K9 \ {e} K10 \ {e} K11 \ {e}
K3 \ {e} 3 5 7 9 11 13 15 17 19
K4 \ {e} 5 10 13 17 28 [29,38] 34 41
K5 \ {e} 7 13 22 [31,39] [40,66]
K6 \ {e} 9 17 [31,39] [45,70] [59,135]
K7 \ {e} 13 28 [40,66] [59,135] 251
K3 5 7 11 17 21 25 31 [37,39] [42,47]
K4 7 11 19 [27,34] [37,52] 77 105 143 187
K5 9 16 [30,34] [43,67] 112 186 277 418 586
K6 11 21 [37,53] 114 205 385 621 1035 1551
K7 13 [28,31] [51,84] 197 394 768 1339 2355 3766
K8 15 42 123 306 659 1382 2562 4844 8223

Table 1. Known bounds and values of R([s, 2], [t, 2]) and R([s, 2], [t, 1]).

Proposition 2.4. (a) R([3, 2], [3, 2]) = R([3, 2], [2, 1]) = 3,

(b) R([3, 2], [k, 2]) = 2k − 3 and R([3, 2], [k, 1]) = 2k − 1,

(c) R([4, 2], [k, 2]) 6 k2 − 2k − 39 for each k > 11 and

(d) R([4, 2], [k, 1]) 6 k2 − 22 for each k > 9.

Proof. (a) Let us show that R([3, 2], [3, 2]) = 3 (the proof for R([3, 2], [2, 1]) = 3, is
analogous). For, we notice that K[3,2] is the graph consisting of three vertices, one of
degree 2 and two of degree 1, and so R([3, 2], [3, 2]) > 2. Now, for any 2-coloring of the
edges of K3 there is always a vertex with two incident edges with the same color, giving
the desired K[3,2].
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(b) We first prove that R([3, 2], [k, 2]) 6 2k − 3. For, we iterate inequality of Lemma 2.1
obtaining

R([3, 2], [k, 2]) 6 R([2, 2], [k, 2]) +R([3, 2], [k − 1, 2])
= 2 +R([3, 2], [k − 1, 2])
6 2 +R([2, 2], [k − 1, 2]) +R([3, 2], [k − 2, 2])
= 2 + 2 +R([3, 2], [k − 2, 2])
6 · · · 6 2 + · · ·+ 2︸ ︷︷ ︸

k−3

+R([3, 2], [3, 2])

= 2(k − 3) + 3 = 2k − 3.

Now, we show that R([3, 2], [k, 2]) > 2k − 4. For, take a perfect matching of K2(k−2). We
color the edges belonging to the matching in red and all others in blue. We have neither a
red K[3,2] red (since there are not vertex with two incident edges in red) nor a blue K[k,2]

since any subset of k vertices forces to have at least two red edges.

(It can be proved that R([3, 2], [k, 1]) = 2k − 1 by using completely similar arguments as
above).

(c) It is known [3] that R([4, 2], [10, 2]) = 41. By using the latter and the recurrence of
Lemma 2.1 we obtain

R([4, 2], [k, 2]) 6
k∑

i=11

R([3, 2], [i, 2]) +R([4, 2], [10, 2])

6
k∑

i=11

(2i− 3) + 41 = (k − 10)(k + 11)− 3(k − 10) + 41 = k2 − 2k − 39.

(d) It is known [1] that R([4, 2], [8, 1]) = 42. By using the latter and the recurrence of
Lemma 2.1 we obtain

R([4, 2], [k, 1]) 6
k∑
i=9

R([3, 2], [i, 1]) +R([4, 2], [8, 1])

6
k∑
i=9

(2i− 1) + 42 = (k − 8)(k + 9)− (k − 8) + 41 = k2 − 22.

�

3. χr-Colorings

An r-edge coloring of Kn is said to be a χr-coloring, if there exists a labeling of V (Kn) with
{1, . . . , n} and a function φ : {1, . . . , n} → {0, . . . , r − 1} such that for all 1 6 i < j 6 n
the edge {i, j} has color t if and only if φ(i) = t.

Remark 3.1. (a) Notice that the value φ(n) do not play any role in the coloring.

(b) A monochromatic edge coloring (all edges have the same color 0 6 t 6 r − 1 ) of Kn

is a χr-coloring. Indeed, it is enough to take any vertex labeling and to set φ(i) = t for
all i.

(c) There exist r-edge colorings of Kn that are not χr-coloring. For instance, it can be
checked that for any labeling of V (K3) there is not a suitable function φ giving three
different colors to the edges of K3.

Exemple 3.2. A 2-coloring of K3 with two edges of the same color and the third one
with different color is a χ2-coloring. Indeed, If the edges {1, 2} and {1, 3} are colored with
color 0 and the edge {2, 3} with color 1 then we take φ(1) = 0, φ(2) = 1 and φ(3) = 1.

Let k > 1 be an integer. Let χr(k) be the smallest integer n such that for any r-edge-
coloring of KN , N > n there exist a clique of order k in which the induced r-edge coloring
is a χr-coloring.



6 J. CHAPPELON, L.P. MONTEJANO, AND J.L. RAMÍREZ ALFONSÍN

Remark 3.3. χr(k) always exists. Indeed, by Ramsey’s theorem, for any r-edge coloring
of KN , N > Rr(Kk) there exist a clique order k that is monochromatic which, by Remark
3.1 (b), is a χr-coloring.

We clearly have that χr(2) = 2. For χr(3), we first notice that χr(3) = Rr ([3, 2]) and
that K[3,2] is a star K1,2(a graph on three vertices, one of degree 2 and two of degree one).
Now, Burr and Roberts [2] proved that

R (K1,q1 , . . . , K1,qn) =
n∑
j=1

qj − n+ ε

where ε = 1 if the number of even integers in the set {q1, . . . , qn} is even, ε = 2 otherwise.
Therefore, by applying the above formula when qi = 2 for all i, we obtain

(3) χr(3) =

{
r + 1 for r even,
r + 2 for r odd.

