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Abstract This paper presents a vision-based approach for
mobile robot localization. The model of the environment is
topological. The new approach characterizes a place using
a signature. This signature consists of a constellation of de-
scriptors computed over different types of local affine co-
variant regions extracted from an omnidirectional image ac-
quired rotating a standard camera with a pan-tilt unit. This
type of representation permits a reliable and distinctive envi-
ronment modelling. Our objectives were to validate the pro-
posed method in indoor environments and, also, to find out if
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the combination of complementary local feature region de-
tectors improves the localization versus using a single region
detector. Our experimental results show that if false matches
are effectively rejected, the combination of different covari-
ant affine region detectors increases notably the performance
of the approach by combining the different strengths of the
individual detectors. In order to reduce the localization time,
two strategies are evaluated: re-ranking the map nodes using
a global similarity measure and using standard perspective
view field of 45°.

In order to systematically test topological localization
methods, another contribution proposed in this work is a
novel method to see the degradation in localization perfor-
mance as the robot moves away from the point where the
original signature was acquired. This allows to know the ro-
bustness of the proposed signature. In order for this to be
effective, it must be done in several, variated, environments
that test all the possible situations in which the robot may
have to perform localization.

Keywords Topological localization - Vision based
localization - Panoramic vision - Affine covariant region
detectors

1 Introduction

Finding an efficient solution to the robot localization prob-
lem will have a tremendous impact on the manner in which
robots are integrated into our daily lives. Most tasks for
which robots are well suited demand a high degree of robust-
ness in their localizing capabilities before they are actually
applied in real-life scenarios (e.g., assistive tasks).

Since localization is a fundamental problem in mobile ro-
botics, many methods have been developed and discussed in
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the literature. The existing approaches can be broadly clas-
sified into three major types: metric, topological and hy-
brid. Metric approaches (Dissanayake et al. 2001; Castel-
lanos and Tardos 1999; Thrun 1998, 2000) are useful when
it is necessary for the robot to know its location accurately
in terms of metric coordinates (i.e. Cartesian coordinates).
However, the state of the robot can also be represented in
a more qualitative manner, by using a topological map (i.e.
adjacency graph representation) (Choset and Nagatani 2001;
Tapus and Siegwart 2006; Beeson et al. 2005). Because the
odometry does not provide enough and complete data in
order to localize a mobile autonomous robot, laser range
finders and/or vision sensors are usually used to provide
richer scene information. The rapid increase in computa-
tional power in the last few years had a significant impact in
the development of better approaches to solve the simulta-
neous localization and mapping (SLAM) problem, by using
qualitative information provided by vision. Furthermore, vi-
sion units are cheaper, smaller and more practical than large
expensive laser scanners.

In this work, we propose a topological vision-based lo-
calization approach of a mobile robot evolving in dynamic
indoor environments. Robot visual localization and place
recognition are not easy tasks, and this is mainly due to
the perceptive ambiguity of acquired data and the sensibil-
ity to noise and illumination variations of real world envi-
ronments. We propose to approach this problem by using a
combination of affine covariant detectors so as to extract a
robust spatial signature of the environment.

We decided to use combinations of the following three
feature region detectors: MSER (Maximally Stable Ex-
tremal Regions) (Matas et al. 2002), Harris-Affine (Linde-
berg 1998), and Hessian-Affine (Mikolajczyk and Schmid
2004), which have shown to perform better when compared
to other region detectors.

When a new signature is acquired, it is compared to the
stored panoramas from the a priori map. The panorama with
the highest number of matches is selected. To improve the
results and discard false matches, the essential matrix is
computed and the outliers filtered. Finally, the panorama
with the highest number of inliers is selected as the best
match. In our approach images are acquired using a rotat-
ing conventional perspective camera. When a set of images
covering 360 degrees is acquired, they are projected to cylin-
drical coordinates and the feature regions are extracted and
described. The descriptors constellation is next constructed
automatically. Hence, by using feature regions to construct
the signature of a location, our approach is much more ro-
bust to occlusions and partial changes in the image than the
approaches using global descriptors. This robustness is ob-
tained because many individual regions are used for every
signature of a location and, thus, if some of them disappear
the constellation can still be recognized.
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Nevertheless, combining different region detectors in-
creases the computational time and memory requirements.
For this reason we show that a re-ranking mechanism based
on a global appearance-based similarity measure can be
used to prioritize the most similar map nodes.

This framework gives us an interesting solution to the
perceptual aliasing problem (one of the main difficulties
when dealing with qualitative navigation and localization).
Our approach is validated in real world experiments and is
compared with other vision-based localization methods.

Defining compact and efficient representations for places
has a number of advantages, like minimizing the amount of
memory used, reducing both the time employed exploring
the environment to acquire a complete map and the search
effort to perform localization afterwards.

