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Hamilton-Jacobi equations for optimal control on junctions and

networks

Yves Achdou ∗, Salomé Oudet †, Nicoletta Tchou ‡

July 21, 2013

Abstract

We consider continuous-state and continuous-time control problems where the admissible
trajectories of the system are constrained to remain on a network. A notion of viscosity
solution of Hamilton-Jacobi equations on the network has been proposed in earlier articles.
Here, we propose a simple proof of a comparison principle based on arguments from the
theory of optimal control.
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1 Introduction

A network (or a graph) is a set of items, referred to as vertices (or nodes/crosspoints), with
connections between them referred to as edges. In the recent years there has been an increas-
ing interest in the investigation of dynamical system and differential equation on networks, in
particular in connection with problem of data transmission and traffic management (see for
example Garavello-Piccoli [9], Engel et al [6]). While control problems with state constrained
in closures of open sets are well studied ([17, 18], [5], [12]) there is to our knowledge much
fewer literature on problems on networks. The results of Frankowska and Plaskacz [8, 7] do
apply to some closed sets with empty interior, but not to networks with crosspoints (except
in very particular cases).

The literature on continuous-state and continuous-time control on networks is recent: the
first two articles were published in 2012: control problems whose dynamics is constrained
to a network and related Hamilton-Jacobi equations were studied in [1]: a Hamilton-Jacobi
equation on the network was proposed, with a definition of viscosity solution, which reduces
to the usual one if the network is a straight line (i.e. is composed of two parallel edges
sharing an endpoint) and if the dynamics and cost are continuous; while in the interior of
an edge, one can test the equation with a smooth test-function, the main difficulties arise at
the vertices where the network does not have a regular differential structure. At a vertex, a
notion of derivative similar to that of Dini’s derivative (see for example [2]) was proposed:
admissible test-functions are continuous functions whose restriction to each edge is C1. With
this definition, the intrinsic geodesic distance, fixed one argument, is an admissible test-
function with respect to the other argument. The Hamiltonian at a vertex depends on all
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directional derivatives in the directions of the edges containing the vertex, see § 3.3 below.
Independently, Imbert, Monneau and Zidani [11] proposed an equivalent notion of viscosity
solution for studying a Hamilton-Jacobi approach to junction problems and traffic flows.
There is also the work by Schieborn and Camilli [16], in which the authors focus on eikonal
equations on networks and on a less general notion of viscosity solution.
Both [1] and [11] contain the first comparison and uniqueness results: in [1], suitably mod-
ified geodesic distances are used in the doubling variables method for proving comparison
theorems under rather strong continuity assumptions. In [11], Imbert, Monneau and Zidani
used a completely different argument based on the explicit solution of a related optimal
control problem, which could be obtained because it was assumed that the Hamiltonians
associated with each edge did not depend on the state variable.
A very general comparison result has finally been obtained in the quite recent paper by
Imbert-Monneau [10]. In the latter article, the Hamiltonians in the edges are completely
independent from each other; the main assumption is that the Hamiltonian in each edge, say
Hi(x, p) for the edge indexed i, are bimonotone, i.e. non increasing (resp. non decreasing) for
p smaller (resp. larger) than a given threshold p0

i (x). Of course, convex Hamiltonian coming
from optimal control theory are bimonotone. Moreover, [10] handles more general transmis-
sion conditions at the vertices than the previous articles. The proof of the comparison result
is rather involved and only uses arguments from the theory of partial differential equations:
in the most simple case where all the Hamiltonians related to the edges are strictly convex
and reach their minima at p = 0, the idea consists of doubling the variables and using a suit-
able test-function; then, in the general case, perturbation arguments are used for applying
the results proved in the former case.
In coincidence with these research efforts about networks, Barles, Briani and Chasseigne, see
[3, 4], have recently studied control problems with discontinuous dynamics and costs, ob-
taining comparison results for some Bellman equations arising in this context, with original
and elegant arguments. Related problems were also recently addressed by Rao, Siconolfi and
Zidani [15, 14].
The aim of the present paper is to focus on optimal control problems with independent dy-
namics and running costs in the edges, and to show that the arguments in [3] can be adapted
to yield a simple proof of a comparison result.

Sections 2 to 5 are devoted to the case of a junction, i.e. a network with one vertex
only. In Section 6, the results obtained for the junction are generalized for networks with
more than one vertices. Section 2 contains a description of the geometry and of the optimal
control problem. In Section 3, a Hamilton-Jacobi equation is proposed for the value function,
together with a notion of viscosity solution. It is proved that the value function is a viscosity
solution of the Hamilton-Jacobi equation. Also in Section 3, Lemma 3.1 on the structure
of the Hamiltonian at the vertex will be important for obtaining the comparison principle.
Some important properties of viscosity sub and supersolutions are given in Section 4, and
the comparison principle is proved in Section 5.

2 The junction

2.1 The geometry

Let us focus on the model case of a junction in R
d with N semi-infinite straight edges, N > 1.

The edges are denoted by (Ji)i=1,...,N . The edge Ji is the closed half-line R
+ei. The vectors

ei are two by two distinct unit vectors in R
d. The half-lines Ji are glued at the origin O to

form the junction G:

G =

N⋃

i=1

Ji.
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The geodetic distance d(x, y) between two points x, y of G is

d(x, y) =

{
|x− y| if x, y belong to the same edge Ji

|x| + |y| if x, y belong to different branches Ji and Jj .

