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Energy, decay rate, and effective masses for a moving polaron in a Fermi sea: Explicit

results in the weakly attractive limit

Christian Trefzger and Yvan Castin
Laboratoire Kastler Brossel, École Normale Supérieure and CNRS, UPMC, 24 rue Lhomond, 75231 Paris, France

We study the properties of an impurity of mass M moving through a spatially homogeneous three-
dimensional Fermi gas of particles of same spin state and mass m. In the weakly attractive limit,
where the effective coupling constant g → 0− and perturbation theory can be used, we analytically
calculate the complex energy ∆E(K) of the moving impurity up to order two included in g. This
also gives access to its longitudinal and transverse effective masses m∗

‖(K), m∗
⊥(K), as functions of

the impurity wave vector K. Depending on the modulus of K and on the impurity-to-fermion mass
ratio M/m we identify four regions separated by singularities in derivatives with respect to K of the
second-order term of ∆E(K), and we discuss the physical origin of these regions. Remarkably, the
second-order term of m∗

‖(K) presents non-differentiable points, as well as a logarithmic divergence
for M = m, when K is on the Fermi surface of the fermions.

PACS numbers: 03.75.Ss, 34.50.Cx, 05.30.Fk, 71.10.Ca

Recent cold atom experiments have reached an un-
precedented accuracy in measuring the equation of state
of an interacting Fermi gas [1–3]. It is now accepted
that in strongly spin-polarized configurations the minor-
ity atoms dressed by the Fermi sea of the majority atoms
form a normal gas of quasi-particles called Fermi po-
larons [4–6]. Of particular interest is the weakly attrac-
tive or BCS limit, where deviations of the polaron equa-
tion of state from the grand canonical ideal gas [7] were
observed [2].

In general, for an arbitrary interaction strength, a
Fermi liquid theory can be used to describe polarons at
low momenta [8], with effective parameters that need to
be determined with a microscopic theory [4–7, 9–14] or
from experiments [1, 2, 15–18]. In this work, we focus on
the weakly attractive regime kFa→ 0−, where a is the s-
wave scattering length of a minority atom and a fermion
and kF is the Fermi wave number of the majority atoms.
Using a systematic expansion in powers of kFa, we then
go beyond the Fermi liquid description: We determine
not only the decay rate, but also the real part of the po-
laronic complex energy, and being not restricted to low
momenta, we have access to momentum-dependent effec-
tive masses of the polaron. Within our microscopic ap-
proach we have a complete description of the system: We
determine a phase diagram where singularities in deriva-
tives of the second-order term of the polaronic complex
energy mark the boundaries of different regions as shown
in Fig.1. The physical origin of the singularities is also
discussed.

At zero temperature, we consider in three dimensions
an ideal Fermi gas of particles of same spin state and
mass m perturbed by the presence of a moving impurity
of mass M and momentum ~K. While we assume no
interactions among the fermions, the impurity interacts
with each fermion through a s-wave interaction of neg-
ligible range, e.g. on a broad Feshbach resonance. The
system is enclosed in a quantization volume V with peri-

odic boundary conditions, and is described by the single-
channel Hamiltonian Ĥ = Ĥ0 + V̂ :

Ĥ0 =
∑

k

(

εkû
†
kûk + Ekd̂

†
kd̂k

)

, (1)

V̂ =
g0
V

∑

k1,k2

k3,k4

δmod
k1+k2,k3+k4

d̂†k4
û†k3

ûk2
d̂k1

, (2)

where ûk (d̂k) annihilates a fermion (impurity) with wave

vector k and kinetic energy εk = ~
2k2

2m (Ek = ~
2k2

2M ). To
avoid ultraviolet divergences we use a standard lattice
model where the positions of the particles are discretized
on a cubic lattice of elementary step b ≪ k−1

F and bi-
nary interactions between the impurity and a fermion
take place at the same lattice site with a bare coupling
constant g0 [19]. The model provides automatically a
cutoff in the Fourier space since wave vectors belong to
the first Brillouin zone. In Eq. (2), the modified Kro-
necker delta is to be understood modulo a vector of the
reciprocal lattice and ensures conservation of the quasi-
momentum. The bare coupling constant g0 is then re-
lated to the scattering length a through the formula