Similar methods to the one proposed in this work, like
that of Booij et al. (2007) or Valgren and Lilienthal (2008),
usually first acquire an over-complete map of the environ-
ment and then memory usage is reduced using a technique
like the Incremental Spectral Clustering to discard or group
unnecessary nodes and reduce the final size of the map.
Moreover, signatures with a higher degree of robustness to
viewpoint change would also boost the positive effect of
such techniques.

However, usually these types of signatures are evaluated
in a success/failure fashion in complete navigation or local-
ization tasks, without effectively comparing the advantages
and drawbacks of the different alternatives that exist to con-
struct them in a standardized way.

In consequence, another contribution of this work is a
new evaluation methodology to assess how robust a global
localization signature is regarding viewpoint change in dif-
ferent indoor environments.

The remainder of this paper is organized as follows: In
Sect. 2 we will first present a review of most recent related
work on visual-based localization and navigation. Section
3 summarizes the different affine covariant region detectors
and descriptors that we used in our work. Section 4 describes
the localization procedure in details and the experimental
design. Experimental results are reported in Sect. 5. And fi-
nally, Sect. 6 concludes our paper.

2 Related work

Over the last decade, many appearance-based localization
methods have been proposed (Owen and Nehmzow 1998;
Franz et al. 1998; Se et al. 2002). SIFT (Scale Invariant
Feature Transform) features (Lowe 2004) have been widely
used for robot localization. The SIFT approach detects and
extracts feature region descriptors that are invariant to illu-
mination changes, image noise, rotation and scaling. In Se
et al. (2002), the authors used SIFT scale and orientation
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constraints so as to match stereo images; least-square pro-
cedure was used to obtain better localization results. The
model designed by Andreasson et al. (2005) combines the
SIFT algorithm for image matching and Monte-Carlo lo-
calization; their approach takes the properties of panoramic
images into consideration. Another interesting subset of in-
variant features are the affine covariant regions which can be
correctly detected in a wide range of acquisition conditions
(Mikolajczyk et al. 2005). Therefore, Silpa-Anan and Hart-
ley (2004) construct an image map based on Harris Affine
feature Regions with SIFT descriptors that is later used for
robot localization.

The work proposed by Tapus and Siegwart (2006) de-
fined fingerprints of places as generic descriptors of envi-
ronment locations. Fingerprints of places are circular lists of
features and they are represented as a sequence of characters
where each character is an instance of a specific feature type.
The author used a multi-perceptional system and global low-
level features (i.e., vertical edges, color blobs, and corners)
are employed for localization.

Moreover, recently, several robot global localization
methods similar to the one proposed in this paper have been
presented. Booij et al. (2007) build first an appearance graph
from a set of training images recorded during exploration.
The Differences of Gaussians (DoG) feature detector and
the SIFT descriptor are used to find matches between omni-
directional images in the same manner as described in Lowe
(2004), and the essential matrix relating every two images
is computed with the 4-point algorithm with planar motion
assumption in RANSAC. The similarity measure between
each pair of nodes of the map is the ratio between the inliers
according to the essential matrix and the lowest number of
features found in the two images. Appearance based navi-
gation is performed by first localizing the robot in the map
with a newly acquired image and then using Dijkstra’s al-
gorithm to find a path to the destination. Several navigation
runs are successfully completed in an indoor environment
even with occlusions caused by people walking close to the
robot. Valgren and Lilienthal (2008) evaluate an approach
focusing on visual outdoor localization across seasons using
spherical images taken with a high resolution omnidirec-
tional camera. Then, Upright Speeded Up Robust Features
(U-SURF) (Bay et al. 2008), that are not invariant to rota-
tion, are used to find matches between the images and the
4-point algorithm is used to compute the essential matrix.
Indoor localization differs from outdoor localization in that
typically distances to objects and walls is much shorter, and
therefore the appearance of objects changes faster if one
moves away from a reference point. Furthermore, indoor lo-
cations tend to have few texture and repetitive structures that
complicates the data association problem, but they are posi-
tively less affected by environmental changes (e.g., time of
the day; seasons).

Cummins and Newman (2008) proposed an approach that
uses a probabilistic bail-out condition based on concentra-
tion inequalities. They have applied the bail-out test to ac-
celerate an appearance-only SLAM system. Their work has
been extensively tested in outdoor environments. Further-
more, the work presented by Angeli et al. (2008) describes
a new approach for global localization and loop detection
based on the bag of words method.

3 Affine covariant region detectors

An essential part of our approach is the extraction of dis-
criminative information from a panoramic image so it can
be recognized later under different viewing conditions. This
information is extracted from the panoramic image using
affine covariant region detectors. These detectors find re-
gions in the image that can be identified even under severe
changes in the point of view, illumination, and/or noise.