Theorem 3.4. Let r > 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr be positive
integers such that ki > ti for all i ∈ {1, . . . , r}. Then,

R([k1, t1], . . . , [kr, tr]) 6 χr

(
r∑
i=1

(ki − ti − 1) + 1 + max
16i6r
{ti}

)
.

Proof. Consider a χr-coloring of K
χr

(
r∑

i=1
(ki−ti−1)+1+max16i6r{ti}

). Given the vertex labeling

of the χr-coloring, we consider the complete graph K ′ induced by the vertices with labels

1, . . . ,
r∑
i=1

(ki − ti − 1) + 1 (that is, we remove all the edges induced by the set of vertices

T1 with the max16i6r{ti} largest labels). By the pigeonhole principle, there is a set T2
of at least ki − ti + 1 − 1 vertices of K ′ with the same color for some i. Moreover, by
definition of χr-coloring any edge {v1, v2} with v1 ∈ T1 and v2 ∈ T2 has color i, giving the
desired monochromatic K[ki,ti]. �

The following result is an immediate consequence of Theorem 3.4.

Corollary 3.5. Let r, k > 2 be integers. Then,

Rr([k, 1]) 6 χr(r(k − 2) + 2) and Rr([k, 2]) 6 χr(r(k − 3) + 3).

Proposition 3.6. Let r, k > 2 be integers. Then,

χr(k) 6 rχr(k − 1)− r + 2.

Proof. Consider a r-edge coloring of Krχr(k−1)−r+2 and let u be a vertex. Since d(u) =

rχr(k − 1) − r + 1 then there are at least
⌈
rχr(k−1)−r+1

r

⌉
= χr(k − 1) set of edges with

the same color all incident to u. Now, by definition of χr(k − 1), there is a clique H
of order k − 1 which edge coloring is a χr- coloring. So, there is a labeling π of V (H),
|V (H)| = k and a function φ giving such coloring. We claim that the r-edge coloring of
the clique H ′ = H ∪ u is a χr-coloring. Indeed, by taking the label π′(i) = π(i) + 1 for
all vertex i 6= u and π′(u) = 1 and the function φ′(1) = 1 and φ′(i) = φ(i − 1) for each
i = 2, . . . , k. �
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Proposition 3.7. Let r, k > 2 be integers. Then,

χr(k) 6 g(k, r) =


rk−2 + rk−3 + · · ·+ r2 + r + 2 =

rk−1 − 1

r − 1
+ 1 for r odd,

rk−2 + rk−4 + rk−5 + · · ·+ r2 + r + 2 =
rk−3 − 1

r − 1
+ rk−2 + 1 for r even.

Proof. By equality (3) and by successive applications of Proposition 3.6. �

Theorem 3.8. Let r > 2 be a positive integer and let k1, . . . , kr and t1, . . . , tr be positive
integers such that ki > ti for all i ∈ {1, . . . , r}. Then,

R([k1, t1], . . . , [kr, tr]) 6 g(k, r)

where

k :=
r∑
i=1

(ki − ti − 1) + 1 + max
16i6r
{ti}.

Proof. By Theorem 3.4 and Proposition 3.7. �

We believe that the above upper bound for Rr([k, 1]) is smaller than the one given by
Corollary 2.3 (see equation (2)) for some values of k.

Conjecture 3.9. Let r > 3 be an integer. Then, for all 3 6 k 6 r3/2 + r − 1

g((r(k − 2) + 2, r) <

(
r(k − 1)

k − 1, k − 1, . . . . . . , k − 1

)
=

(rk − r)!
((k − 1)!)r

·

We have checked the validity of the above conjecture for all 3 6 r 6 150 by computer
calculations. Conjecture 3.9 is also supported graphically, by considering the continual
behaviour of

f(k, r) = g((r(k − 2) + 2, r)− (rk − r)!
((k − 1)!)r

·

To see that, we may use the fact that Γ(z + 1) = z! when z is a nonnegative integer,
obtaining

f(k, r) = g((r(k − 2) + 2, r)− Γ(r(k − 1) + 1)

Γr(k)

where Γ(z) is the well-known gamma function1, see Figure 2.
We have also checked (by computer) that for each 3 6 r 6 150 there is an interval Ir
(increasing as r is growing) such that for each k > 3, k ∈ Ir the function g(r(k− 3) + 3, r)
(resp. g(r(k− 4) + 4, r)) is a smaller upper bound for Rr([k, 2]) (resp. for Rr([k, 3])) than
the corresponding ones obtained from Corollary 2.3. In view of the latter, we pose the
following

Question 3.10. Let t > 1 and r > 3 be integers. Is there a function c(r) such that for
all 3 6 k 6 c(r)

g(r(k − t) + t, r) < t

(
r(k − t)

k − t, k − t, . . . . . . , k − t

)
?

1The gamma function is defined as Γ(z) =
∫ +∞
0

tz−1e−tdt for any z ∈ C with Re(z) > 0. Moreover,

Γ(z + 1) = z! when z is a nonnegative integer.



8 J. CHAPPELON, L.P. MONTEJANO, AND J.L. RAMÍREZ ALFONSÍN

Figure 2. Behaviours of f(4, k) avec 8 6 k < 10 (left) and f(5, k) avec
12 6 k < 13 (right). We notice that due to the scaling used in the figures
(in order to plot the minimum) the function f seems very close to zero
but in fact it is very far apart, f(4, 8) 6 −1, 8 × 1029 for the left one and
f(5, 12) 6 −5, 7× 1072 for the right one.
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