
HAL Id: hal-00847393
https://hal.science/hal-00847393v1

Submitted on 23 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Management for an Electric Vehicle Based on
Combinatorial Modeling

Yacine Gaoua, Stéphane Caux, Pierre Lopez

To cite this version:
Yacine Gaoua, Stéphane Caux, Pierre Lopez. Energy Management for an Electric Vehicle Based on
Combinatorial Modeling. International Conference on Industrial Engineering and Systems Manage-
ment (IESM 2013), Oct 2013, Rabat, Morocco. 9p. �hal-00847393�

https://hal.science/hal-00847393v1
https://hal.archives-ouvertes.fr


Energy Management for an Electric Vehicle Based on

Combinatorial Modeling
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Abstract

This paper describes the process of electrical energy management and optimization in a multi-source system such as a
Hybrid Electric Vehicle (HEV), running on a known mission profile. The purpose of the committed study is to minimize
the consumption of the fuel used by one of the sources, to respect the different constraints related to the operating
system and to meet the demand of the electrical motor powertrain. Lots of studies were led on a non-linear modeling of
the problem giving suboptimal solution with important computation time. In this paper, a new combinatorial modeling
is proposed to avoid such drawback. A computational study shows the benefits obtained using an exact combinatorial
approach.
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1 Introduction

The multiple applications of electrical energy in the different domains of human activity are proving to be one
of the technical evolution consequences. This is particularly the case of vehicles to which this form of energy
allows a gain in terms of cost, autonomy, performance, and preserving the environment. These applications have
even become a strategic and a technological challenge, so this energy, unlike fossil fuels, is a solution for the
future because it is renewable, inexhaustible, available, and noiseless.

The energy chain of a Hybrid Electric Vehicle (HEV) is composed of at least two energy sources (fuel cells,
photovoltaic panels, batteries, supercapacitors) with different characteristics (efficiency, energy losses, powers,
capacity). The reversible sources as the battery and the supercapacitors, allow storing electrical energy when the
vehicle brakes (transformation of the kinetic energy into electrical energy). In previous studies, electrical energy
management was represented by a non-linear model, solved using methods such as dynamic programming [3][7],
quasi-Newton method [4], or fuzzy logic [5]. The solutions then obtained are suboptimal and require significant
computation times.

To improve the solution, a first attempt is proposed. It consists in using Computational infrastructure for
Operations research methods (Coin-Or) [6] such as Interior Point Optimizer (IPOpt) applied to the nonlinear
model to measure the quality of the solution obtained. However the major innovation made in this study was
to develop a combinatorial modeling by using techniques for linearization and a discretization space of energy,
to use the exact methods of operations research such as the Branch-and-Cut method in order to find a global
optimum. Thus, the information related to the combinatorial model allow to define planes which reduce the
search space and find an optimal solution with very restricted computation time.
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2 Description of the energy system

The energy chain of the vehicle concerned is composed of a Fuel Cell System (FCS) using hydrogen as a
fuel; its energy is produced from the chemical reaction of hydrogen and oxygen. FCS is characterized by its
efficiency and the efficiency of its auxiliaries: air compressor which represents 80% of the total energy consumed
by the auxiliaries, temperature and humidification regulating pumps, connected to the distribution bus via a
unidirectional converter. The energy chain also contains a storage system composed by a pack of supercapacitors
connected in series and parallel, characterized by its energy losses function, which is connected to the bus via
a bidirectional converter. A consumption source represents the powertrain demand.

The converter is an electronic module which delivers a current maintaining a regulated output voltage. It keeps
the bus voltage to its reference despite voltage variations of the FCS and the supercapacitor. It is characterized
by high efficiency ranging from 93% to 97% due to high quality of power electronics component.

The energy losses of the storage element Lossse (Figure 1) are calculated from efficiency of the supercapacitors
ηsc and the converter ηcvs:

ηse = ηscηcvs (1)
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Fig. 1. Storage element energy losses

The FCS efficiency ηfcs is calculated from the efficiency of the fuel cell itself ηfc, the air compressor ηair and
the converter ηcvs:

ηfcs = ηfcηairηcvs (2)

The experiments showed that a maximum efficiency of the FCS, controlled in pressure, temperature and hu-
midity is equal to 46% (Figure 2). By increasing the pressure in the cathodic compartment, the FCS voltage
increases, this explains an increase of its performance. However, further increasing the pressure cathode, the
power absorbed by the air compressor increases, which leads to decreasing the FCS performance. The efficiency
is quite bad due to the low power of the compressor which has a very poor efficiency at reduced speed. Moreover,
the FCS in such HEV is made with solid membrane with imposed nominal pressure.