2.2 The optimal control problem

We consider infinite horizon optimal control problems which have different dynamics and
running costs in the edges. We are going to describe the assumptions on the dynamics and
costs in each edge Ji. The sets of controls are denoted by Ai and the system is driven by a
dynamics fi and the running cost is given by ℓi. Our main assumptions are as follows

[H0] A is a metric space (one can take A = R
m). For i = 1, . . . , N , Ai is a non empty

compact subset of A and fi : Ji ×Ai → R is a continuous bounded function. The sets
Ai are disjoint. Moreover, there exists L > 0 such that for any i, x, y in Ji and a ∈ Ai,

|fi(x, a) − fi(y, a)| ≤ L|x− y|.

We will use the notation Fi(x) for the set {fi(x, a)ei, a ∈ Ai}.

[H1] For i = 1, . . . , N , the function ℓi : Ji ×Ai → R is a continuous and bounded function.
There is a modulus of continuity ωi such that for all x, y in Ji and for all a ∈ Ai,
|ℓi(x, a) − ℓi(y, a)| ≤ ωi(|x− y|).

[H2] For i = 1, . . . , N , x ∈ Ji, the non empty and closed set

FLi(x) ≡ {(fi(x, a)ei, ℓi(x, a)), a ∈ Ai}

is convex.

[H3] There is a real number δ > 0 such that for any i = 1, . . . , N ,

[−δei, δei] ⊂ Fi(O).

In [H0] the assumption that the sets Ai are disjoint is not restrictive: it is made only for
simplifying the proof of Theorem 2.2 below. The assumption [H2] is not essential: it is made
in order to avoid the use of relaxed controls.
Here is a general version of Filippov implicit function lemma, see [13], which will be useful
to prove Theorem 2.2 below.

Theorem 2.1. Let I be an interval of R and γ : I → R
d × R

d be a measurable function.
Let K be a closed subset of R

d × A and Ψ : K → R
d × R

d be continuous. Assume that
γ(I) ⊂ Ψ(K), then there is a measurable function Φ : I → K with

Ψ ◦ Φ(t) = γ(t) for a.a. t ∈ I.

Proof. See [13]. ⊓⊔

Let us denote by M the set:

M =
{
(x, a); x ∈ G, a ∈ Ai if x ∈ Ji\{O}, and a ∈ ∪N

i=1Ai if x = O
}
. (2.1)

The set M is closed. We also define the function f on M by

∀(x, a) ∈M, f(x, a) =

{
fi(x, a)ei if x ∈ Ji\{O},
fi(O, a)ei if x = O and a ∈ Ai.

The function f is continuous on M because the sets Ai are disjoint. Let F̃ (x) be defined by

F̃ (x) =

{
Fi(x) if x belongs to the edge Ji\{O}
∪N

i=1Fi(O) if x = O.

For x ∈ G, the set of admissible trajectories starting from x is

Yx =

{
yx ∈ Lip(R+;G) :

∣∣∣∣
ẏx(t) ∈ F̃ (yx(t)), for a.a. t > 0,
yx(0) = x,

}
. (2.2)
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Theorem 2.2. Assume [H0],[H1],[H2] and [H3]. Then

1. For any x ∈ G, Yx is non empty.

2. For any x ∈ G, for each trajectory yx in Yx, there exists a measurable function Φ :
[0,+∞) →M , Φ(t) = (ϕ1(t), ϕ2(t)) with

(yx(t), ẏx(t)) = (ϕ1(t), f(ϕ1(t), ϕ2(t))), for a.e. t,

which means in particular that yx is a continuous representation of ϕ1

3. Almost everywhere in [0,+∞),

ẏx(t) =

N∑

i=1

1{yx(t)∈Ji\{O}}fi(yx(t), ϕ2(t))ei.

4. Almost everywhere on {t : yx(t) = O}, f(O,ϕ2(t)) = 0.

Proof. The proof of point 1 is easy, because 0 ∈ F̃ (O).
The proof of point 2 is a consequence of Theorem 2.1, with K = M , I = [0,+∞), γ(t) =
(yx(t), ẏx(t)) and Ψ(x, a) = (x, f(x, a)).
From point 2, we deduce that

ẏx(t) =

N∑

i=1

1{yx(t)∈Ji\{O}}fi(yx(t), ϕ2(t))ei + 1{yx(t)=O}}f(O,ϕ2(t)),

and from Stampacchia’s theorem, f(O,ϕ2(t)) = 0 almost everywhere in {t : yx(t) = O}.
This yields points 3 and 4. ⊓⊔

It is worth noticing that in Theorem 2.2, a solution yx can be associated with several
control laws ϕ2(·). We introduce the set of admissible controlled trajectories starting from
the initial datum x:

Tx =





(yx, α) ∈ L∞
Loc(R

+;M) : yx ∈ Lip(R+;G),

yx(t) = x+

∫ t

0

f(yx(s), α(s))ds in R
+



 . (2.3)

Remark 2.1. If two different edges are aligned with each other, say the edges J1 and J2,
many other assumptions can be made on the dynamics and costs:

• it is first possible to assume the continuity of the dynamics and costs at the origin, i.e.
that A1 = A2, that f1 and f2 are respectively the restrictions to J1 ×A1 and J2 ×A2 of
a continuous and bounded function f1,2 defined Re1×A1, which is Lipschitz continuous
with respect to the first variable, and that ℓ1 and ℓ2 are respectively the restrictions to
J1 ×A1 and J2 ×A2 of a continuous and bounded function ℓ1,2 defined Re1 ×A1.

• following Barles et al, see [3, 4], one can allow for some mixing (relaxation) at the
vertex, with several possible rules.

