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ABSTRACT

We propose a hierarchical approach for the design of
gesture-to-sound mappings, with the goal to take into ac-
count multilevel time structures in both gesture and sound
processes. This allows for the integration of temporal map-
ping strategies, complementing mapping systems based
on instantaneous relationships between gesture and sound
synthesis parameters. As an example, we propose the im-
plementation of Hierarchical Hidden Markov Models to
model gesture input, with a flexible structure that can be
authored by the user. Moreover, some parameters can be
adjusted through a learning phase. We show some exam-
ples of gesture segmentations based on this approach, con-
sidering several phases such as preparation, attack, sustain,
release. Finally we describe an application, developed in
Max/MSP, illustrating the use of accelerometer-based sen-
sors to control phase vocoder synthesis techniques based
on this approach.

1. INTRODUCTION

The design of computational models of gesture-to-sound
mappings remains a central research question, that is nec-
essary for the development of innovative musical inter-
faces. In most systems, the modeling of the temporal struc-
tures of gestures and their relationships to sound descrip-
tion remains very basic. Generally, only ”instantaneous”
relationships (i.e. at the fastest framerate of the system)
between gesture and sound are considered , and larger time
scale structures are not taken into account.

Our main motivation is to address these limitations by
modeling gesture-to-sound relationships as the mapping
of hierarchically structured temporal processes. By intro-
ducing hierarchical segmentation models of gesture and
sound, we extend the representation of gesture-sound re-
lationships to a multilevel structure, spanning from a fine
control of sound details to a high level control on temporal
structures. Moreover, we aim at using machine learning
techniques, namely Hierarchical Hidden Markov Models,
to train some parameters of the model using examples pro-
vided by the user.
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The paper is organized as follows. After a review of re-
lated work in Section 2, we describe the general hierar-
chical approach to mapping in Section 3, and then report
in Section 4 on a case study using Hierarchical Hidden
Markov Models for gesture recognition and segmentation.
Finally in Section 5, we present the implementation of a
concrete application using this hierarchical framework for
gesture-based control of audio processing.

2. MOTIVATIONS AND RELATED WORKS

In interactive music systems, the representation of gesture-
to-sound synthesis controls led to the notion of so called
mapping. This has been extensively studied in the early
2000’s (see for instance [1, 2]) leading to taxonomies in-
spired either by its structure (one-to-one, one-to-many,
many-to-one) or its degree of determinism (explicit, im-
plicit). The last taxonomy divides between mappings re-
lying on: 1) an explicit function of input parameters to
output parameters [3]; 2) an implicit function, determined
by training methods [4], or purposely designed as stochas-
tic [5].

Considering implicit methods, various machine learning
techniques have been proposed over the years. Early works
include for example the use of neural networks for non-
linear multidimensional mappings [6,7] or PCA for dimen-
sionality reduction [8]. More recent works have showed
renewed experiments with variety of algorithms and new
software tools, for example the Gesture Follower [9], the
SARC EyesWeb Catalog [10], the Wekinator [11] or the
libmapper [12, 13].

While most approaches focus on recognizing gesture
units independently of the sound process, some recent
works propose to learn more directly the mapping be-
tween gesture and sound. For gesture-sound relationship
analysis, we recently proposed the use of multimodal di-
mension reduction [14]. In music performance, Merrill et
al. [15] proposed such an approach where participants can
personalize mapping functions. Fiebrink et al. [16] pro-
posed a set of algorithms to learn the mapping from a per-
formed gesture ”played along” with the music. Similarly,
we proposed a procedure to learn the temporal relationship
between gesture and sound (we call temporal mapping)
where the users gestures are recorded while they listen to
specific sounds [17, 18].

This type of approaches are very promising, and our long-
term goal is to pursue such directions. However, it ap-
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peared to us that a major current limitation resides in the
temporal modeling of gestures, and in particular, the lack
of hierarchical structures.

Similarly, Jordà [19, 20] argued for the need of consider-
ing different control levels allowing for either intuitive or
compositional decisions. Recently, Caramiaux [21] high-
lighted the intricate relationship existing between hierar-
chical temporal structures in both gesture and sound when
the gesture is performed in a listening situation. This
is consistent with theoretical works by Godøy et al. [22]
translating the notion of ”chunking” in perception psychol-
ogy to music. In music performance, chunking can be un-
derstood as a hierarchical cognitive organization of both
movement and music (note that the author preferably uses
the word coarticulation).