3 Mathematical modeling

The objective is to minimize hydrogen consumption used by the FCS throughout the mission, while satisfying
system constraints. Two mission profiles are proposed: the INRETS (National REsearch Institute on Transport
and their Security) mission profile, which corresponds to the instantaneous power demand of an electric vehicle
in urban areas (Figure 3), and the ESKISEHIR mission profile corresponding to the power demand of a tramway
in Turkey (Figure 4).

In previous works, a non-linear model was developed [1][2] due to the characteristics of the different energy
sources (FCS efficiency and energy losses of the storage element):
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Fig. 2. FCS efficiency
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Fig. 3. INRETS mission profile
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Fig. 4. ESKISEHIR mission profile

min

T∑
t=1

Ph(t)∆t ≡ min

T∑
t=1

Pfcs(t)

ηfcs
(
Pfcs(t)

)∆t (3)

Pfcs(t) + Pse(t) = Preq(t) ∀t ∈ T, Preq(t) ≥ 0 (4)

Preq(t) ≤ Pse(t) ≤ 0 ∀t ∈ T, Preq(t) < 0 (5)

Pmin
fcs ≤ Pfcs(t) ≤ Pmax

fcs ∀t ∈ T (6)

Pmin
se ≤ Pse(t) ≤ Pmax

se ∀t ∈ T (7)

SOCmin
se ≤ SOCse(t) ≤ SOCmax

se ∀t ∈ T (8)

SOCse(t) = SOCse(t− 1)−
(
Ps(t)∆t

)
∀t ∈ T (9)

Ps(t) = Pse(t) + Lossse
(
Pse(t)

)
∀t ∈ T (10)

SOCse(T ) = SOCse(0) (11)



The decision variables are: Pfcs(t) power supplied by the FCS at each instant t; Pse(t) power supplied/recovered
by the storage element at each instant t; and SOCse state of charge of the storage element at each instant t.
Input parameters are defined in Table 1. Consequently, the meaning of the mathematical model is as follows:

• (3): The objective function is to minimize the hydrogen consumption used by the FCS; it can be also written
using the FCS efficiency and its power provided.

• (4): Satisfy the powertrain demand when the vehicle is in traction.
• (5): Recovering all braking energy can force the FCS to operate at its poor efficiency.
• (6,7): Power limits related to the design of the energy sources.
• (8): Storage capacity of the storage element.
• (9): State of charge evolution of the storage element.
• (10): Energy losses of the storage element used to identify the real power Ps(t) supplied/recovered by the

storage element.
• (11): Reset the state of charge of the storage element at its initial level at the end of the mission.

Table 1
Input model parameters.

Input data Value Signification

SOCse(0) 900 kW.s Initial energy storable in the storage element

SOCmin
se 400 kW.s Minimum energy storable in the storage element

SOCmax
se 1600 kW.s Maximum energy storable in the storage element

Pmin
se −60 kW Maximum power injected to the storage element

Pmax
se 60 kW Maximum power extractable from the storage element

Pmax
fcs 70 kW Maximum power extractable from the FCS

Ifcs 601 Number of the FCS operating points

Jse 120 Number of the energy losses function

∆t 1 s Time stepsize

T 560 s INRETS mission duration

T 1400 s ESKISEHIR mission duration

4 Problem solving

Lots of methods were developed in previous works such as dynamic programming, quasi-Newton method and
fuzzy logic. Their principle is briefly explained below. The solution given by each method is suboptimal and
obtained after a large computation time due to the problem complexity.

4.1 Dynamic programming

Dynamic programming is a sequential combinatorial optimization method for the optimal solution research
using the Bellman’s principle. The idea is to discretize the time horizon in T points of ∆t stepsize and the
energy space of the storage element in N points of ∆E stepsize. The weakness of this approach on the energy
management modeling is related to the choice of the discretization applied to the energy space of the storage
element. By decreasing the number of possible states of charge of the storage element, part of possible solutions
is eliminated with a strong possibility that the optimal solution belongs to this set. When the number of possible
states of charge increases, it causes more choices and computation explosion to determine the optimal sequence
that minimizes the criterion of hydrogen consumption [3]. For a discretization of the time horizon in ∆t = 1
s and energy space of the storage element in ∆E = 1 kW.s, the optimal solutions found for the two mission
profiles are given in Tables 2 and 3.

Table 2
Results of INRETS profile.

Method Hydrogen consumption Computation time SOCse(T ) = SOCse(0)

Dynamic programming 10131 kW.s 22 hours Yes

Quasi-Newton 8750 kW.s 23 min Yes

Fuzzy logic 8359 kW.s on-line No



Table 3
Results of ESKISEHIR profile.