The cost functional The cost associated to the trajectory (yx, α) ∈ Tx is

J(x; (yx, α)) =

∫ ∞

0

ℓ(yx(t), α(t))e−λtdt,

where λ > 0 is a real number and the Lagrangian ℓ is defined on M by

∀(x, a) ∈M, ℓ(x, a) =

{
ℓi(x, a) if x ∈ Ji\{O},
ℓi(O, a) if x = O and a ∈ Ai.
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The value function The value function of the infinite horizon optimal control problem
is

v(x) = inf
(yx,α)∈Tx

J(x; (yx, α)). (2.4)

Proposition 2.1. Assume [H0],[H1],[H2] and [H3]. Then the value function v is bounded
and continuous on G.

Proof. The proof essentially uses Assumption [H3]. Since it is classical, we skip it. ⊓⊔

3 The Hamilton-Jacobi equation

3.1 Test-functions

For the definition of viscosity solutions on the irregular set G, it is necessary to first define
a class of the admissible test-functions

Definition 3.1. A function ϕ : G → R is an admissible test-function if

• ϕ is continuous in G and C1 in G \ {O}

• for any j, j = 1, . . . , N , ϕ|Jj
∈ C1(Jj).

The set of admissible test-functions is noted R(G). If ϕ ∈ R(G) and ζ ∈ R, let Dϕ(x, ζei)
be defined by Dϕ(x, ζei) = ζ dϕ

dxi
(x) if x ∈ Ji\{O} and Dϕ(O, ζei) = ζ limh→0+

dϕ
dxi

(hei).

Property 3.1. If ϕ = g ◦ ψ with g ∈ C1 and ψ ∈ R(G), then ϕ ∈ R(G) and

Dϕ(O, ζ) = g′(ψ(O))Dψ(O, ζ).

3.2 Vector fields

For i = 1, . . . , N , we denote by F+
i (O) and FL+

i (O) the sets

F+
i (O) = Fi(O) ∩ R

+ei, FL+
i (O) = FLi(O) ∩ (R+ei × R),

which are non empty thanks to assumption [H3]. Note that 0 ∈ ∩N
i=1Fi(O). From assumption

[H2], these sets are compact and convex. For x ∈ G, the sets F (x) and FL(x) are defined by

F (x) =

{
Fi(x) if x belongs to the edge Ji\{O}
∪i=1,...,NF

+
i (O) if x = O,

and

FL(x) =

{
FLi(x) if x belongs to the edge Ji\{O}
∪i=1,...,NFL+

i (O) if x = O.

3.3 Definition of viscosity solutions

We now introduce the definition of a viscosity solution of

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Du(x, ζ) − ξ} = 0 in G. (3.1)

Definition 3.2. • An upper semi-continuous function u : G → R is a subsolution of
(3.1) in G if for any x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local maximum point at x,
then

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Dϕ(x, ζ) − ξ} ≤ 0; (3.2)
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• A lower semi-continuous function u : G → R is a supersolution of (3.1) if for any
x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local minimum point at x, then

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Dϕ(x, ζ) − ξ} ≥ 0; (3.3)

• A continuous function u : G → R is a viscosity solution of (3.1) in G if it is both a
viscosity subsolution and a viscosity supersolution of (3.1) in G.

Remark 3.1. At x ∈ Ji\{O}, the notion of sub, respectively super-solution in Definition
3.2 is equivalent to the standard definition of viscosity sub, respectively super-solution of

λu(x) + sup
a∈Ai

{−fi(x, a) ·Du(x) − ℓi(x, a)} = 0.

3.4 Hamiltonians

We define the Hamiltonians Hi : Ji × R → R by

Hi(x, p) = max
a∈Ai

(−pfi(x, a) − ℓi(x, a)) (3.4)

and the Hamiltonian HO : R
N → R by

HO(p1, . . . , pN ) = max
i=1,...,N

max
a∈Ai s.t. fi(O,a)≥0

(−pifi(O, a) − ℓi(O, a)). (3.5)

We also define what may be called the tangential Hamiltonian at O by

HT
O = − min

i=1,...,N
min

a∈Ai s.t. fi(x,a)=0
ℓi(O, a). (3.6)

The following definitions are equivalent to Definition 3.2:

Definition 3.3. • An upper semi-continuous function u : G → R is a subsolution of
(3.1) in G if for any x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local maximum point at x,
then

λu(x) +Hi(x,
dϕ
dxi

(x)) ≤ 0 if x ∈ Ji\{O},

λu(O) +HO( dϕ
dx1

(O), . . . , dϕ
dxN

(O)) ≤ 0.
(3.7)

• A lower semi-continuous function u : G → R is a supersolution of (3.1) if for any
x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local minimum point at x, then

λu(x) +Hi(x,
dϕ
dxi

(x)) ≥ 0 if x ∈ Ji\{O},

λu(O) +HO( dϕ
dx1

(O), . . . , dϕ
dxN

(O)) ≥ 0.
(3.8)

The Hamiltonian Hi are continuous with respect to x ∈ Ji, convex with respect to p.
Moreover p 7→ Hi(O, p) is coercive, i.e. lim|p|→+∞Hi(O, p) = +∞ from the controlabil-
ity assumption [H3]. Following Imbert-Monneau [10], we introduce the nonempty compact
interval Pi

0

Pi
0 = {pi

0 ∈ R s.t. Hi(O, p
i
0) = min

p∈R

Hi(O, p)}. (3.9)

Lemma 3.1. Assume [H0],[H1],[H2] and [H3], then

1. pi
0 ∈ Pi

0 if and only if there exists a∗ ∈ Ai such that fi(O, a
∗) = 0 and Hi(O, p

i
0) =

−pi
0fi(O, a

∗) − ℓi(O, a
∗) = −ℓi(O, a

∗)

2.
min
p∈R

Hi(O, p) = − min
a∈Ai s.t. fi(O,a)=0

ℓi(O, a) (3.10)
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3. For all p ∈ R, if p ≥ pi
0 for some pi

0 ∈ Pi
0 then

max
a∈Ai s.t. fi(O,a)≥0

(−pfi(O, a)−ℓi(O, a)) = min
q∈R

Hi(O, q) = − min
a∈Ai s.t. fi(O,a)=0

ℓi(O, a).

