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ABSTRACT
Dynamic PET imaging enables the study of radiotracers con-
centration kinetics along time. However, PET images suffer
from limited spatial resolution, low signal-to-noise ratio, and
time dependent contrast between tissues, making segmenta-
tion of biological volumes difficult. Deformable models are
of great interest due to their inherent boundary continuity, but
their applications to PET images still remains challenging due
to high sensitivity to noise. To address these limitations, we
propose a method to perform 3-D+time dynamic PET image
segmentation using parametric active surfaces based on a gra-
dient of the vectorial image. This method takes advantage
of both spatial and temporal consistency of the signal along
the acquisition. We validate our method using GATE Monte
Carlo simulations and compare it with single frame based ac-
tive surface models. We show significant improvement of sev-
eral figures of merit.

Index Terms— 3-D segmentation, Active surface, Dy-
namic PET, Vector field convolution

1. INTRODUCTION

Positron emission tomography (PET), as a functional imag-
ing modality, allows studies of physiological processes within
living organisms. However, PET images suffer from sev-
eral shortcomings, including limited spatial resolution, time
dependent contrast between tissues and intrinsic noise that
lowers the quality of the reconstructed images. For these
reasons, accurate segmentation of true biological volumes in
PET images remains difficult (e.g. brain imaging of neuroin-
flammation). Segmentation of regions of interest (ROI) can
be performed manually, but such manual delineation is time-
consuming, highly variable and very tedious in 3-D. For these
reasons, many computer aided PET segmentation techniques
have been developped. These methods can be divided into
four categories : thresholding, learning methods, stochastic
models and variational approaches [1].

Among variational approaches, deformable models and
most notably active contours, originally proposed by Kass
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and Witkin [2], are commonly used in medical imaging to
delineate ROIs [3]. They are particularly appropriate for bi-
ological volume delineation because they guarantee contour
integrity while most other methods do voxel-to-voxel selec-
tion, hence losing shape information. The extension of ac-
tive contours to 3-D has been coined as active surfaces and
their computer representation as active meshes. Active sur-
faces rely on the definition of external force fields computed
from image information. Several expressions have been pro-
posed to define noise robust force fields, most notably Gra-
dient Vector Flow (GVF) [4], and more recently Vector Field
Convolution (VFC) by Li and Acton [5], which have superior
noise robustness than GVF fields. A VFC field is computed
by convolving an edge map with a vector field kernel whose
vectors are pointing towards the kernel centre with decreasing
intensity with distance to centre. Despite these improvements,
deformable models are often regarded as impractical in PET
segmentation due to issues with initialisation and high sen-
sitivity to noise [1]. Active surfaces in particular have been
sparingly used in static PET [6] and, to our knowledge, no
deformable model method dedicated to dynamic 3-D PET,
exploiting the temporal redundancy of the signal along the
frames, have been proposed.

We propose a new framework for dynamic PET image
segmentation using edge-based parametric active surfaces.
We define a vector-based gradient that is derived from an
adaptive weighted structure tensor of the 3-D+t image to take
full advantage of the temporal information along the acqui-
sition. Our model performs 3-D segmentation of the kinetic
profiles of voxels, hence reducing sensitivity to noise. We
show that our 4-D framework significantly improves the re-
sult of the segmentation compared to single frame based 3-D
models. We assess the performances of our method using nu-
merical head phantoms and GATE Monte Carlo simulations.

2. PROPOSED METHOD

We propose a new 4-D active surface segmentation frame-
work that extends classic vector field convolution to dynamic
3-D+t PET imaging. We call this method Multidimensional
Vector Field Convolution (MVFC).



2.1. Notations

We denote by I a dynamic PET sequence of N temporal 3-D
frames :

I(~x, t) : (Ω3 × t) ∈ R4 → R,

where Ω3 is the 3-D spatial domain of the PET image, ~x =
(x1, x2, x3) ∈ Ω3 are the voxel coordinates. We denote by Ik
the kth temporal frame:

I(~x, t) = (I1(~x), ..., Ik(~x), ..., IN(~x)).

We define our 3-D parametric active surface St at timestep
t as a mapping of a bivariate parameter (s, r) on a regular grid
Ωs superimposed on the spatial image domain Ω3.

(s, r)→ St(s, r) =
[
x1(s, r), x2(s, r), x3(s, r)

]T
, (1)

where ·T is the transposition operator.

