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This paper describes the process of electrical energy management and optimization in a multi-source system such as a Hybrid Electric Vehicle (HEV), running on a known mission profile. The purpose of the committed study is to minimize the consumption of the fuel used by one of the sources, to respect the different constraints related to the operating system and to meet the demand of the electrical motor powertrain. Lots of studies were led on a non-linear modeling of the problem giving suboptimal solution with important computation time. In this paper, a new combinatorial modeling is proposed to avoid such drawback. A computational study shows the benefits obtained using an exact combinatorial approach.

Introduction

The multiple applications of electrical energy in the different domains of human activity are proving to be one of the technical evolution consequences. This is particularly the case of vehicles to which this form of energy allows a gain in terms of cost, autonomy, performance, and preserving the environment. These applications have even become a strategic and a technological challenge, so this energy, unlike fossil fuels, is a solution for the future because it is renewable, inexhaustible, available, and noiseless.

The energy chain of a Hybrid Electric Vehicle (HEV) is composed of at least two energy sources (fuel cells, photovoltaic panels, batteries, supercapacitors) with different characteristics (efficiency, energy losses, powers, capacity). The reversible sources as the battery and the supercapacitors, allow storing electrical energy when the vehicle brakes (transformation of the kinetic energy into electrical energy). In previous studies, electrical energy management was represented by a non-linear model, solved using methods such as dynamic programming [START_REF] Caux | On-line energy management for HEV based on particle swarm optimization[END_REF] [START_REF] Pérez | Optimization of power management in an hybrid electric vehicle using dynamic programming[END_REF], quasi-Newton method [START_REF] Guemri | Using quasi-Newton method for energy management in electrical multi source systems[END_REF], or fuzzy logic [START_REF] He | Energy management strategies for a hybrid electric vehicle[END_REF]. The solutions then obtained are suboptimal and require significant computation times.

To improve the solution, a first attempt is proposed. It consists in using Computational infrastructure for Operations research methods (Coin-Or) [START_REF] Lougee-Heimer | The common optimization interface for operations research[END_REF] such as Interior Point Optimizer (IPOpt) applied to the nonlinear model to measure the quality of the solution obtained. However the major innovation made in this study was to develop a combinatorial modeling by using techniques for linearization and a discretization space of energy, to use the exact methods of operations research such as the Branch-and-Cut method in order to find a global optimum. Thus, the information related to the combinatorial model allow to define planes which reduce the search space and find an optimal solution with very restricted computation time.

Description of the energy system

The energy chain of the vehicle concerned is composed of a Fuel Cell System (FCS) using hydrogen as a fuel; its energy is produced from the chemical reaction of hydrogen and oxygen. FCS is characterized by its efficiency and the efficiency of its auxiliaries: air compressor which represents 80% of the total energy consumed by the auxiliaries, temperature and humidification regulating pumps, connected to the distribution bus via a unidirectional converter. The energy chain also contains a storage system composed by a pack of supercapacitors connected in series and parallel, characterized by its energy losses function, which is connected to the bus via a bidirectional converter. A consumption source represents the powertrain demand.

The converter is an electronic module which delivers a current maintaining a regulated output voltage. It keeps the bus voltage to its reference despite voltage variations of the FCS and the supercapacitor. It is characterized by high efficiency ranging from 93% to 97% due to high quality of power electronics component.

The energy losses of the storage element Loss se (Figure 1) are calculated from efficiency of the supercapacitors η sc and the converter η cvs : The FCS efficiency η f cs is calculated from the efficiency of the fuel cell itself η f c , the air compressor η air and the converter η cvs :

η se = η sc η cvs (1) 
η f cs = η f c η air η cvs (2) 
The experiments showed that a maximum efficiency of the FCS, controlled in pressure, temperature and humidity is equal to 46% (Figure 2). By increasing the pressure in the cathodic compartment, the FCS voltage increases, this explains an increase of its performance. However, further increasing the pressure cathode, the power absorbed by the air compressor increases, which leads to decreasing the FCS performance. The efficiency is quite bad due to the low power of the compressor which has a very poor efficiency at reduced speed. Moreover, the FCS in such HEV is made with solid membrane with imposed nominal pressure.