Method Hydrogen consumption Computation time SOCse(T ) = SOCse(0)

Dynamic programming 31826 kW.s 52 hours Yes

Quasi-Newton 27542 kW.s 2.38 hours Yes

Fuzzy logic 29802 kW.s on-line No

4.2 Quasi-Newton method

A quasi-Newton algorithm is an iterative method for solving nonlinear problems by using Karush-Kuhn-Tucker
conditions and the computation of the Hessian and the second derivative of the Lagrangian. The local minimum
is found when the gradient is zero. The solution found by this method using fmincon function integrated in
Matlab Optimization toolbox, is a local optimum [4].

4.3 Fuzzy logic

The theoretical bases of Fuzzy Logic (FL) are established so as to be able to treat inaccurate variables of values
between 0 and 1, according to their membership degrees in the verification of a condition, contrary to the
Boole’s logic in which variables must take values 0 or 1. The FL is an on-line method composed of three steps:
Fuzzification, Rules definition, and Defuzzification. The solution given by this method violates the constraint
of the final state of charge of the storage element because the optimization is instantaneous and does not take
into account future requests. The difficulty consists in adjusting some tuning parameters off-line. Evolutionary
algorithms (e.g., genetic algorithm) permits the adjustment of the position of the membership functions with
large computation time.

In off-line optimization, the storage element is reloaded to its initial level. The solution quality provided by
dynamic programming depends essentially of discretization stepsize, this is why the solution given by the
quasi-Newton method is better and uses less computation time. By applying fuzzy logic which is an on-line
optimization method, the final level of the storage element cannot be reset if the optimization ignores future
demands. The solutions found using INRETS and ESKISEHIR mission profiles are suboptimal. Although this
method is effective when the car mission profile is unknown, it requires some adjustments made off-line that
can require significant computation time.

5 Proposed approach

5.1 Using Coin-Or methods

Interior Point Optimizer (IPOpt) [9] is an open source software package used to find a local solution of nonlinear
programming problems, based on the computation of the gradient and the Hessian of Lagrangian. The constraints
and the objective function can be nonlinear and nonconvex but they must be twice continuously differentiable.
The hydrogen consumption on the INRETS profile is 10910 kW.s and 31150.77 kW.s for the ESKISEHIR profile.
The computation times are very small, less than one second.

5.2 A new combinatorial modeling

The principle of this new modeling is to work with the original data without using the linear approximations of
the objective function and the energy losses function. By using the FCS operating point i ∈ Ifcs characterized
by its efficiency ηfcs(i) and its supplied energy Pfcs(i), and the decomposition of the energy losses function
Lossse (piecewise linear convex function) in a set of Jse independent linear functions, the new decision variables
of the combinatorial modeling are:

• X(t, i) ∈ {0, 1}: Activation or not of the operating point i ∈ Ifcs at time t,
• Y (t, j) ∈ {0, 1}: Activation or not of the energy losses equation j ∈ Jse at time t,
• Pse(t): Power supplied or recovered by the supercapacitor at time t,
• SOCse(t): State Of Charge of the supercapacitor at time t,
• Elosse(t): Energy losses by the supercapacitor at time t.



where Ifcs (resp. Jse) is considered as input data given by the manufacturer as a point table Ph, Pfcs (resp.
Ps, Pse), or can also be identified on the test bench by choosing the number of input points.

The power losses of the storage element is a piecewise linear convex function:

Elosse(t) = αjPse(t) + βj , Pse(t) ∈ [γj , γ
′

j ] (12)

with (αj , βj) the characteristics of the line j over the interval [γj , γ
′

j ]. To avoid the polynomial approximation,
the equation (13) is used:

Elosse(t) =
Jse

max
j=1

αjPse(t) + βj (13)

where Jse is the number of linear functions and j ∈ Jse its index. Knowing that max function is non-linear, this
function can also be modeled by a system of linear equations using binary variables and a big-M constant:

Elosse(t) ≤ αjPse(t) + βj +M(1− y(j, t)) (14)

Elosse(t) ≥ αjPse(t) + βj (15)
Jse∑
j=1

y(j, t) = 1 (16)

The final combinatorial modeling obtained is:

min

T∑
t=1

Ifcs∑
i=1

X(t, i)
Pfcs(i)

ηfcs(i)
∆t (17)

Pse(t) +

Ifcs∑
i=1

X(t, i)Pfcs(i) = Preq(t) ∀t ∈ T, ∀i ∈ Ifcs (18)

Preq(t) ≤ Pse(t) ≤ 0 ∀t ∈ T, Preq(t) < 0 (19)
Ifcs∑
i=1

X(t, i) = 1 ∀t ∈ T, ∀i ∈ Ifcs (20)