2.2. MVFC

We define a new external force field for the active surface St

at step t :
~Ftext(S

t) = Nω
+ ∗K, (2)

where ∗ is the convolution operation, and K is a vec-
tor field kernel (VFK), whose magnitude function controls
the fading of the VFK intensities with distance to centre. In
this work, we chose the magnitude function m(x, y, z) =
(r + ε)−γ , with r the distance to centre, γ > 0 the fading
parameter, and ε a small positive number to avoid division by
zero at VFK centre [5]. Nω

+ is a vector-based gradient tailored
for 4-D PET images defined hereafter.

Deformation of St is guided by the Euler-Lagrange equa-
tion, which can be seen as a force balance equation, and res-
olution is made through an iterative Euler scheme [2] :

∂St

∂t
= α∆St − β∆2St + ~Fext, (3)

where elasticity and rigidity terms are weighted by α and β.

2.3. Gradient of a 4-D PET image

In PET imaging, time activity curves (TAC) represent the ki-
netics of the tracer uptake in the body. We define a gradient
that measures the difference of shape and magnitude of the
TAC between tissues. It extends the work of Di Zenzo in 2D
color images [7] to 3-D+t PET image sequences composed of
N temporal frames. We consider I as a 3D → N -D vector
field, and we define a local vector geometry. The total differ-
ential dI of I is :

dI =
∂I

∂x1
dx1 +

∂I

∂x2
dx2 +

∂I

∂x3
dx3. (4)

We define a new first fundamental form based on a
weighted structure tensor that accounts for the underlying

physics and physiology of 4-D PET imaging, as tissues are
more or less contrasted with surrounding regions along time.
Let X = (x1, x2, x3)T , the new weighted quadratic form is
defined as :

‖dI‖2ω = dXTGωdX, (5)

where

Gω =

N∑
k=1

ωk
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 , (6)

where ωk is a weighting factor of frame Ik defined here-
after, which accounts for the tracer dynamics in the body to
improve the robustness of the method. Eigenvalues λi =
(λ+, λ

1
−, λ

2
−) associated with Gω give the squared vector-

based gradient amplitude in the three directions of space in
the local base of extremal variations, i.e. the extremal values
of the weighted quadratic form of eq. (5). One eigenvalue,
λ+ gives the maximum variation intensity, and the other two
give variations in orthogonal directions. We use a gradient
norm based on the three eigenvalues as proposed in [8] :

Nω
+ =

√
λ+ + λ1− + λ2− =

√
trace(Gω). (7)

2.4. Weighting factors computation

As the contrast between tissues is varying along time, we pro-
pose to weight the influence of frames in the segmentation
process, favouring the ones where the objects of interest can
be better detected. At each iteration, we define Rintk as the set
of voxels located inside St and Routk as the set of voxels lo-
cated between St and λSt, where λSt is an isotropic dilation
of St. We limit Routk to this dilation to reduce possible influ-
ence from further regions. Rintk can be seen as an estimation
of the ROI volume at iteration t.

Average intensities in Rintk and Routk differ in well-
contrasted frames. This information is used to define an
estimator of contrast quality in frame Ik. The weighting
factor ωk is then :

ωk =

∣∣̄Iink − Īoutk

∣∣∑
j

∣∣̄Iinj − Īoutj

∣∣ , (8)

where Īink is the average intensity1 in Rintk , and Īoutk the
average intensity in Routk . Weights are recomputed at each
timestep of the active surface evolution.

In Fig. 1, St is a 2D representation of the active surface
at timestep t of the deformation process. On the left, in the
first frame of the simulated PET sequence, the difference be-
tween inner and outer intensities is low. On the right, in the
tenth frame, it is significant. The weights favour the gradient
information of such well contrasted frames in the calculus of
the structure tensor Gω (6).

1The intensity in each frame is normalized between 0 and 1



Fig. 1. 2D illustration of the weighting method. Left : low
contrast frame. Right : high contrast frame.

2.5. Numerical implementation

We implemented our method using MATLAB. The numeri-
cal solution to eq. (3) is achieved using a discretised finite
difference approach. We use an explicit triangulated mesh
representation. The empirically selected VFK parameters for
MVFC are: kernel size of 5 and fading power of 1.7.

2.6. Initial shape prior to deformation

We define the initial shape with the Poisson inverse gradient
(PIG) algorithm [9]. This algorithm relies on an initial exter-
nal force field, and Dirichlet boundary conditions. For initial
surface calculation, we set ωk = 1, ∀k and compute the ini-
tial external force field as in eq. (2). We use high kernel size
and low kernel attenuation so that the initial shape obtained
after the PIG energy calculation is a coarse but noise-robust
estimation of the region of interest.