Recently Mikolajczyk et al. (2005) reviewed the state of
the art of affine covariant region detectors individually. In
this review they concluded that using several region detec-
tors at the same time could increase the number of matches
and thus improve the results. Hence, based on their results,
we have used all the combinations of the following three
complementary affine covariant region detectors: (1) Harris-
Affine, (2) Hessian-Affine, and (3) MSER (Maximally Sta-
ble Extremal Regions), so as to increase the number of de-
tected features and thus of potential matches. Examples of
detected regions for the three region detectors can be seen in
Fig. 1. These three region detectors have a good repeatabil-
ity rate, a reasonable computational cost and they are briefly
detailed below.

1. The Harris-Affine detector is an improvement of the
widely used Harris corner detector. It first detects Harris
corners in the scale-space with automatic scale selection
using the approach proposed by Lindeberg (1998), and
then estimates an elliptical affine covariant region around
the detected Harris corners. The Harris corner detector
finds corners in the image using the description of the
gradient distribution in a local neighborhood provided by
the second moment matrix:

[ I2xo)  Liy(x.0)
M= [lxly(x,o) IX(x,0) | M
where [ (x, o) is the derivative at position x of the image
smoothed with a Gaussian kernel of scale o. From this
matrix, the cornerness of a point can be computed using
the following equation:

R = Det(M) — kTr(M)?, ()
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Fig. 1 Example of regions for the three affine covariant region detec-
tors, from left to right: Harris-Affine, Hessian-Affine and MSER

where k is a parameter usually set to 0.4. Local maxima
of this function are found across the scales, and the ap-
proach proposed by Lindeberg is used to select the char-
acteristic scales.

Next, the parameters of an elliptical region are es-
timated minimizing the difference between the eigen-
values of the second order moment matrix of the se-
lected region. This iterative procedure finds an isotropic
region, which is covariant under affine transformations.
The isotropy of the region is measured using the eigen-
value ratio of the second moment matrix:

— Amin (1)

Q Amax (1) '

3)
where Q varies from 1 for a perfect isotropic structure to
0, and Az, () and Ay, () are the two eigenvalues of
the second moment matrix of the selected region at the
appropriate scale. For a detailed description of this al-
gorithm, the interested reader is referred to Mikolajczyk
and Schmid (2004).

2. The Hessian-Affine detector is similar to the Harris-
Affine, but the detected regions are blobs instead of cor-
ners. The base points are detected in scale-space as the
local maxima of the determinant of the Hessian matrix:

H_I:Ixx(x,a) Ixy(x»o'):|
T Iy(x o) Ly(x,0) |

@

where I, is the second derivative at position x of the
image smoothed with a Gaussian kernel of scale . The
remainder of the procedure is the same as the Harris-
Affine: base points are selected at their characteristic
scales with the method proposed by Lindeberg and the
affine shape of the region is found.

3. The Maximally Stable Extrema Regions (MSER) detec-
tor proposed by Matas et al. (2002) detects connected
components where the intensity of the pixels is several
levels higher or lower than the intensity of all the neigh-
boring pixels of the region. Regions selected with this
procedure may have an irregular shape, so the detected
regions are approximated by an ellipse.

Because affine covariant regions must be compared, a com-
mon representation is necessary. Therefore all the regions
detected with any method are normalized by mapping the

@ Springer

detected elliptical area to a circle of a certain size. Once the
affine covariant regions are detected and normalized, to re-
duce even more the effects caused by changes in the view-
ing conditions, these regions are characterized using a local
descriptor. In our work, we have used Scale Invariant Fea-
ture Transform (SIFT) (Lowe 2004) and Gradient Location-
Orientation Histogram (GLOH) (Mikolajczyk and Schmid
2005). These two descriptors were found to be the best in
a comparison of various state of the art local descriptors
(Mikolajczyk and Schmid 2005). The SIFT descriptor com-
putes a 128 dimensional descriptor vector with the gradient
orientations of a local region. In short, to construct the de-
scriptor vector, the SIFT procedure divides the local region
in 16 rectangular sub-regions and then, for every sub-region,
it builds a histogram of 8 bins with the gradient orientations
weighted with the gradient magnitude to suppress the flat ar-
eas with unstable orientations. The descriptor vector is ob-
tained by concatenating the histograms for every sub-region.

The GLOH descriptor is similar to SIFT, with two main
differences: the sub-regions are defined in a log-polar way,
and the resulting descriptor vector has 272 dimensions but it
is later reduced to 128 with a PCA.

These two descriptors are based on the same principle but
with slightly different approaches. As they have no comple-
mentary properties, our objective in this comparison is to
determine which one achieves the best performance. There-
fore we have not combined them.