Proof. The Hamiltonian Hi reaches its minimum at pi
0 if and only if 0 ∈ ∂Hi(O, p

i
0). The

subdifferential of Hi(O, ·) at pi
0 is characterized by

∂Hi(O, p
i
0) = co{−fi(O, a); a ∈ Ai s.t. Hi(O, p

i
0) = −pi

0fi(O, a) − ℓi(O, a)},

see [19]. But from [H2],

{(fi(O, a), ℓi(O, a)); a ∈ Ai s.t. Hi(O, p
i
0) = −pi

0fi(O, a) − ℓi(O, a)}

is compact and convex. Hence,

∂Hi(O, p
i
0) = {−fi(O, a); a ∈ Ai s.t. Hi(O, p

i
0) = −pi

0fi(O, a) − ℓi(O, a)}.

Therefore, 0 ∈ ∂Hi(O, p
i
0) if and only if there exists a∗ ∈ Ai such that fi(O, a

∗) = 0 and
Hi(O, p

i
0) = −ℓi(O, a

∗). We have proved point 1.
Point 2 is a direct consequence of point 1.
If p is greater than or equal to some pi

0 ∈ Pi
0, then

max
a∈Ai:fi(O,a)≥0

(−pfi(O, a) − ℓi(O, a)) ≤ max
a∈Ai:fi(O,a)≥0

(−pi
0fi(O, a) − ℓi(O, a)) = Hi(O, p

i
0)

where the last identity comes from point 1.
On the other hand,

max
a∈Ai:fi(O,a)≥0

(−pfi(O, a) − ℓi(O, a)) ≥ − min
a∈Ai:fi(O,a)=0

ℓi(O, a).

Point 3 is obtained by combining the two previous observations and point 2. ⊓⊔

3.5 Existence

Theorem 3.1. Assume [H0],[H1],[H2] and [H3]. The value function v defined in (2.4) is a
bounded viscosity solution of (3.1) in G.

The proof of Theorem 3.1 is made in several steps, namely Proposition 3.1 and Lem-
mas 3.2 and 3.3 below: the first step consists of proving that the value function is a viscosity
solution of a Hamilton-Jacobi equation with a more general definition of the Hamiltonian:
for that, we introduce larger relaxed vector fields: for x ∈ G,

f̃(x) =



η ∈ R

d :
∃(yx,n, αn)n∈N,

(yx,n, αn) ∈ Tx,

∃(tn)n∈N

s.t.
tn → 0+ and

lim
n→∞

1

tn

∫ tn

0

f(yx,n(t), αn(t))dt = η





and

f̃ℓ(x) =




(η, µ) ∈ R
d × R :

∃(yx,n, αn)n∈N,

(yx,n, αn) ∈ Tx,

∃(tn)n∈N

s.t.

∣∣∣∣∣∣∣∣∣∣

tn → 0+,

lim
n→∞

1

tn

∫ tn

0

f(yx,n(t), αn(t))dt = η,

lim
n→∞

1

tn

∫ tn

0

ℓ(yx,n(t), αn(t))dt = µ





.

Proposition 3.1. Assume [H0],[H1],[H2] and [H3]. The value function v defined in (2.4)
is a viscosity solution of

λu(x) + sup
(ζ,ξ)∈efℓ(x)

{−Du(x, ζ) − ξ} = 0 in G, (3.11)

where the definition of viscosity solution is exactly the same as Definition 3.2, replacing
FL(x) with f̃ℓ(x).
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Proof. See [1]. ⊓⊔

For all ϕ ∈ R(G), it is clear that if x ∈ Ji\{O}, thenHi(x,Dϕ) = sup(ζ,ξ)∈efℓ(x){−Dϕ(x, ζ)−

ξ}. We are left with comparing sup(ζ,ξ)∈FL(O){−Dϕ(O, ζ)−ξ} and sup(ζ,ξ)∈efℓ(O){−Dϕ(O, ζ)−

ξ}. The two quantities are the same. This is a consequence of the following lemma

Lemma 3.2.

f̃ℓ(O) =
⋃

i=1,...,N

co



FL+

i (O) ∪
⋃

j 6=i

(
FLj(O) ∩ ({0} × R)

)


 .

Proof. The proof being a bit long, we postpone it to the appendix. ⊓⊔

Lemma 3.3. Assume [H0],[H1],[H2] and [H3]. For any function ϕ in R(G),

sup
(ζ,ξ)∈efℓ(O)

{−Dϕ(O, ζ) − ξ} = max
(ζ,ξ)∈FL(O)

{−Dϕ(O, ζ) − ξ}. (3.12)

Proof. It was proved in [1] that FL(O) ⊂ f̃ℓ(O). Hence

max
(ζ,ξ)∈FL(O)

{−Dϕ(O, ζ) − ξ} ≤ sup
(ζ,ξ)∈efℓ(O)

{−Dϕ(O, ζ) − ξ}.