3. EXPERIMENTS

3.1. Simulations

We performed GATE Monte Carlo simulations [10] of Philips
Gemini GXL PET 4-D acquisitions and we focused on cere-
bellum segmentation of the Zubal head phantom [11]. TACs
were generated according to a three-compartment model. The
reconstruction of the dynamic PET image was performed us-
ing a fully 3-D OSEM iterative method into 20 frames of
2.2×2.2×2.8mm3 voxels, using 10 iterations and 16 subsets
(see Fig. 2(a)). All frames were smoothed with a Gaussian
blur of 5 mm.

(a) (b) (c) (d)

Fig. 2. (a) Sagittal slice of Monte Carlo GATE simulation in
a representative frame. Red square : zoomed cerebellum area
used in b,c,d. (b-c) gradient magnitude of two frames of the
sequence, (d) proposed 4-D gradient magnitude Nω

+.

Fig. 3. Representative similarity criteria, obtained on a dy-
namic PET image simulation. VFC for each frame (red) and
MVFC 4-D result (green)

(a) Jaccard similarity index (b) average Hausdorff distance

3.2. Comparison to other methods

The proposed dynamic MVFC active surface method was
compared with a classic VFC active surface method, calcu-
lated for each frame of the dynamic PET image. VFC was
initialized with the initial shape calculated in MVFC using
proposed vector-based gradient to avoid biasing the results.
All else being equal, this static VFC method focused on one
frame Ik of the dynamic PET image and used the classic
gradient of intensity as the edge map, instead of the 4-D
gradient Nω

+ proposed in MVFC. We therefore obtained 20
results for classic VFC for each frame, that we compared to
the single result obtained with MVFC. Figure 2 illustrates
the differences between intensity gradients and the proposed
vector-based gradient for dynamic PET image segmentation.
The ground truth volumes were compared to our results by
using two quantitative criteria : the Jaccard index as a mea-
sure of volume similarity [12] and the average Hausdorff
distance [13] .

4. RESULTS

For both criteria, the MVFC method outperformed VFC re-
sults on all frames of the simulated images (Fig. 3). Mean
Jaccard coefficient was 0.77 for MVFC while it was 0.71 for
VFC. Average Hausdorff distance was 0.82 voxel for MVFC
while it was 1.15 voxel for VFC. Figure 4(c) and 4(d) illus-
trate the MVFC result of the segmentation on one slice, where
we observe good agreement with respect to ground truth. In
all simulations, the estimated weights of the final active sur-
face were in good agreement with the subjective quality of
each frame. While the best results of single frame VFC were
relatively close to the ones obtained with MVFC, the two cri-
teria were not maximized in the same frames. On the oppo-
site, a single active surface result was obtained for the 4-D
PET sequence with MVFC, with better figure of merit scores.
This can be explained by the different edge intensity measure-
ments of the methods. This is illustrated in figure 2 which



(c) (d)

(e) (f)

Fig. 4. Top : Computer mesh representation of cerebellum
segmentation. (a) ground truth. (b) initial shape (green) and
final shape (red) with MVFC.
Bottom : (c) contour of final mesh on one slice. (d) contour
of final mesh (red) and contour of ground truth (blue), exact
superposition (white).

shows edge maps calculated with classic scalar gradient (Fig.
2(b-c)) and with the proposed 4-D gradient N+ (Fig. 2(d)).
Moreover, both VFC and MVFC models shared the same ini-
tial shape, computed from the MVFC initial field to assess the
intrinsic quality of the method rather than initialization qual-
ity. In fact, due to the poor quality of the gradient map in most
of the frames of the PET sequence, the PIG initialization al-
gorithm would not be appropriate for correct convergence of
the segmentation, confirming the superiority of the proposed
vector-based 4-D method for dynamic PET image segmenta-
tion.

5. CONCLUSION

We have proposed a novel vector-based method for the seg-
mentation of dynamic PET images using active surfaces,
based on a new structure tensor of the PET image and an
efficient weighting scheme. Depending on the VFK size and
its decreasing power parameter, VFC fields are more or less
sensitive to distant and weak edges, making this method par-
ticularly suitable in noisy PET volume delineation. As we use
both spatial and temporal features to estimate the kinetic tran-
sitions between voxels, our method is more robust to noise
than static based methods. The proposed framework can be
easily adapted to any vector-based image. Results on realistic
simulations demonstrated the potential impact of the method
for dynamic PET image segmentation.
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