As a matter of fact, few works deal explicitly with the in-
troduction of multilevel temporal signal models of gesture
and sound in a musical context. Bloit et al. [23] used a seg-
mental approach based on hidden Markov modeling for the
description and classification of sound morphologies. The
model has then been used for clarinetist’s ancillary ges-
ture analysis by Caramiaux et al. [24], highlighting consis-
tent patterns in the gesture performance linked to the score
structure. Nevertheless, this approach remains difficult to
implement in real-time.

In summary, gesture-to-sound mappings taking into ac-
count a hierarchical structure seems to have rarely been
proposed, or at least not been fully implemented using
machine learning techniques. In this paper we argue that
such hierarchical temporal mapping should be relevant for
the expressive control of sound based on gestures and
we propose an implementation using Hierarchical Hidden
Markov Models.

3. HIERARCHICAL APPROACH FOR MAPPING

3.1 Overview

In this section, we introduce a hierarchical approach for
gesture-to-sound mapping. This approach is based on hier-
archical segmentations of both gesture and sound parame-
ters, in order to structure the relationships between the two
modalities into a multilevel time architecture.

A graphical representation of the proposed framework is
depicted in Figure 1. A multilevel segmentation is applied
to the gesture data (represented as a continuous time profile
at the top of the figure). This hierarchical structure is put
in relationship with different sound processes, that are also
naturally structured hierarchically (e.g. in attack/sustain
parts, notes, phrases etc). The sound processes can be seen
as a series of overlapping units that are combined to form
larger sound structures.

This approach leads to gesture-to-sound mappings that
include multilevel time structures, spanning from micro
signal levels to macro level units (that might be identi-
fied to symbolic levels). Hence, we propose an extension
of standard notions of mapping, that generally takes into
account only ”instantaneous” links between gesture and
sound parameters, to include high level control of audio
processes at different time scales.
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Figure 1. Overview of the proposed approach. Hierar-
chical structures in both gesture and sound parameters are
used to build multilevel mappings from gesture to sound.

We detail in the following sections the three main ele-
ments of our framework: gesture modeling, sound pro-
cesses and multilevel mapping.

3.2 Hierarchical gesture modeling

We consider the gesture signal (e.g. obtained by sensors)
as a continuous flow of parameters. The first level of seg-
mentation defines the unitary components we call gesture
segments, modeled by multidimensional time profiles.

The segments sequencing is governed by a multilevel
probabilistic structure encoding their temporal dependen-
cies. A gesture can be therefore considered as an ordered
sequence of segments.

Machine learning techniques can be used to identify the
gesture segments and their organization in time from a con-
tinuous input. In particular, two main tasks can be com-
puted:

• segmentation: identify the temporal boundaries of
gesture segments;

• recognition: recognize and label gestures at each
level of the hierarchy.

Both segmentation and recognition can be computed se-
quentially or can be coupled: the segmentation being per-
formed conjointly with the recognition task.

3.3 Hierarchical sound processes

To draw a parallel with the gestural representation, we con-
sider a multidimensional continuous stream of parameters



at the input of the sound synthesis system. Similar decom-
position can be applied, implying the definition of sound
control segments and sound control gestures.

Basically, segments designate primitive time profiles of
sound control parameters. This hierarchical sound syn-
thesis can be performed by scheduling sequences of over-
lapping segments, augmented with instantaneous control.
In particular cases, each of these elements can be eas-
ily associated with common sound and musical structures,
such as musical phrases, notes, themselves containing sub-
elements such as attack, decay, release, sustain.

Our framework is compatible with any type of sound
processing or synthesis. We currently experiment with
concatenative synthesis, analysis/synthesis methods (e.g.
phase vocoder) or physical models.

In the application of section 5, we focus on sound synthe-
sis techniques based on phase vocoding. In such case, we
define sound segments directly, using a manual annotation
of sound gestures, e.g. entire audio samples. With physical
modeling sound synthesis, a sound control gesture could
be defined as an entire excitation pattern, subdivided into
multiple phases (e.g. attack, sustain, ...), each associated
with sound control segments.

3.4 Multilevel mapping

The hierarchical representations of sound and gesture offer
a rich structure to design mapping strategies.