4 Experimental design

The objective of the present work is twofold: On the one
hand, we want to validate the proposed method for indoor
global localization and, on the other hand, we target to ex-
perimentally determine if using different region detectors si-
multaneously improves significantly the localization results.
Although successive images acquired by the robot while
moving in the room could be used to incrementally refine
the localization, in our experiment, we wanted to evaluate if
combining different region detectors improves the robust-
ness to viewpoint change for the presented global local-
ization method and therefore, we have only considered the
worst case scenario, where only one image per room is avail-
able to localize the robot.

4.1 Evaluation methodology

In order to have a mapping technique that is scalable to large
environments, it is important to have signatures as com-
pact and resistant to viewpoint change as possible. How-
ever, there is no standard system to evaluate the robustness
to viewpoint change of a topological location descriptor.
Therefore, here we contribute a novel methodology to sys-
tematically evaluate the robustness to viewpoint change of
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omnidirectional location signatures as the ones proposed in
this work.

‘We maintain that, although simple global localization ex-
periments (i.e. determining the correct location of a new sen-
sor reading in an already constructed map) are useful to as-
sess the validity of a localization technique, it does not al-
low to compare different alternatives with the aim of finding
those that favor smaller maps.

Our proposed approach to evaluating the robustness to
viewpoint change of omnidirectional signatures consists in
performing localization experiments in several sequences of
panoramic images taken at fixed distance increments (20 cm
in this work) following a straight line predefined path.

Then, using the first panorama of every sequence as a
node of the map, evaluate the remaining panoramas of each
sequence to assess how distance affects the overall classifi-
cation performance.

In order for the comparison to be significant, it is impor-
tant that the dataset fulfills several conditions: In the first
place, it must consist of a large number of different se-
quences in order to rule out the probability of randomly se-
lecting the correct map node. In the dataset presented in this
work we have used 17 map nodes, which stands for a 5.88%
probability of randomly selecting the correct map node. Al-
though this value is low, we believe it would be even better
to reduce it to a value under 1% by adding more panorama
sequences to the dataset. Next, it is important that the se-
quences have been acquired under a wide range of condi-
tions in a variety of environments. The performance in large,
well-textured rooms is typically better for appearance-based
localization methods. Therefore, to enforce completeness of
the comparison, the sequences dataset should contain vari-
ous types of rooms.

Finally, the dataset used should be made publicly avail-
able in order to facilitate the validation of the results ob-
tained and to allow comparison with other methods.

In this work we propose a dataset that accomplishes these
three requirements. It consists of 17 sequences of panoramas
from rooms in various buildings and has been made pub-
licly available.! In order to make the data set as general as
possible, rooms with a wide range of characteristics have
been selected (e.g., some sequences correspond to long and
narrow corridors, while others have been taken in big hall-
ways, large laboratories with repetitive patterns and others
in smaller rooms such as individual offices). Panoramic im-
ages of the environment are shown Fig. 8 in the Appendix.
A short description of each sequence is given below:

— iiia01 consists of 11 panoramas, and the sequence has
been taken in a large robotics laboratory type of space.

'The data-set can be downloaded from http://www.iiia.csic.es/
~aramisa.

— iiia02 and iiia03 are of 14 panoramas each, and have been
taken at the conference room of the IITA. In our experi-
ments only the map node of iiia02 is used.

— iiia04 is 19 panoramas long, and has been acquired in a
long and narrow corridor.

— iiia05 and iiia06 have 25 and 21 panoramas, respectively.
They have been taken in the library of the IIIA, the first
one is from the library entrance and librarian desk, while
the second is from a narrow corridor with book shelves.
Both share the first panorama of iiia05 as map node.

— iiia07 is 19 panoramas long. This represents another sec-
tion of the robotics laboratory, and corresponds to a small
cubicle.

— iiia08 is 10 panoramas long, and has been acquired in a
small machinery room.

— iiia09 has 21 panoramas that have been taken at the back
entrance hall. This sequence has been taken in a tilted
floor, which is a challenge for the 4-point algorithm, be-
cause of the flat world assumption.

— iiial0 is 19 panoramas long and has been taken in the
coffee room.

— iiiall has 21 panoramas and has been acquired in the en-
trance hall of the IIIA.

— cve01 is 21 panoramas long and corresponds to a long
corridor of the CVC research center. As one of the cor-
ridor walls is made out of glass, the view field is wider
than a normal corridor. However, direct sunlight affects
the white balance of the image.

— cve02 is 21 panoramas long, and has been acquired in a
large office with many desks.

— c¢ve03 has 14 panoramas taken in a small office with just
one working desk.

— cve04 has 22 panoramas and has been taken in a wide
corridor with posters.

— etse01 is the main hall of the engineering building and is
20 panoramas long.

— etse02 has 21 panoramas and has been taken in a very
wide corridor of the engineering building.

4.2 Panorama construction

Instead of using an omnidirectional camera, the panoramas
have been constructed by stitching together multiple views
taken from a Sony DFW-VL500 camera mounted on a Di-
rected Perception PTU-46-70 pan-tilt unit. The camera and
pan-tilt unit can be seen in Fig. 2.