Pmin
se ≤ Pse(t) ≤ Pmax

se ∀t ∈ T (21)

SOCmin
se ≤ SOCse(t) ≤ SOCmax

se ∀t ∈ T (22)

SOCse(t)−
(
SOCse(t− 1) + Ps(t)∆t

)
= 0 ∀t ∈ T (23)

Elosse(t) ≤ αjPse(t) + βj +M(1− y(j, t)) ∀t ∈ T, ∀j ∈ Jse (24)

Elosse(t) ≥ αjPse(t) + βj ∀t ∈ T, ∀i ∈ Jse (25)
Jse∑
j=1

y(j, t) = 1 ∀t ∈ T (26)

Ps(t) = Pse(t) + ELosse(t) ∀t ∈ T (27)

SOCse(T ) = SOCse(0) (28)

The additional or modified constraints are:

• (17): The objective function is to minimize the hydrogen consumption used by the FCS, written using the
FCS operating points.

• (18): Satisfy the powertrain demand when the vehicle is in traction.
• (20): One FCS operating point is activated a each instant t.
• (24,25,26,27): Energy losses of the storage element.

5.3 Solving and results

The Branch-and-Cut algorithm [8][10] used to solve energy management model is an exact method for combi-
natorial optimization which is generally employed for solving exactly NP-hard problems. It integrates cutting



planes to accelerate the optimization process and branch and bound methods. The combinatorial model pro-
posed is solved by the Branch-and-Cut method using IBM-Ilog Cplex 12.4. The result minimizes the hydrogen
consumption used by the FCS, by running it at maximum efficiency points. For this, unnecessary operating

points can be eliminated by introducing specific cuts:
Ifcs∑
i=1

x(i, t)Pfcs(t) ≤ P lim
fcs , where P lim

fcs belongs to the set

of powers with maximum efficiency.

Table 4
Branch-and-Cut Results.

Mission profile Hydrogen consumption Computation time SOCse(T ) = SOCse(0)

INRETS 8750 kW.s 2.6 s Yes

INRETS 8269 kW.s 12.43 s No

ESKISEHIR 27542 kW.s 1.54 min Yes

ESKISEHIR 26954 kW.s 2.4 min No

The optimization is realized off-line and the solutions obtained using branch-and-cut method on the combina-
torial model are optimal and require very little computation time (see Table 4). In particular, the computation
time were dramatically reduced. These benefits must be linked to both the proposition of a combinatorial
modeling and the use of an efficient integer programming. To compare the results with the different methods
previously developed, resetting the final charge level of the storage element is an optional constraint.

The simulations show that the hydrogen consumption and the computation time are lower with our approaches
(values to be compared with those of Tables 2 and 3). In particular, the computation times were dramatically
reduced. These benefits must be linked to both the proposition of a combinatorial modeling and the use of an
efficient integer programming solver. The results obtained on the ESKISEHIR profile by selecting the constraint
of the final state of charge of the storage element give the evolution functioning of the FCS and the storage
element.

The FCS provides power to meet the demand of the powertrain and maintaining the state of charge of the
storage element between its bounds. To minimize the hydrogen consumption, the FCS works most of the time
at its maximum efficiency points (Figure 5).
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Fig. 5. FCS power provided

The storage element recovers power when the vehicle brake and provides it in the traction mode. Sometimes,
it is better to recover a portion of the braking power to permit the FCS to operate at its maximum efficiency
points (Figure 6).

The energy level of the storage element respects the capacity constraint and it is recharged to its original level
at the end of the mission, allowing processing other missions in the same conditions (Figure 7).

The energy losses of the storage element (Figure 8) correspond perfectly to its curve of energy losses, which
confirms the correctness of the results obtained and the quality of the representative model.
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Fig. 6. Storage element power provided/recovered
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Fig. 7. State of charge of the storage element
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Fig. 8. Energy losses of the storage element

6 Conclusions

Transport is responsible for a large part of the CO2 emissions from the fuel combustion. To minimize this effect,
the hybrid vehicle has been industrialized using different energy sources, and it is necessary to manage the
power distribution of its sources off-line (e.g., the case of a tramway whose mission profile is known). Several
methods have been developed to provide solutions but with very large computation times. However, to avoid
long waits in case of transport network problems, it is best to restart the vehicle in a very short term.

The combinatorial modeling developed in this paper allows using operations research techniques in the electrical
engineering domain and to compare the results obtained with the methods previously developed. Other simu-
lations were performed on long mission profiles. The solution obtained by applying the combinatorial model is
much better in terms of quality and computation time. More numerical experiences should be carried out in the
short term to further validate our model and solution method. More numerical experiences should be carried
out in the short term to further validate our model and solution method.
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