In particular, we aim at integrating various temporal lev-
els in the mapping process by defining input-output rela-
tionships for each time scale of the hierarchical models.
As illustrated in Figure 2, the mapping relationships at a
given instant can be seen as a superimposition of ”instan-
taneous”, short-term and long-term mappings.
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Figure 2. General architecture of the multilevel mapping
strategies

For example, one possible strategy consists in the use of
the recognition results to trigger various settings of the in-
stantaneous mappings. In such case, the short-term map-
ping can act as an automatic selector on instantaneous
mappings.

Other examples can be built from the concept of temporal
mapping introduced in [18], where each gesture segment
can be synchronized to sound control segments. The sec-
tion 5 will further provide with a concrete case based on
such concepts.

4. GESTURE SEGMENTATION USING
HIERARCHICAL MARKOV MODELS

We explain in this section how Hierarchical Hidden
Markov Models can be used in our framework. First, we
recall generalities about Markov Models and second, we
describe a specific implementation for gesture segmenta-
tion and recognition.

4.1 Model for gesture segmentation and recognition

4.1.1 HMM and extensions

Hidden Markov models (HMMs) have been widely used
for time series analysis (e.g. gesture, speech, etc) since
they are able to capture temporal dependencies between
observations of an input time series through an underly-
ing Markov process [25]. In typical HMM-based gesture
recognition systems, a model is trained for each gesture us-
ing a set of examples. The hidden process is composed by
several states encoding the temporal structure of the ges-
ture. When used for segmentation and recognition in real-
time, the gesture data is then compared to each model in-
dependently, and the model showing the highest likelihood
determines the recognized gesture. However, considering
the gesture models independently can be a limitation be-
cause of the lack of a high level structure modeling the
transitions between gestures.

This problem has been addressed by a particular exten-
sion of HMMs proposed in the literature: the hierarchi-
cal HMM, that integrates multilevel representations of the
temporal structures [26]. The hierarchical HMM can be
represented as a tree with an arbitrary number of levels,
composing a hierarchy of states from a single root to the
leaf states which emit observations. In the hierarchy, each
state is conditioned on its parents at the superior level.
Thus, each hidden state is an autonomous model in the
sense that it generates a lower-level Markov process rather
than emitting a single observation.

In this paper, we present a two-level hierarchical HMM,
that allows for considering fine-grain temporal modeling
of gesture segments and long-term temporal relationships.

4.1.2 The two-level Hierarchical HMM

A two-level Hierarchical HMM requires the definition of
two types of hidden states we call segment states and signal
states, as illustrated in Figure 3.

In the first level under the root, segment states are associ-
ated with indexed gesture segments. A segment state gen-
erates a submodel encoding the fine temporal structure of
the segment. Each submodel is itself composed by a time-
ordered set of signal states that emit observations (associ-
ated to the gesture dataflow).
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Figure 3. Training procedure of the hierarchical HMM.
Given a pre-segmented gesture template, each segment is
associated with an segment state Si. The fine temporal
structure of each segment is encoded in a submodel.

The model is built using a specific learning procedure.
Consider a pre-segmented template gesture signal (e.g. an-
notated by a user) composed of several segments (Figure 3
shows a case of three segments). Each segment is associ-
ated with a segment state, denoted by Si, and the temporal
structure of the segment is encoded in a submodel with a
left-to-right transition structure. In particular, each sam-
ple of the segment is associated to a hidden signal state
with a gaussian observation probability with fixed vari-
ance. Hence, the learning phase only requires one tem-
plate gesture to build the structure of the model. However,
our implementation allows the use of multiple gestures to
refine the reference template and learn the variance of the
observation probability distributions.

Segmentation and recognition can be performed online
thanks to a forward inference procedure [27]. For each
incoming sample during the performance, the algorithm
evaluates the likeliest segment state (i.e. the likeliest ges-
ture segment) and the likeliest signal state (i.e. the tem-
poral position within the segment). The algorithm also re-
turns the likelihood of the recognized gesture that is used
for recognition tasks.