Mathematical modeling

The objective is to minimize hydrogen consumption used by the FCS throughout the mission, while satisfying system constraints. Two mission profiles are proposed: the INRETS (National REsearch Institute on Transport and their Security) mission profile, which corresponds to the instantaneous power demand of an electric vehicle in urban areas (Figure 3), and the ESKISEHIR mission profile corresponding to the power demand of a tramway in Turkey (Figure 4).

In previous works, a non-linear model was developed [START_REF] Bernard | Fuel efficient power management strategy for fuel cell hybrid powertrains[END_REF][2] due to the characteristics of the different energy sources (FCS efficiency and energy losses of the storage element): 

P f cs (t) η f cs P f cs (t) ∆t (3) 
P f cs (t) + P se (t) = P req (t) ∀t ∈ T, P req (t) ≥ 0 (4) P req (t) ≤ P se (t) ≤ 0 ∀t ∈ T, P req (t) < 0 (5) 
P min f cs ≤ P f cs (t) ≤ P max f cs ∀t ∈ T (6) 
P min se ≤ P se (t) ≤ P max se ∀t ∈ T (7) SOC min se ≤ SOC se (t) ≤ SOC max se ∀t ∈ T (8) SOC se (t) = SOC se (t -1) -P s (t)∆t ∀t ∈ T (9) 
P s (t) = P se (t) + Loss se P se (t) ∀t ∈ T (10) SOC se (T ) = SOC se (0) (11) 
The decision variables are: P f cs (t) power supplied by the FCS at each instant t; P se (t) power supplied/recovered by the storage element at each instant t; and SOC se state of charge of the storage element at each instant t.

Input parameters are defined in Table 1. Consequently, the meaning of the mathematical model is as follows:

• (3): The objective function is to minimize the hydrogen consumption used by the FCS; it can be also written using the FCS efficiency and its power provided. • (4): Satisfy the powertrain demand when the vehicle is in traction.

• (5): Recovering all braking energy can force the FCS to operate at its poor efficiency.

• (6,7): Power limits related to the design of the energy sources.

• (8): Storage capacity of the storage element.

• (9): State of charge evolution of the storage element. • (10): Energy losses of the storage element used to identify the real power P s (t) supplied/recovered by the storage element. • (11): Reset the state of charge of the storage element at its initial level at the end of the mission. 

Problem solving

Lots of methods were developed in previous works such as dynamic programming, quasi-Newton method and fuzzy logic. Their principle is briefly explained below. The solution given by each method is suboptimal and obtained after a large computation time due to the problem complexity.

Dynamic programming

Dynamic programming is a sequential combinatorial optimization method for the optimal solution research using the Bellman's principle. The idea is to discretize the time horizon in T points of ∆t stepsize and the energy space of the storage element in N points of ∆E stepsize. The weakness of this approach on the energy management modeling is related to the choice of the discretization applied to the energy space of the storage element. By decreasing the number of possible states of charge of the storage element, part of possible solutions is eliminated with a strong possibility that the optimal solution belongs to this set. When the number of possible states of charge increases, it causes more choices and computation explosion to determine the optimal sequence that minimizes the criterion of hydrogen consumption [START_REF] Caux | On-line energy management for HEV based on particle swarm optimization[END_REF]. For a discretization of the time horizon in ∆t = 1 s and energy space of the storage element in ∆E = 1 kW.s, the optimal solutions found for the two mission profiles are given in Tables 2 and3. 

Quasi-Newton method

A quasi-Newton algorithm is an iterative method for solving nonlinear problems by using Karush-Kuhn-Tucker conditions and the computation of the Hessian and the second derivative of the Lagrangian. The local minimum is found when the gradient is zero. The solution found by this method using fmincon function integrated in Matlab Optimization toolbox, is a local optimum [START_REF] Guemri | Using quasi-Newton method for energy management in electrical multi source systems[END_REF].

Fuzzy logic

The theoretical bases of Fuzzy Logic (FL) are established so as to be able to treat inaccurate variables of values between 0 and 1, according to their membership degrees in the verification of a condition, contrary to the Boole's logic in which variables must take values 0 or 1. The FL is an on-line method composed of three steps: Fuzzification, Rules definition, and Defuzzification. The solution given by this method violates the constraint of the final state of charge of the storage element because the optimization is instantaneous and does not take into account future requests. The difficulty consists in adjusting some tuning parameters off-line. Evolutionary algorithms (e.g., genetic algorithm) permits the adjustment of the position of the membership functions with large computation time.