From the piecewise linearity of the function (ζ, µ) 7→ −Dϕ(O, ζ) − µ, we infer that

sup

(ζ,µ)∈co

(

FL+

i
(O)∪

S

j 6=i

(
FLj(O)∩({0}×R)

))

(−Dϕ(O, ζ) − µ)

= max

(
max

(ζ,µ)∈FL+

i
(O)

(−Dϕ(O, ζ) − µ),max
j 6=i

max
(0,µ)∈FLj(O)

−µ

)

≤ maxj=1,...,N max(ζ,µ)∈FL+

j
(O) −Dϕ(O, ζ) − µ) = max(ζ,ξ)∈FL(O){−Dϕ(O, ζ) − ξ}.

We conclude by using Lemma 3.2. ⊓⊔

4 Properties of viscosity sub and supersolutions

In this part, we study sub and supersolutions of (3.1), transposing ideas coming from Barles-
Briani-Chasseigne [3, 4] to the present context.

Lemma 4.1. Assume [H0],[H1],[H2] and [H3]. Any bounded and continuous viscosity sub-
solution u of (3.1) is Lipschitz continuous in a neighborhood of O.

Proof. From [2], Theorem III.2.33 and Remark III.2.34, u satifies a global suboptimality
principle in Ji for any i ∈ {1, . . . , N}. From the assumptions, there exists a positive number
σ, positive real numbers ri and controls ai,± ∈ Ai for i = 1, . . . , N , such that for all x ∈
[O, rei], fi(x, ai,−) ≤ −σ and fi(x, ai,+) ≥ σ. We infer from this and the suboptimality
principle, that for x, y in [O, rei]

|u(x) − u(y)| ≤ (‖ℓi‖∞ + λ‖u‖∞)
|y − x|

σ
,

which yields the desired result. ⊓⊔

The following lemma can be found in [3, 4] in a different context:
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Lemma 4.2. Let v : G → R be a viscosity supersolution of (3.1) in G and w be a continuous
viscosity subsolution of (3.1) in G. Then if x ∈ Ji\{0}, we have for all t > 0,

v(x) ≥ inf
αi(·),θi

(∫ t∧θi

0

ℓi(y
i
x(s), αi(s))e

−λsds+ v(yi
x(t ∧ θi))e

−λ(t∧θi)

)
, (4.1)

and

w(x) ≤ inf
αi(·),θi

(∫ t∧θi

0

ℓi(y
i
x(s), αi(s))e

−λsds+ w(yi
x(t ∧ θi))e

−λ(t∧θi)

)
, (4.2)

where αi ∈ L∞(0,∞;Ai), y
i
x is the solution of yi

x(t) = x +
(∫ t

0
fi(y

i
x(s), αi(s))ds

)
ei and θi

is such that yi
x(θi) = 0 and θi lies in [τi, τ̄i], where τi is the exit time of yi

x from Ji\{O} and
τ̄i is the exit time of yi

x from Ji.

Proof. See [3]. ⊓⊔

The following theorem is reminiscent of Theorem 3.3 in [3]:

Theorem 4.1. Assume [H0],[H1],[H2] and [H3]. Let v : G → R be a viscosity supersolution
of (3.1), bounded from below by −c|x| − C for two positive numbers c and C. Either [A] or
[B] below is true:

[A] There exists η > 0, i ∈ {1, . . . , N} and a sequence xk ∈ Ji, limk→+∞ xk = O such
that limk→+∞ v(xk) = v(O) and for each k, there exists a control law αk

i such that the
corresponding trajectory yxk

(s) ∈ Ji for all s ∈ [0, η] and

v(xk) ≥

∫ η

0

ℓi(yxk
(s), αk

i (s))e−λsds+ v(yxk
(η))e−λη (4.3)

[B]
λv(O) +HT

O ≥ 0. (4.4)

Proof. Let us assume that [B] does not hold.
For any i in {1, . . . , N}, take for example

qi = min
pi
0
∈Pi

0

pi
0,

and q = (q1, . . . , qN ). From Lemma 3.1,

HO(q) = HT
O . (4.5)

Consider the function

v(x) − qi|x| +
|x|2

ε2
if x ∈ Ji.

Standard arguments show that this function reaches its minimum near O and any sequence
of such minimum points xε converges to O and that v(xε) converges to v(O).

It is not possible that xε be O, because since v is a viscosity supersolution of (3.1), we
would have that

λv(O) +HO(q) ≥ 0,

and therefore λv(O) +HT
O ≥ 0, which is a contradiction since [B] does not hold.

Therefore, there exists i ∈ {1, . . . , N} such that, up to the extraction of a subsequence,
xε ∈ Ji\{O}, for all ε. We can therefore apply Lemma 4.2: for any t > 0,

v(xε) ≥ inf
αi(·),θi

(∫ t∧θi

0

ℓi(y
i
xε

(s), αi(s))e
−λsds+ v(yi

xε
(t ∧ θi))e

−λ(t∧θi)

)
, (4.6)
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where yi
x is the solution of yi

x(t) = x+
(∫ t

0
fi(y

i
x(s), αi(s))ds

)
ei.