4.1.3 Evaluation of the model for gesture segmentation

We conducted a comparative study of the performance for
three models: Gesture Follower [9], the segmental HMM
[24] and the two-level hierarchical model presented in this
paper. We have evaluated the precision of the segmentation
of the models with both offline and online algorithms on a
database of simple gestures, performed with a hand-held
device embedding accelerometers, and executed at various
speeds. A comparison of offline segmentation using the
Viterbi algorithm between our model and the segmental
HMM highlights a greater ability of the hierarchical HMM
to handle important distortions of gesture signals, in par-
ticular those introduced by non uniform speed variations
during the performance of gestures – for example when the
reference and the test gesture are performed at a different
speed. For real-time gesture segmentation and recognition

using a forward algorithm, the results show that the Hi-
erarchical HMM outperforms Gesture Follower, the high-
level process preventing errors at the transition between
segments. As the evaluation of the model is not the major
topic of this paper, we refer the interested reader to [28] for
a detailed study covering the representation, implementa-
tion and evaluation of the hierarchical model and inference
procedures for gesture segmentation.

4.2 Preparation-Attack-Sustain-Release: the PASR
representation of gestures

We present in this section an example of decomposition of
gestures as ordered sequences of primitives. Inspired from
the traditional ADSR representation of sound envelopes –
standing for Attack, Decay, Sustain, Release, – we intro-
duce, as an example, a decomposition of gestures into 4
typical phases in gestures for sound control, defined as fol-
lows:

• Preparation (P): anticipation gesture preceding the
beginning of the sound.

• Attack (A): segment covering the attack transient of
the sound.

• Sustain (S): segment spanning from the decay to the
end of the sound.

• Release (R): retraction gesture following the end of
the sound.
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Figure 4. Topology of the PASR gesture models for 1 ges-
ture. The prior probabilities ensure that the gesture can
only be entered by the Preparation or Attack phases. Ges-
ture models are left-to-right and reaching the exit state is
only possible from the Sustain and Release phases.

Importantly, the user can choose among the different tran-
sition possibilities, making for example some segments op-
tional (such as the preparation or release) or imposing con-
straints on the segments ordering or possible repetition.

Figure 4 illustrates the following case. The segment states
are S1 = P, S2 = A, S3 = S and S4 = R, and the parame-
ters of the model are set to allow transitions in the sequen-
tial order. For each gesture segment, the prior probabili-
ties, i.e. the probabilities on the starting segment states, are
equally set to 0.5 on the P and A states, ensuring that the
gesture can enter equally through the preparation or the at-
tack phase. Within the gesture, transitions are defined from



P A S R P' A' S' R'

P A S R

Root
Topological Structure

Inference path

Template 1 Template 2 Input Gesture

A S R P' A' S'

Root

PASR decompositionPASR decomposition

P' A' S' R'

1

2 3

4

5 6

1
2

3

4

5
6

Figure 5. A practical example of the PASR decomposition of gestures. Two template gestures can be learned, represented
at the top left of the figure. The decomposition of each gesture defines the structure of the model (bottom left). During
performance, a continuous gesture can be performed by sequencing several segments of the original templates (top right).
This induces a specific path in the topological graph (bottom right).

left to right to respect the sequential order. Finally, addi-
tional probabilities have to be set, which define the possi-
bility of reaching the exit state – represented by a double
circle on the figure – and go back to the root in order to
enter another gesture. These probabilities are equal to 0.5
and 1 for the last two states of the model, restricting the
possibility of ending a gesture through the sustain phase or
the release phase.

Therefore, two modes are possible when performing se-
quences of gestures. Each gesture can be performed en-
tirely, from the preparation to the release, or can be se-
quenced in a shorter form by avoiding the preparation and
release segments. Thus, different transitions between ges-
tures are made possible.

In Figure 5, we show an example of the decomposition
of a complex gesture based on two gestures templates. On
the top left of Figure 5, two different gesture templates are
learned. Both are decomposed into the 4 phases P, A, S,
and R, which define the topological structure of the two-
level Hierarchical HMM, as previously introduced by Fig-
ure 4.

On the top right part of the figure, an input gesture is
decomposed using the two templates. The inference pro-
cess segments the input gesture and recognizes the gesture
segments. This induces a path in the topological graph,
depicted on the bottom right of Figure 5. Note that this
type of information can be computed in real-time due to
the forward inference.

5. APPLICATION IMPLEMENTATION

A concrete application based on our approach was proto-
typed and implemented in Max/MSP.