In off-line optimization, the storage element is reloaded to its initial level. The solution quality provided by dynamic programming depends essentially of discretization stepsize, this is why the solution given by the quasi-Newton method is better and uses less computation time. By applying fuzzy logic which is an on-line optimization method, the final level of the storage element cannot be reset if the optimization ignores future demands. The solutions found using INRETS and ESKISEHIR mission profiles are suboptimal. Although this method is effective when the car mission profile is unknown, it requires some adjustments made off-line that can require significant computation time.

5 Proposed approach

Using Coin-Or methods

Interior Point Optimizer (IPOpt) [START_REF] Wächter | Short tutorial: Getting started with IPOpt in 90 minutes[END_REF] is an open source software package used to find a local solution of nonlinear programming problems, based on the computation of the gradient and the Hessian of Lagrangian. The constraints and the objective function can be nonlinear and nonconvex but they must be twice continuously differentiable. The hydrogen consumption on the INRETS profile is 10910 kW.s and 31150.77 kW.s for the ESKISEHIR profile. The computation times are very small, less than one second.

A new combinatorial modeling

The principle of this new modeling is to work with the original data without using the linear approximations of the objective function and the energy losses function. By using the FCS operating point i ∈ I f cs characterized by its efficiency η f cs (i) and its supplied energy P f cs (i), and the decomposition of the energy losses function Loss se (piecewise linear convex function) in a set of J se independent linear functions, the new decision variables of the combinatorial modeling are: where I f cs (resp. J se ) is considered as input data given by the manufacturer as a point table P h , P f cs (resp. P s , P se ), or can also be identified on the test bench by choosing the number of input points.

• X(t, i) ∈ {0
The power losses of the storage element is a piecewise linear convex function:

Elos se (t) = α j P se (t) + β j , P se (t) ∈ [γ j , γ j ] (12) 
with (α j , β j ) the characteristics of the line j over the interval [γ j , γ j ]. To avoid the polynomial approximation, the equation ( 13) is used:

Elos se (t) = Jse max j=1 α j P se (t) + β j (13) 
where J se is the number of linear functions and j ∈ J se its index. Knowing that max function is non-linear, this function can also be modeled by a system of linear equations using binary variables and a big-M constant:

Elos se (t) ≤ α j P se (t) + β j + M (1 -y(j, t)) (14) Elos se (t) ≥ α j P se (t) + β j (15) Jse j=1 y(j, t) = 1 (16) 
The final combinatorial modeling obtained is: min 

T t=1 I f cs i=1 X(t, i) P f cs (i) η f cs (i) ∆t (17) 
P se (t) + I f cs i=1 X(t, i)P f cs (i) = P req (t) ∀t ∈ T, ∀i ∈ I f cs (18) 
P req (t) ≤ P se (t) ≤ 0 ∀t ∈ T, P req (t) < 0 (19) 
I f cs i=1 X(t, i) = 1 ∀t ∈ T, ∀i ∈ I f cs (20) 
SOC se (t) -SOC se (t -1) + P s (t)∆t = 0 ∀t ∈ T (23) Elos se (t) ≤ α j P se (t) + β j + M (1 -y(j, t)) ∀t ∈ T, ∀j ∈ J se (24) Elos se (t) ≥ α j P se (t) + β j ∀t ∈ T, ∀i ∈ J se (25) Jse j=1 y(j, t) = 1 ∀t ∈ T (26) 
P s (t) = P se (t) + ELos se (t) ∀t ∈ T (27) SOC se (T ) = SOC se (0) (28) 
The additional or modified constraints are:

• (17): The objective function is to minimize the hydrogen consumption used by the FCS, written using the FCS operating points. • (18): Satisfy the powertrain demand when the vehicle is in traction.

• (20): One FCS operating point is activated a each instant t.

• (24,25,26,27): Energy losses of the storage element.