Take t = 1 for example. From [H0] and [H2], the minimum in (4.6) is reached for some αi,ε

and θi,ε > 0, see [3] :

v(xε) ≥

∫ 1∧θi,ε

0

ℓi(y
i
xε

(s), αi,ε(s))e
−λsds+ v(yi

xε
(1 ∧ θi,ε))e

−λ(1∧θi,ε). (4.7)

Assume by contradiction that [A] does not hold, then limε→0 θi,ε = 0.

Since xε is a minimum of v(x) − qi|x| +
|x|2

ε2 , we deduce from (4.7) that

0 ≥

∫ θi,ε

0

ℓi(y
i
xε

(s), αi,ε(s))e
−λsds+ v(yi

xε
(θi,ε))(e

−λθi,ε − 1) − qi|xε| +
|xε|

2

ε2
, (4.8)

and therefore

0 ≥

∫ θi,ε

0

ℓi(y
i
xε

(s), αi,ε(s))e
−λsds+ v(yi

xε
(θi,ε))(e

−λθi,ε − 1) − qi|xε|. (4.9)

We can write (4.9) as

0 ≤

∫ θi,ε

0

(
−ℓi(y

i
xε

(s), αi,ε(s))e
−λs − qifi(y

i
xε

(s), αi,ε(s))
)
ds− v(yi

xε
(θi,ε))(e

−λθi,ε − 1).

(4.10)
Dividing by θi,ε and letting ε tend to 0, we obtain that λv(O) +Hi(O, qi) ≥ 0. This implies
that λv(O) +HT

O ≥ 0, which is a contradiction since [B] does not hold. ⊓⊔

5 Comparison principle and Uniqueness

Theorem 5.1. Assume [H0],[H1],[H2] and [H3]. Let u : G → R be a bounded continuous
viscosity subsolution of (3.1), and v : G → R be a bounded viscosity supersolution of (3.1).
Then u ≤ v in G.

Proof. It is a simple matter to check that there exists a positive real number M such that
the function ψ(x) = −|x|2 −M is a viscosity subsolution of (3.1). For 0 < µ < 1, µ close to
1, the function uµ = µu+ (1− µ)ψ is a viscosity subsolution of (3.1), which tends to −∞ as
|x| tends to +∞. Let Mµ be the maximal value of uµ − v which is reached at some point x̄µ.
We want to prove that Mµ ≤ 0.

1. If x̄µ 6= O, then we introduce the function uµ(x) − v(x) − d2(x, x̄µ), which has a strict
maximum at x̄µ, and we double the variables, i.e. for 0 < ε≪ 1, we consider

uµ(x) − v(y) − d2(x, x̄µ) −
d2(x, y)

ε2
.

Classical arguments then lead to the conclusion that uµ(x̄µ)−v(x̄µ) ≤ 0, thus Mµ ≤ 0.

2. If x̄µ = O. We use Theorem 4.1; we have two possible cases:

[B] λv(O) ≥ −HT
O .

Since, from Lemma 4.1, u is Lipschitz continuous in a neighborhood of O, we
know that there exists a test-function ϕ in R(G) which touches u from above at O.
Since u is a subsolution of (3.1), we see that λu(O)+HO( dϕ

dx1
(O), . . . , dϕ

dxN
(O)) ≤ 0,

which implies that λu(O) + HT
O ≤ 0. Therefore, we obtain that uµ(O) ≤ v(O),

thus Mµ ≤ 0.
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[A] With the notations of Theorem 4.1, we have that

v(xk) ≥

∫ η

0

ℓi(yxk
(s), αk

i (s))e−λsds+ v(yxk
(η))e−λη.

Moreover, from Lemma 4.2,

uµ(xk) ≤

∫ η

0

ℓi(yxk
(s), αk

i (s))e−λsds+ uµ(yxk
(η))e−λη.

Therefore
uµ(xk) − v(xk) ≤ (uµ(yxk

(η)) − v(yxk
(η)))e−λη.

Letting k tend to +∞, we find that Mµ ≤Mµe
−λη, which implies that Mµ ≤ 0

We conclude by letting µ tend to 1. ⊓⊔

Corollary 5.1. Assume [H0],[H1],[H2] and [H3]. The value function u of the optimal control
problem (2.4) is the unique bounded viscosity solution of (3.1).

6 The case of a network

6.1 The geometrical setting and the optimal control problem

We consider a network in R
d with a finite number of edges and vertices. A network in R

d is
a pair (V, E) where

i) V is a finite subset of R
d whose elements are said vertices

ii) E is a finite set of edges, which are either closed straight line segments between two
vertices, or a closed straight half-lines whose endpoint is a vertex. The intersection of
two edges is either empty or a vertex of the network. The union of the edges in E is a
connected subset of R

d. For a given edge e ∈ E , the notation ∂e is used for the set of
endpoints of e, and e∗ = e\∂e stands for the interior of e. Let also ue be a unit vector
aligned with e. There are two possible such vectors: if the boundary of e is made of
one vertex x only, then ue will be oriented from x to the interior of e; if the boundary
of e is made of two vertices, then the choice of the orientation is arbitrary.

We say that two vertices are adjacent if they are connected by an edge. For a given vertex
x, we denote by Ex the set of the edges for which x is an endpoint, and Nx the cardinality
of Ex. We denote by G the union of all the edges in E .
We consider infinite horizon optimal control problems which have different dynamics and
running cost in the edges. We are going to describe the assumptions on the dynamics and
costs in each edge e. The sets of controls are denoted by Ae and the system is driven by a
dynamics fe and the running cost is given by ℓe. Our main assumptions are as follows

[H0n] A is a metric space (one can take A = R
m). For e ∈ E , Ae is a non empty compact

subset of A and fe : e × Ae → R is a continuous bounded function. The sets Ae are
disjoint. Moreover, there exists L > 0 such that for any e ∈ E , x, y in e and a ∈ Ae,

|fe(x, a) − fe(y, a)| ≤ L|x− y|.