1

g0
=

1

g
−

∫

FBZ

d3k

(2π)3
2µ

~2k2
and g =

2π~2a

µ
, (3)

where the integral is taken in the first Brillouin zone,
FBZ = [−π/b, π/b[3, and µ = mM/(m +M) is the re-
duced mass. In practice, at the end of the perturbative
calculations to come, we will take the thermodynamic
limit, where V → +∞, and also the continuous space
limit b → 0+, so that the first Brillouin zone will con-
verge to the whole Fourier space.
The goal is to calculate the complex energy of an im-

purity of wave vector K moving in the zero temperature
Fermi gas of N particles. The ground state of the N
fermions is the usual Fermi sea |FS〉 of energy EFS(N).
In the absence of interactions the ground state of the sys-
tem is given by the free impurity immersed in the Fermi
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FIG. 1: Phase diagram of the moving polaron in the M/m –
K/kF plane. On the dashed line, K = kF, and on the solid
line, K = kFM/m, a logarithmic divergence (discontinuity)
appears in the nth order derivative with respect to K of the
real part (imaginary part) of the second-order term of the
polaronic complex energy (8): n = 3 for the dashed line, n = 4
for the solid line, and n = 2 at the point (M = m,K = kF).

sea

|ψ(0)(K)〉 = d̂†K|FS〉, (4)

with an energy, measured with respect to the energy of
the Fermi sea, given by

∆E(0)(K) = 〈ψ(0)(K)|Ĥ0|ψ
(0)(K)〉 − EFS(N) = EK.

(5)
We now consider the weakly interacting case a → 0−,
where a quasi-particle polaronic ground state is known to
exist [4–7, 12]. For a fixed lattice spacing b, in the limit
where |a| ≪ b we can Taylor expand the bare coupling
constant (3):

g0 =
g→0−

g + g2
∫

FBZ

d3k

(2π)3
2µ

~2k2
+O

(

g3
)

, (6)

and in this weakly attractive limit one can treat V̂ in
the Hamiltonian with usual perturbation theory. Up to
second order in V̂ , we find in the thermodynamic limit
that the energy of the moving polaron is complex:

∆E(K) =
a→0−

EK + ρg0

−

∫ ′

FBZ2

d3kd3q

(2π)6

(

g20
EK+q−k + εk − εq − EK − iη

)

+O(g30),

(7)

where the prime on the integral means that it is restricted
to 0 < q < kF and to k > kF, and we have intro-
duced the mean density of the Fermi sea ρ = N/V re-
lated to the Fermi wave number kF by the usual relation

kF = (6π2ρ)1/3, EF =
~
2k2

F

2m , and η → 0+. Substitut-
ing Eq. (6) into Eq. (7) and keeping only terms up to

order g2, as announced we get a finite expression for a
vanishing lattice spacing

∆E(K) =
g→0−

EK + ρg +
(ρg)2

EF
f(K/kF) + O(g3). (8)

The dimensionless complex function f (K/kF) is defined
as follows:

f (K/kF) =
3r

r + 1
+
EF

ρ2

∫ ′

R6

d3kd3q

(2π)6

(

2µ

~2k2

−
1

EK+q−k + εk − εq − EK − iη

)

, (9)

where r =M/m is the impurity-to-fermion mass ratio.
The integral in Eq. (9) can be calculated exactly. Us-

ing the Dirac relation limη→0+(x− iη)−1 = P 1
x + iπδ(x),

where P is the principal value and δ(x) the Dirac dis-
tribution, we can separate the integral into its real and
imaginary parts. A first step then consists in averaging
over the direction of K: The expansion of EK+q−k in
powers of K reveals that it is convenient to use spherical
coordinates of polar axis given by the direction of k− q.
Second, using again spherical coordinates, the integral
over k and q reduces to a triple integral over k, q and
the angle θ between k and q. Then taking λ = |k − q|
rather than θ as the integration variable [20] one obtains
for the real part

ℜf(K/kF) =
3r

r + 1
+

9r

2k4F

∫ +∞

kF

k dk

∫ kF

0

q dq

∫ k+q

k−q

λdλ

[

1

(r + 1)k2
−

1

2y
ln

∣

∣

∣

∣

x+ y

x− y

∣

∣

∣

∣

]

(10)

where the modulus in the argument of the ln originates
from the principal value. For the imaginary part one has

ℑf(K/kF) = −
9πr

8Kk4F

∫ +∞

kF

k dk

∫ kF

0

q dq

∫ k+q

k−q

dλY (1−x/y)

(11)
where Y is the Heaviside function and we have introduced
the positive quantities x = (k2 − q2)r + λ2, and y =
2λK. Remarkably, the triple integrals in Eqs. (10,11)
can be evaluated explicitly leading to the forthcoming
expressions.
The imaginary part of Eq. (8) reveals that due to scat-

tering of the impurity with the fermions, a moving po-
laron radiates particle-hole pairs [8] and thus decays out
of its initial momentum channel, at a rate Γ0 given by

~Γ0

2
=

g→0−
−
(ρg)2

EF
ℑf(K/kF) +O(g3). (12)