Solving and results

The Branch-and-Cut algorithm [START_REF] Rardin | Optimization in operations research[END_REF][10] used to solve energy management model is an exact method for combinatorial optimization which is generally employed for solving exactly NP-hard problems. It integrates cutting planes to accelerate the optimization process and branch and bound methods. The combinatorial model proposed is solved by the Branch-and-Cut method using IBM-Ilog Cplex 12.4. The result minimizes the hydrogen consumption used by the FCS, by running it at maximum efficiency points. For this, unnecessary operating points can be eliminated by introducing specific cuts:

I f cs i=1
x(i, t)P f cs (t) ≤ P lim f cs , where P lim f cs belongs to the set of powers with maximum efficiency. The optimization is realized off-line and the solutions obtained using branch-and-cut method on the combinatorial model are optimal and require very little computation time (see Table 4). In particular, the computation time were dramatically reduced. These benefits must be linked to both the proposition of a combinatorial modeling and the use of an efficient integer programming. To compare the results with the different methods previously developed, resetting the final charge level of the storage element is an optional constraint.

The simulations show that the hydrogen consumption and the computation time are lower with our approaches (values to be compared with those of Tables 2 and3). In particular, the computation times were dramatically reduced. These benefits must be linked to both the proposition of a combinatorial modeling and the use of an efficient integer programming solver. The results obtained on the ESKISEHIR profile by selecting the constraint of the final state of charge of the storage element give the evolution functioning of the FCS and the storage element.

The FCS provides power to meet the demand of the powertrain and maintaining the state of charge of the storage element between its bounds. To minimize the hydrogen consumption, the FCS works most of the time at its maximum efficiency points (Figure 5). The storage element recovers power when the vehicle brake and provides it in the traction mode. Sometimes, it is better to recover a portion of the braking power to permit the FCS to operate at its maximum efficiency points (Figure 6).

The energy level of the storage element respects the capacity constraint and it is recharged to its original level at the end of the mission, allowing processing other missions in the same conditions (Figure 7).

The energy losses of the storage element (Figure 8) correspond perfectly to its curve of energy losses, which confirms the correctness of the results obtained and the quality of the representative model. Transport is responsible for a large part of the CO 2 emissions from the fuel combustion. To minimize this effect, the hybrid vehicle has been industrialized using different energy sources, and it is necessary to manage the power distribution of its sources off-line (e.g., the case of a tramway whose mission profile is known). Several methods have been developed to provide solutions but with very large computation times. However, to avoid long waits in case of transport network problems, it is best to restart the vehicle in a very short term.

The combinatorial modeling developed in this paper allows using operations research techniques in the electrical engineering domain and to compare the results obtained with the methods previously developed. Other simulations were performed on long mission profiles. The solution obtained by applying the combinatorial model is much better in terms of quality and computation time. More numerical experiences should be carried out in the short term to further validate our model and solution method. More numerical experiences should be carried out in the short term to further validate our model and solution method.
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Table 1

 1 Input model parameters.

	Input data Value	Signification
	SOCse(0)	900 kW.s	Initial energy storable in the storage element
	SOC min se	400 kW.s	Minimum energy storable in the storage element
	SOC max se	1600 kW.s Maximum energy storable in the storage element
	P min se	-60 kW	Maximum power injected to the storage element
	P max se	60 kW	Maximum power extractable from the storage element
	P max f cs	70 kW	Maximum power extractable from the FCS
	I f cs	601	Number of the FCS operating points
	Jse	120	Number of the energy losses function
	∆t	1 s	Time stepsize
	T	560 s	INRETS mission duration
	T	1400 s	ESKISEHIR mission duration

Table 2

 2 Results of INRETS profile.

	Dynamic programming 10131 kW.s	22 hours	Yes
	Quasi-Newton	8750 kW.s	23 min	Yes
	Fuzzy logic	8359 kW.s	on-line	No

Method

Hydrogen consumption Computation time SOCse(T ) = SOCse(0)

Table 4

 4 

	Branch-and-Cut Results.		
	Mission profile Hydrogen consumption Computation time SOCse(T ) = SOCse(0)
	INRETS	8750 kW.s	2.6 s	Yes
	INRETS	8269 kW.s	12.43 s	No
	ESKISEHIR	27542 kW.s	1.54 min	Yes
	ESKISEHIR	26954 kW.s	2.4 min	No

Acknowledgment

This research was part of OCrE project supported by CNRS/INSIS (Centre National de la Recherche Scientifique/Institut des Sciences de l'Ingénierie et des Systèmes).