In order to build a panorama using a rotating camera, it
had to be taken into consideration that the image sequence
employed must have a fixed optical center. Translations of
the optical center would introduce motion parallax, making
the image sequence inconsistent. However, if the objects in
the scene are sufficiently far from the camera, small transla-
tions can be tolerated. The steps to stitch all the images in a
panorama are the following:

@ Springer
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1. The first step consists of projecting all the images of the
sequence to a cylindrical surface. The points are mapped
using the transformation from Cartesian to cylindrical co-
ordinates:

— a1 X Y
0 =tan (?>, v = ixz—i—fz

where x and y are the position of the pixel, f is the focal
distance measured in pixels and 6 and v are respectively
the angular position and the height of the point in the
cylinder. The cylinder radius is the focal length of the
camera used to acquire the images, as in this way the
aspect ratio of the image is optimized (Shum and Szeliski
1997). Taking this into account, the size of the panoramas
acquired by our system have a size of 5058 x 500 pixels.

2. Once all the images have been projected to cylindri-
cal coordinates, the rotation between each pair of im-
ages must be estimated. In principle, only panning an-
gles need to be recovered but, in practice, to correct
vertical misalignment and camera twist, small vertical
translations are allowed. Therefore, a displacement vec-
tor At = (t, ty) is estimated for every pair of input im-
ages. The implemented method to compute At distin-
guishes between three situations:

&)

|

i If sufficient feature points are found in the shared part
of the images, At is computed by means of matches
between pairs of feature points. To find the transla-
tion with most support among matches, and to ex-
clude false matches and outliers, RANSAC is used.

ii In those cases where there is not enough texture in the
images to extract sufficient feature points, At is com-
puted looking for a peak in the normalized correlation -
between the edges detected by the Canny edge de- !| [

tector (Canny 1986) of the two images. This method -
. ' — i

has the advantage over other correlation-based ap-
Fig. 3 Intensity jumps between successive images caused by auto-

proaches of being independent of the illumination
conditions and the vignetting effect (intensity de-

matic camera gain (fop). Applying linear blending solves the problem
(bottom)

“‘ll'

ol

creases towards the edge of the image). In addition, [
as all the image is used, even with small amounts of
texture a reliable translation can be estimated. How-
ever, this technique is computationally more expen-
sive than feature matching and is not invariant to ro-
tations or other deformations in the image.

iii If no texture exists at all and the above procedure
fails, the only remaining solution is to compute the
expected translation if the angular displacement ¢ (in

radians) between the images is known: #, = f¢ and
ty=0

early every two consecutive images. This method pro-
duces results good enough for visualization purposes and
is suitable for static scenes. However techniques such as
multi-band blending and deghosting as the ones proposed
by Shum and Szeliski (1997), Brown and Lowe (2003),

3. Due to automatic camera gain, vignetting or radial distor- Szeliski and Shum (1997) or Uyttendaele et al. (2001)

tion, an intensity jump may appear between two images
as can be seen in Fig. 3. In this work the most straight-
forward solution is taken, that consists in blending lin-
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can be used to improve the result by eliminating stitch-
ing artifacts and dynamic objects that created ghosts in
the panorama.
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Although the panoramic images were constructed for vali-
dation purposes, the constellations of feature region descrip-
tors were not extracted from them. Instead, the features from
the original images projected to cylindrical coordinates were
used. The reason for this is to avoid false regions intro-
duced by possible new artifacts created during the stitch-
ing process. The panoramas built with the stitching method
were all correctly constructed, even in the case of changes in
lightning, reflections, multiple instances of objects or lack of
texture. The sequences have been acquired in uncontrolled
environments.

4.3 Panorama matching

The region detectors and descriptors provided by Mikola-
jezyk et al. (2005)* were used to extract the affine-covariant
regions from the images and compute the SIFT descriptor
vectors.

The procedure to compare two panoramas is relatively
straightforward. First, matches are established as nearest
neighbors between the feature descriptors of both panora-
mas using the Euclidean distance as similarity measure. Po-
tentially false matches are rejected comparing the distance
of the first and the second nearest neighbor in the same
way as proposed by Lowe (2004). Additionally, reciprocal
matching is used to filter even more false matches: if feature
fa from the first panorama matches feature f; of the sec-
ond panorama, but feature f; does not match feature f,, the
match is discarded.

Next, the epipolar constraint between the panoramas
is enforced by computing the essential matrix. The most
straightforward way to automatically compute the essential
matrix is using the normalized 8-point algorithm (Hartley
and Zisserman 2004). However, assuming that the robot will
only move through flat surfaces, it is possible to use a sim-
plified version where only 4 correspondences are necessary.