We will use the notation Fe(x) for the set {fe(x, a)ue, a ∈ Ae}.

[H1n] For e ∈ E , the function ℓe : e × Ae → R is a continuous and bounded function.
There is a modulus of continuity ωe such that for all x, y in e and for all a ∈ Ae,
|ℓe(x, a) − ℓe(y, a)| ≤ ωe(|x− y|).

[H2n] For e ∈ E , x ∈ e, the non empty and closed set FLe(x) ≡ {(fe(x, a)ue, ℓe(x, a)), a ∈
Ae} is convex.

11



[H3n] There is a real number δ > 0 such that for any e ∈ E , for all endpoints x of e,

[−δue, δue] ⊂ Fe(x).

Let us denote by M the set:

M = {(x, a); x ∈ G, a ∈ Ae if x ∈ e∗, and a ∈ ∪e∈Ex
Ae if x ∈ V} . (6.1)

The set M is closed. We also define the function f on M by

∀(x, a) ∈M, f(x, a) =

{
fe(x, a)ue if x ∈ e∗,

fe(x, a)ue if x ∈ V and a ∈ Ae for e ∈ Ex.

The set of admissible controlled trajectories starting from the initial datum x ∈ G can be
defined by

Tx =





(yx, α) ∈ L∞
loc(R

+;M) : yx ∈ Lip(R+;G),

yx(t) = x+

∫ t

0

f(yx(s), α(s))ds in R
+



 , (6.2)

exactly as in § 2.1.
The cost associated to the trajectory (yx, α) ∈ Tx is

J(x; (yx, α)) =

∫ ∞

0

ℓ(yx(t), α(t))e−λtdt,

where λ > 0 is a real number and the Lagrangian ℓ is defined on M by

∀(x, a) ∈M, ℓ(x, a) =

{
ℓe(x, a) if x ∈ e∗,

ℓe(x, a) if x ∈ V and a ∈ Ae for e ∈ Ex.

The value function of the infinite horizon optimal control problem is

v(x) = inf
(yx,α)∈Tx

J(x; (yx, α)). (6.3)

6.2 The Hamilton-Jacobi equation

For each edge e, x ∈ e∗, let xe be the coordinate of x in the system (Oe, ue) where Oe is an
arbitrary origin on e.

For the definition of viscosity solutions on the irregular set G, it is necessary to first define
a class of the admissible test-functions

Definition 6.1. A function ϕ : G → R is an admissible test-function if

• ϕ is continuous in G and C1 in G \ V

• for any e, ϕ|e ∈ C1(e).

The set of admissible test-function is noted R(G). If ϕ ∈ R(G) and ζ ∈ R, let Dϕ(x, ζue)
be defined by Dϕ(x, ζue) = ζ dϕ

dxe
(x) if x ∈ e∗, and Dϕ(x, ζue) = ζ limy→x,y∈e∗

dϕ
dxe

(y), if x is
an endpoint of e.

We define the Hamiltonians He : e× R → R by

He(x, p) = max
a∈Ae

(−pfe(x, a) − ℓe(x, a)). (6.4)

For a vertex x ∈ V, for a given indexing of Ex: Ex = {e1, . . . , eNx
}, we use the notation

Ai = Aei
, fi = fei

, ℓi = ℓei
for simplicity. Let also σi be 1 if uei

is oriented from x to the
interior of ei and −1 in the opposite case. The Hamiltonian Hx : R

Nx → R is defined by

Hx(p1, . . . , pNx
) = max

i=1,...,Nx

max
a∈Ai s.t. σifi(x,a)≥0

(−pifi(x, a) − ℓi(x, a)). (6.5)
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We wish to define viscosity solutions of the following equations

λv(x) +He(x,Dv(x)) = 0 if x ∈ e∗, (6.6)

λv(x) +Hx(Dv(x)) = 0 if x ∈ V. (6.7)

Definition 6.2. • An upper semi-continuous function w : G → R is a subsolution of
(6.6)-(6.7) in G if for any x ∈ G, any ϕ ∈ R(G) s.t. w − ϕ has a local maximum point
at x, then

λw(x) +He(x,
dϕ
dxe

(x)) ≤ 0 if x ∈ e∗,

λw(x) +Hx( dϕ
dx1

(x), . . . , dϕ
dxNx

(x)) ≤ 0 if x ∈ V,
(6.8)

where in the last case, dϕ
dxi

(x) = Dϕ(x, uei
(x)), for i = 1, . . . , Nx.

• A lower semi-continuous function w : G → R is a supersolution of (6.6)-(6.7) if for
any x ∈ G, any ϕ ∈ R(G) s.t. w − ϕ has a local minimum point at x, then

λw(x) +He(x,
dϕ
dxe

(x)) ≥ 0 if x ∈ e∗,

λw(x) +Hx( dϕ
dx1

(x), . . . , dϕ
dxNx

(x)) ≥ 0 if x ∈ V.
(6.9)

6.3 Comparison principle

Since all the arguments used in the junction case are local, we can replicate them in the case
of a network and obtain:

Theorem 6.1. Assume [H0n],[H1n],[H2n] and [H3n]. Let v : G → R be a bounded continu-
ous viscosity subsolution of (6.6)-(6.7), and w : G → R be a bounded viscosity supersolution
of (6.6)-(6.7). Then v ≤ w in G.