The polaron decay rate is an isotropic function of the
impurity wave vector K. Depending on the impurity-
to-fermion mass ratio r = M/m and on the modulus
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FIG. 2: (Color online) Function −ℑf(κ) entering the imagi-
nary part of Eq. (8) (row 1), and its second derivative entering
the imaginary part of the inverse effective mass Eq. (22) (row
2), for various mass ratios. Dashed lines correspond to the
asymptote (17) of Eq. (16). Red vertical lines correspond to
the phase boundaries at κ = 1 and at κ = M/m.

of K, ℑf(K/kF) assumes different piecewise smooth (in-
definitely derivable) functional forms on the four differ-
ent regions represented in Fig. 1. (i) The low-K region,
0 < K/kF < min(1, r), where

−ℑf(κ) =
region 1

3π

20r
κ4. (13)

For an ideal Fermi gas containing a vanishing density
of impurities, a similar κ4 power law was obtained in
Ref. [8], but only in a small κ expansion of ℑf(κ).
Eq. (13) is not implied by the result of [8] because it
is valid in an entire region of parameters. Notice that for
a polaron at rest, i.e. K = 0, one has ℑf(0) = 0 as ex-
pected. (ii) The r < 1 (light impurity) crossover region,
min(1, r) < K/kF < max(1, r), where

−ℑf(κ) =
region 2

3πr

20(r2 − 1)2

×
[

(r2 − 2)κ4 + 10κ2 − 20rκ+ 15r2 − 4r3/κ
]

. (14)

(iii) The r > 1 (heavy impurity) crossover region,
min(1, r) < K/kF < max(1, r), where

−ℑf(κ) =
region 3

3πr

20(r2 − 1)2

×

[

κ4

r2
− 10κ2 + 10(r2 + 1)κ− 15r2 +

6r2 − 2

κ

]

. (15)

Notice that there is no crossover region for a unit
impurity-to-fermion mass ratio, r = 1. (iv) Finally the
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FIG. 3: (Color online) Function ℜf(κ) entering the real part
of Eq. (8) (row 1), and its second derivative entering the real
part of the inverse effective mass Eq. (22) (row 2), for various
mass ratios. Dashed lines: Asymptotic behavior (20). Red
vertical lines: Phase boundaries at κ = 1 and at κ = M/m.
Insets: Enlargements showing the non-differentiability of the
second-order term of M/m∗

‖(K) at K = kF.

high-K region, max(1, r) < K/kF, where

−ℑf(κ) =
region 4

3πr

10(r + 1)2
5κ2 − 2r − 1

κ
. (16)

Note that our Eqs. (13, 16) generalize to r 6= 1 the results
already obtained in [11].
For a large impurity wave vector, K/kF ≫ max(1, r),

the asymptotic value of −ℑf(κ) is given by the asymp-
totic expansion of Eq. (16), and is linear in K:

−ℑf(K/kF) ∼
K/kF≫max(1,r)

3πrK

2(r + 1)2kF
. (17)

Interestingly, for r = 1, Eq. (17) is consistent with the
imaginary part of the complex energy (21.20) of Ref. [21],
obtained for an unpolarized spin 1/2 Fermi gas. This is
due to the fact that, at large K/kF, the Pauli blocking
effect induced by the Fermi sea of impurities (present in
Ref. [21] and absent in our case) becomes negligible. For
an arbitrary r, one recovers Eq. (17) with a simple kinetic
argument which also neglects the Pauli blocking effect
provided K ≫ (r + 1)kF: In a collision of the impurity
with a fermion of typical wave vector kF, their relative
velocity is v ≃ ~K/M , and σ = 4πa2 is the impurity-to-
fermion scattering cross section; the collision rate of the
impurity with the atoms in the Fermi sea of density ρ is
then given by γ = ρσv, and ~γ reproduces Eq. (17). In
Fig. 2 we plot the function −ℑf(κ) for different values of
the mass ratio between the impurity and the fermions.
Let us now discuss the real part of the polaronic com-

plex energy (8) for which much less was known. We find



4

that ℜf(K/kF) is an isotropic function of K with the
following analytic expression

ℜf(κ) =
3r

r + 1
−

3r

20(r2 − 1)2

{

(r2 − 1)

2
(κ2 + 20r − 9)

+
(κ− 1)3

κ
[κ(κ+ 3)(r2 − 2) + 6r2 − 2] ln

∣

∣

∣

∣

κ− 1

κ

∣

∣

∣

∣

+
(κ− r)4

κ

(

κ+ 4r

r2

)

ln

∣

∣

∣

∣

κ− r

κ

∣

∣

∣

∣

+ (κ → −κ)

}

. (18)

The locus of points where the moduli in the argument of
the ln functions vanish forms the boundaries of the same
physical regions discussed for ℑf(K/kF), and sketched
in Fig. 1. We have numerically observed that Eq. (18)
is a monotonically decreasing function of κ. It has a
vanishing derivative at the origin, ℜf ′(0) = 0, where it
reaches its maximum value