0 en O
E=|ey 0 exn (6)
0 e O

Therefore, with a set of at least four correspondences of
points of the form

p=I[x,y,z]=[sin(2xX), y,cos(2rX)] 7)

where X and y are the normalized point coordinates in the
planar panorama image, the following equations can be writ-
ten:
yixroxipyrozZiyr oypan || 612
e
. . . . 21 -0 (8)

/ / / !
YuXn  XuYn  ZyYn YuZn e

Zhttp://www.robots.ox.ac.uk/~vgg/research/affine/.

where (x;,y;.z;) and (x],y;,z}) is the i pair of corre-
sponding points. As outliers may still be present among the
matches, RANSAC is used to automatically compute the es-
sential matrix with most support. Finally, the set of inlier
feature matches that agree with the epipolar constraint is
used as the evidence of the relation between the two panora-
mas.

Given the high dimensionality of the feature descriptors,
matching is expensive in terms of computational cost even
for a small set of nodes. An alternative to exhaustive match-
ing is to use a global similarity measure to re-rank the map
nodes and estimate the essential matrix only for the k top
map nodes or, taking an any-time algorithm approach, un-
til a node with a certain ratio of inliers is met. The global
similarity measure should be fast to compute and exploit
the differences between the map nodes to improve the re-
ranking. We have applied the Vocabulary Tree proposed in
Nister and Stewenius (2006) for object categorization to re-
rank the map nodes for a new query image as it fulfilled
both requirements. In short, this method constructs a visual
vocabulary tree of feature descriptors applying hierarchical
k-means on a training dataset. Next, images are described as
a normalized histogram of visual word counts. To give more
emphasis to discriminative visual words, they are weighted
using a Term Frequency-Inverse Document Frequency (TF-
IDF) approach. Finally, training set images can be re-ranked
according to its Euclidean distance to the new image signa-
ture.

Although the presented method has a very good perfor-
mance in our experiments, it is time-consuming to acquire
a panorama rotating a pan-tilt unit every time a localization
has to be performed. Instead, we evaluated the decrease in
performance using uniquely a normal planar perspective im-
age of 45° field of view to localize the robot.

The simplest way to decide the corresponding node is by
the maximum number of matches after computing the es-
sential matrix (Valgren and Lilienthal 2008; Ramisa et al.
2008). An alternative we tried was to use the ratio between
the number of matches and the lowest number of keypoints
of the two images (Booij et al. 2007). Experimentally, we
did not find much difference between both approaches in
our dataset and therefore we have retained the first one.

5 Experiments

In order to achieve our two objectives, we tested all possible
combinations of the three selected region detectors with two
different descriptors. In addition to the listed region detec-
tors we have evaluated the performance of the only scale-
invariant version of the Hessian Affine and Harris Affine de-
tectors, but as the results obtained were significantly worse
than the ones of the affine version are not displayed here.

@ Springer



380

Auton Robot (2009) 27: 373-385

Table 1 Average percentage of correctly localized panoramas (acl) across all sequences and standard deviation (std). For convenience we have
labeled M: MSER, HA: Harris-Affine, HE: Hessian-Affine, S: SIFT, G: GLOH

Combination 8 points algorithm 4 points algorithm 4 points and recipr. match
acl std acl std acl std
HA+S 74% 23% 69% 23% 82% 22%
HA+G 70% 21% 73% 24% 81% 21%
HE+S 58% 24% 73% 26% 75% 25%
HE+G 63% 26% 65% 27% 74% 26%
M+S 62% 28% 78% 18% 76% 23%
M+G 61% 29% 69% 23% 74% 26%
HA+HE+S 64% 15% 78% 19% 86% 14%
HA+HE+G 67% 14% 79% 21% 87% 16%
M+HE+S 56% 23% 75% 23% 87% 15%
M+HE+G 60% 23% 78% 18% 88% 14%
M+HA+S 65% 21% 79% 19% 86% 14%
M+HA+G 70% 25% 79% 19% 88% 11%
M+HA+HE+S 62% 16% 82% 19% 89% 11%
M+HA+HE+G 64% 20% 82% 19% 90% 11%

Table 1, shows the average percentage of correctly clas-
sified test panoramas for each combination. Results are pro-
vided using the 8-point algorithm, the 4-point algorithm and
also the later with reciprocal matches. From the results illus-
trated in the table for the 4 point algorithm with reciprocal
matches, it can be seen that by reducing the number of false
matches with the reciprocal matches technique, improves
substantially the performance. Therefore from now on, we
only show the results obtained with this technique. The
average percentage of correct localizations has been com-
puted by first computing the percentage of correctly clas-
sified panoramas for each sequence individually and then
computing the mean across all the sequences.