6.4 Existence and uniqueness

By the same arguments as in the junction case, we can prove that v is a bounded viscosity
solution of (6.6)-(6.7). From the Theorem 6.1, it is the unique bounded viscosity solution.

Proposition 6.1. Assume [H0n],[H1n],[H2n] and [H3n]. The value function v of the optimal
control problem (6.3) is the unique bounded viscosity solution of (6.6)-(6.7).

A Proof of Lemma 3.2

For any i ∈ {1, . . . , N}, the inclusion co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
⊂ f̃ℓ(O) is

proved by explicitly constructing trajectories, see [1]. We skip this part. This leads to

⋃

i=1,...,N

co



FL+

i (O) ∪
⋃

j 6=i

(
FLj(O) ∩ ({0} × R)

)


 ⊂ f̃ℓ(O).

We now prove the other inclusion. For any (ζ, µ) ∈ f̃ℓ(O), there exists a sequence of admis-
sible trajectories (yn, αn) ∈ TO and a sequence of times tn → 0+ such that

lim
n→∞

1

tn

∫ tn

0

f(yn(t), αn(t))dt = ζ, and lim
n→∞

1

tn

∫ tn

0

ℓ(yn(t), αn(t))dt = µ.

• If ζ 6= 0, then there must exist an index i in {1, . . . , N} such that ζ = |ζ|ei: in this
case, yn(tn) ∈ Ji\{O}. Hence,

yn(tn) =

∫ tn

0

f(yn(t), αn(t))dt =

N∑

j=1

ej

∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt (A.1)
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with ∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0 if j 6= i,
∫ tn

0

fi(yn(t), αn(t))1yn(t)∈Ji\{O}dt = |yn(tn)|.

These identities are a consequence of Stampacchia’s theorem: consider for example
j 6= i and the function κj : y 7→ |y|1y∈Jj

. It is easy to check that t 7→ κj(yn(t))

belongs to W 1,∞
0 (0, tn) and that its weak derivative coincides almost everywhere with

t 7→ fj(yn(t), αn(t))1yn(t)∈Jj\{O}. Hence,

∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0.

For j = 1, . . . , N , let Tj,n be defined by

Tj,n =
∣∣∣
{
t ∈ [0, tn] : yn(t) ∈ Jj\{O}

}∣∣∣ .

If j 6= i and Tj,n > 0 then

1

Tj,n

(∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt,

∫ tn

0

ℓj(yn(t), αn(t))1yn(t)∈Jj\{O}dt

)

=
1

Tj,n

(∫ tn

0

fj(O,αn(t))1yn(t)∈Jj\{O}dt,

∫ tn

0

ℓj(O,αn(t))1yn(t)∈Jj\{O}dt

)
+ o(1)

where o(1) is a vector tending to 0 as n→ ∞. Therefore, the distance of
1

Tj,n

(
ej

∫ tn

0
fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt,

∫ tn

0
ℓj(yn(t), αn(t))1yn(t)∈Jj\{O}dt

)
to the set

FLj(O) tends to 0. Moreover,
∫ tn

0
fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0. Hence, the dis-

tance of 1
Tj,n

(
ej

∫ tn

0
fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt,

∫ tn

0
ℓj(yn(t), αn(t))1yn(t)∈Jj\{O}dt

)

to the set
(
FLj(O) ∩ ({0} × R)

)
tends to zero as n tends to ∞.

If the set {t : yn(t) = O} has a nonzero measure, then

(
0,

1

|{t : yn(t) = O}|

∫ tn

0

ℓ(O,αn(t))1{t:yn(t)=O}dt

)
∈ co





N⋃

j=1

(
FLj(O) ∩ ({0} × R)

)


 .

Finally, we know that Ti,n > 0.

1

Ti,n

(∫ tn

0

fi(yn(t), αn(t))1yn(t)∈Ji\{O}dt,

∫ tn

0

ℓi(yn(t), αn(t))1yn(t)∈Ji\{O}dt

)

=
1

Ti,n

(∫ tn

0

fi(O,αn(t))1yn(t)∈Ji\{O}dt,

∫ tn

0

ℓi(O,αn(t))1yn(t)∈Ji\{O}dt

)
+ o(1)

so the distance of
1

Ti,n

(
ei

∫ tn

0
fi(yn(t), αn(t))1yn(t)∈Ji\{O}dt,

∫ tn

0
ℓi(yn(t), αn(t))1yn(t)∈Ji\{O}dt

)
to the set

FL+
i (O) tends to zero as n tends to ∞.

Combining all the observations above, we see that the distance of(
1
tn

∫ tn

0
f(yn(t), αn(t))dt, 1

tn

∫ tn

0
ℓ(yn(t), αn(t))dt

)

to co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
tends to 0 as n→ ∞.

Therefore (ζ, µ) ∈ co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
.
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• If ζ = 0, either there exists i such that yn(tn) ∈ Ji\{O} or yn(tn) = O:
• If yn(tn) ∈ Ji\{O}, then we can make exactly the same argument as above and

conclude that (ζ, µ) ∈ co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
. Since ζ = 0, we

have in fact that (ζ, µ) ∈ co
⋃N

j=1

(
FLj(O) ∩ ({0} × R)

)
.

• if yn(tn) = O, we have that

∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0 for all j =

1, . . . , N . We can repeat the argument above, and obtain that

(ζ, µ) ∈ co
{⋃N

j=1

(
FLj(O) ∩ ({0} × R)

)}
.
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