ℜf(0) =
9r(1− r2 + 2r2 ln r)

4(r2 − 1)2
. (19)

An expression equivalent to (19) was obtained in [9, 10]
in the context of a Λ-particle in a Fermi sea of nucleons
with ν = 4 spin-isospin states, hence an extra factor ν in
those references. Eq. (18) vanishes at large K/kF:

ℜf(κ) =
κ≫max(1,r)

r

4κ2
+O(1/κ)4. (20)

This indicates that, for large K/kF and up to second-
order in g, the dispersive effect of the Fermi sea on the
energy of the impurity reduces to the mean-field term ρg.
Contrary to a first impression, Eq. (18) has a finite limit
for a unit mass ratio

lim
r→1

ℜf(κ) =
3

2
−

3

40

[

11

2
+ κ2 + (2κ3 + 4κ2 + 6κ+ 3)

×
(κ− 1)2

κ
ln |κ− 1| − 2κ4 ln |κ|+ (κ→ −κ)

]

, (21)

and as well as for ℑf(K/kF) the crossover region is absent
in this special case M = m. In the weakly attractive
limit, g → 0−, the second-order effect of the Fermi sea
on the energy of the impurity moving through it can then
be summarized as follows for an arbitrary mass ratio: On
the real (imaginary) part of the resulting complex energy
the effect of the medium is maximal (minimal) when the
impurity is at rest, K = 0, while the effect of the medium
is minimal (maximal) when the impurity is moving fast.
A related observable of interest is the effective mass of

the polaron. Since the impurity is moving with momen-
tum ~K, one can define the effective mass m∗

‖(K) along

the direction of K, and the effective mass m∗
⊥(K) along

the direction perpendicular to K [22]. m∗
‖(K) is related

to the second derivative of the complex energy Eq. (8)
with respect to the impurity wave vector K as follows:

M

m∗
‖(K)

=
g→0−

1 +
r

2

(

ρg

EF

)2

f ′′(κ) +O(g3), (22)

and m∗
⊥(K) is related to the first derivative of the com-

plex energy with respect to K:

M

m∗
⊥(K)

=
g→0−

1 +
r

2

(

ρg

EF

)2
f ′(κ)

κ
+O(g3). (23)

When K → 0, Eqs. (22, 23) have the same limit, which
coincides with the result of [11], and one recovers the
usual rotational symmetry of the effective mass tensor.
At non-zero K, Eq. (23) is a differentiable function of K,
whereas Eq. (22) presents interesting singularities and is
non-differentiable in κ = 1 as shown in Figs. 2, 3.

Furthermore, for r = 1, ℜf ′′(κ) presents a logarith-
mic divergence ∝ ln |κ − 1| in κ = 1, as can be immedi-
ately seen in Eq. (21). This suggests that for r = 1,
M/m∗

‖(K) cannot be Taylor expanded in powers of g

at the point κ = 1, as e.g. the function g2 ln |g|, and
a non perturbative approach must be used, which is be-
yond the scope of this work. Instead, ℑf ′′(κ) has a jump
J = ℑf ′′(1+)−ℑf ′′(1−) = 9π/4 in κ = 1 for r = 1.

We now physically interpret the boundaries between
regions sketched in Fig. 1. Intuitively, singularities in the
polaron complex energy may originate from the fact that
(i) the energy denominator in Eq.(7) can vanish, and (ii)
the domains of variation of k and q in Eq.(7) have sharp
boundaries k = q = kF. One thus investigates the form of
the Fourier space domain where the energy denominator
vanishes for k and q both at the Fermi surface. For K <
kF, it is found that this domain supports all values of θ ∈
[0, π/2], where θ is the angle between K and k − q. For
K > kF, on the contrary, the allowed values of θ range
from arccos(kF/K) to π/2. This designates K = kF as a
first peculiar line in the plane M/m – K/kF. Note that
π− 2θ is the scattering angle of an incoming impurity of
wave vector K on the Fermi sea when both the resulting
scattered fermion and hole are at the Fermi surface. To
obtain the second peculiar line in Fig. 1, we introduce
the additional idea that the energy denominator as well
as its first order derivatives with respect to k and to q

vanish at k = q = kF, which indeed leads to K = rkF.

In conclusion, in the weakly attractive limit, we have
calculated analytically the energy, the decay rate, and the
effective masses of an impurity moving with momentum
~K through a fully polarized Fermi sea. In what concerns
the second-order contributions in the coupling constant
g, our results show the existence of four physical regions
separated by singularities of system’s observables, as e.g.
the effective mass. We have characterized the order and
the physical origin of these singularities, which lays in
the impurity-to-fermion scattering at the Fermi surface.
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