Standard deviation is also provided in order to assess the
stability of combinations along the different sequences. The
high standard deviation is mainly due to bad results of the
combinations in particular sequences. Not much difference
is observed among the descriptors GLOH and SIFT, which
performed similarly in all cases. Looking at the feature de-
tectors individually, the best results have been obtained by
Harris Affine, while Hessian Affine and MSER had a simi-
lar performance.

Overall, the combinations of detectors outperformed the
individual detectors. The best performance in the localiza-
tion test has been achieved by the combination of the three
detectors, which classified correctly 90% of the panoramas.
This performance is mainly due to their good complementar-
ity. In Fig. 4 the average performance of two selected com-
binations is compared to the standalone detectors with the
proposed evaluation methodology to evaluate the robustness
of the methods to viewpoint change.
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Fig. 4 Percentage of incorrectly classified test panoramas as a func-
tion of the distance in centimeters to the map node (i.e. first panorama
of the sequence). The exponential regression of the data points is also
provided for clarity. Best viewed in color

As can be seen, the combinations obtained in the order
of 20% more correct localization at four meters according to
the estimated exponential regression. Sequences acquired in
large rooms typically achieved a good performance no mat-
ter the combination used. However, small rooms and spe-
cially long and narrow corridors seem to be more difficult
environments, even if they are well textured. This can be
explained because the distance between the robot and the
perceived objects is short and, therefore, the objects’ appear-
ance changes rapidly resulting in an unreliable matching in
the lateral regions of the panorama.
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Table 2 Average percentage of correctly localized panoramas for
some interesting sequences. The naming convention is the same as in
Table 1

Combination cve0l iiia04 iiia06 iiia09
HA+S 35% 42% 75% 75%
HA+G 35% 47% 70% 70%
HE+S 20% 47% 75% 45%
HE+G 20% 53% 80% 30%
M+S 85% 42% 30% 65%
M+G 95% 53% 35% 35%
HA+HE+S 80% 84% 70% 95%
HA+HE+G 45% 89% 75% 85%
M+HE+S 90% 84% 80% 65%
M+HE+G 90% 84% 90% 60%
M+HA+S 90% 79% 70% 85%
M+HA+G 90% 89% 65% 80%
M+HA+HE+S 80% 95% 75% 80%
M+HA+HE+G 75% 100% 90% 75%

Some particularly difficult sequences have been cvc0l,
iiia04, 11ia06 and iiia09. Table 2 shows the results with
these sequences. As we can see, the performance is no-
tably increased by combining the strengths and weaknesses
of the different detectors. On average, standalone detec-
tors achieved around 55%, while combinations increased to
around 81% in these environments. Sequence iiia04 is long
and narrow corridor. In this environment only features found
in the antipodal points of the panorama that correspond to
the movement direction are reliable, since the other are af-
fected by an extreme appearance variance due to the large
point of view change (i.e. the closer the object, the larger
the point of view change for the same traveled distance).
Therefore, combining various detectors increases the num-
ber of matches and the robustness of the computed essential
matrix. It is interesting to notice that in this case the combi-
nation of all feature types achieved 100% correct classifica-
tion.

The iiia06 is also a long and narrow corridor, but in this
case much more texture is present. In consequence, the Har-
ris Affine and the Hessian Affine detectors alone find enough
reliable features to correctly estimate the essential matrix.

Another notable finding is the extremely good perfor-
mance of MSER on cvc0l when compared to the other de-
tectors. The explanation for the good performance of the
MSER in this sequence is due to the robustness of this de-
tector to extreme intensity variations: The MSER detector
reacts to high contrast regions, that are preserved even un-
der sunlight overexposure.

Most of the similar approaches to global localization (e.g.
Booij et al. 2007) use feature detectors only invariant to
scale but not affine covariant, mainly because of its more

Table 3 Average feature matching and RANSAC time per map node.
It is important to notice the difference in time scale

Combination Matching RANSAC
(seconds) (milliseconds)

HA+S 4.31 3.046
HA+G 4.29 2.597
HE+S 2.87 3.016
HE+G 2.88 2.631
M+S 1.24 2.920
M+G 1.24 2.310
HA+HE+S 7.16 6.625
HA+HE+G 7.16 5.401
M-+HE+S 4.11 5.827
M+HE+G 4.11 5.361
M+HA+S 5.51 6.682
M+HA+G 5.51 5.382
M+HA+HE+S 8.44 1.3941
M+HA+HE+G 8.47 1.0815

expensive computational cost. For comparability, we have
evaluated the performance of the Difference of Gaussians
detector (Lowe 2004). This method uses as initial points
the local maxima of the Differences of Gaussians (DoG),
defines a circular region around these initial points and fi-
nally SIFT is used to describe the selected regions. For our
tests we used the implementation provided by Lowe.? Us-
ing points detected with the DoG and SIFT, the average cor-
rect location was 72%. However, it had an irregular perfor-
mance depending on the environment type (27% standard
deviation), with perfect results in large rooms, but very poor
results in narrow corridors and small rooms. This was an ex-
pected outcome as this detector is less resistant to viewpoint
changes.

In terms of computational complexity, the most expen-
sive step of the approach is clearly the bidirectional descrip-
tor matching as can be seen in Table 3. These computational
times have been obtained with a C++ implementation of the
method running in a Linux Pentium 4 at 3.0 GHz computer
with 2 Gb of RAM.

5.1 Re-ranking of map nodes

As explained in Sect. 4.3, the global appearance based im-
age similarity measure from Nister and Stewenius has been
used to re-rank the map nodes and prioritize those that ap-
pear more similar. We have build the vocabulary tree with
Harris Affine features. When used for object classification,
this type of approach requires at least tens of training im-
ages in order to correctly determine the class of a novel ob-

3http :/Iwww.cs.ubc.ca/~lowe/keypoints/.
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Fig. 6 Ratio of query images with the correct node re-ranked at the
top position against distance to the map node (i.e. first panorama of the
sequence). The logarithmic regression curve is also shown

ject instance. However, we only used the map nodes to train
both the vocabulary tree and the classifier. This gives only
one training instance for each class. Despite so limited train-
ing data, the approach achieved the notable overall result of
re-ranking the correct node in the first position for 62% of
the query panoramas, and among the top five nodes 85% of
times as can be seen in Fig. 5. More detailed results of this
re-ranking experiment are in Fig. 7, where the performance
is shown for each individual sequence.

As expected, the percentage of times the correct map
node is re-ranked at the top position decreases as the physi-
cal distance to the query panorama increases (see Fig. 6).

5.2 Localization with 45° FOV images

Constructing a panoramic image with a rotating camera on
a pan-tilt unit is a time-consuming step that requires the ro-
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Fig. 7 Position of the correct map node after re-ranking using the vo-
cabulary tree per sequence

bot to stay in a fixed position during the acquisition. In or-
der to assess the decrease in performance that would cause
using just a single conventional image to localize the ro-
bot we have done the following experiment: For every test
panorama, a random area that spans 45° and has at least 100
features is extracted and matched to the map nodes. This
procedure is repeated for every test panorama. After a 10
repetitions experiment with all test panoramas, the average
number of correct localizations was 73% using Harris Affine
combined with MSER and the GLOH descriptor. This result
is good considering how limited the field of view is. In ad-
dition to the time saved in image acquisition, the matching
time is reduced almost one order of magnitude on average.

6 Conclusions and discussion

In this work we have proposed and evaluated a signature
to characterize places that can be used for global localiza-
tion. This signature consists of a constellation of feature de-
scriptors, computed from affine-covariant regions, extracted
from a panoramic image, that has been acquired in the place
we want to add to the map. Later, these signatures are com-
pared to the constellation extracted from a new panoramic
image using geometric constraints, and the most similar sig-
nature is selected as the current location. To compare the
different signatures, the 4-point algorithm with bidirectional
matching and RANSAC to reject false matches are used.
Results obtained with the current approach clearly surpass
the ones obtained in earlier work using the 8-point algo-
rithm (Ramisa et al. 2008) and the 4-point algorithm without
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bidirectional matching. Combinations of feature detectors
have been shown to perform best if combined with adequate
mechanisms, such as the aforementioned reciprocal match-
ing or distance to the second nearest neighbor, to reject in-
correct pairings of features before computing the essential
matrix.

Furthermore, we have proposed an evaluation strategy
to assess the robustness to change in point of view for
appearance-based signatures used for global localization in
a topological map. This aims to help finding more robust
signatures that will yield more compact and scalable maps.

When applying proposed evaluation method to our global
localization schema, the results obtained show that by us-
ing the combination of different feature detectors, a room
can be reliably recognized in indoor environments from a
distance of up to 4 meters from the point where the refer-
ence panorama was obtained. The best results (90% correct
localizations) were achieved by combining all three detec-
tors.

Moreover, we have also compared the results of our pro-
posed affine-covariant region detectors approach with the
scale-invariant region detectors methodology proposed in
Lowe (2004), widely used in robot navigation, and showed
that the affine-covariant regions outperformed Lowe’s scale-
invariant method.

In order to speed-up the otherwise very expensive de-
scriptor matching phase, a global similarity technique usu-
ally employed for object recognition, the vocabulary tree of
Nister and Stewenius (2006), has been effectively applied to
re-rank the map nodes for a given query panorama and save
most of the computation time.

Furthermore, we tested how the performance degrades if
only a conventional perspective image is used instead of an
omnidirectional image. Results of a 10 repetitions experi-
ment with random 45° sections (with a minimum amount of
texture) from all the test panoramas showed a surprisingly
good performance.

Appendix
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Fig. 8 Panorama nodes in the same order as described in the text
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