5.1 Application architecture

We focus in this application on the case of accelerometer-
based sensors. In particular, we use interfaces called MO
which include inertial sensors: 3D accelerometers and 3
axis gyroscopes [29]. Note that other type of gesture signal
could also be used with our system.

The scheme presented in Figure 6 details the workflow
diagram of the application and figure 7 shows a screenshot
of the Max patch. The patch provides visualization and
editing tools for both sounds and gesture signal, coupled
with a control panel (using the MuBu environnement [30]).
The control panel can be used to add or remove buffers,
save and load presets, and play the sound (top of Figure 7).

We describe below first the learning mode, necessary
to build the hierarchical gesture models from templates
recorded by the user, and second, the performance mode,
where the gesture segmentation and recognition process
drives phase vocoder sound processes.

5.2 Learning phase

In the proposed application, the gesture segmentation is
computed using the two-level Hierarchical HMM intro-
duced in Section 4. The model has been implemented as
an external object for Max/MSP called hhmm allowing to
perform the multilevel gesture segmentation in real-time.
The learning process requires a minimal set of templates
recorded by the user.

A sound is represented by its waveform at the top of
Figure 7. First, the user must add markers and label the
segmentation on the audio buffer, to define the audio seg-
ments that will be linked to the gesture segments: Prepa-
ration, Attack, Sustain and Release (PASR) (phase (1) in
Figure 6).
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Second, the user must perform a gesture, where the PASR
decomposition can be operated. One possible strategy is
to perform the gesture while listening to the sound, in or-
der to induce structural similarities with the audio sample.
This gesture is recorded in a gesture buffer, as shown at
the bottom of Figure 7. As with the sound buffer, the ges-
ture data must be annotated with a set of markers defining
the P, A, S and R phases of the gesture (phase (2) in Fig-
ure 6). If the gesture was performed synchronously with
the sound, the markers can be transferred from the audio
buffer and re-edited to closely fit the timing of the gesture
performance. Finally, the segmented gesture can be used to
build to the hierarchical model (phase (3) in Figure 6), and
specific messages are used to set the high level parameters
(e.g. prior, transition, and exit probabilities) as specified in
section 4.2, with respect to the PASR decomposition.

Finally, the user can switch to the performance mode and
evaluate the quality of the control. At any moment, he can
switch back to the learning mode to re-learn the model.

5.3 Performance phase

In performance mode, the gesture dataflow is segmented
and labelled automatically (using the object hhmm) and
this information is used to control sound synthesis in
Max/MSP.

Precisely, the object outputs a set of parameters at each
new observation: the likelihood of each gesture segments,
the time progression and the estimated speed of the input
gesture compared with the templates. Therefore, the object
continuously updates the following information: the index
of segment currently performed and the temporal position
within the segment.

This information is used to control temporal dynamics
of recorded sounds, mixing sampling and phase vocoder
techniques. Technically, we use superVP in conjunction
with the Mubu objects [30], to build this modular real-
time synthesis engine of annotated audio samples. At each
time step, gesture recognition is used to interactively select
and time-stretch the audio segments according to the esti-



mation of the temporal alignment on the reference. The
segmental annotation of audio samples is used to design
specific settings adapted to each type of gesture segments.
Typically, the Preparation is linked to silence, Attack to
a non-stretchable sound segment, Sustain to a stretchable
sound segment, and Release to fading effect. Sustain
segments are thus stretched or shortened whereas attack
phases are played at the initial speed. In specific case when
the attack phase of the gesture is longer than that of the
sound, the end of the gesture segment is time stretched to
smooth the transition between audio processes.

Globally, we found that the high level transition struc-
ture between segments enables to plan and execute ges-
tures sequences with a high level of control. Notably, the
gesture recognition is improved compared with previous
systems [28], the addition of the high level transition struc-
ture being efficient at disambiguating between gesture seg-
ments.

6. CONCLUSION AND FUTURE DIRECTIONS

We described a new approach for gesture-to-sound map-
ping which aims at overcoming the limitation of instanta-
neous strategies by integrating different time-scales in the
mapping process. Precisely, we have proposed a multilevel
mapping method based on hierarchical representations of
both gesture and sound. As an example, a gesture segmen-
tation method based on the Hierarchical HMM has been
detailed and implemented, supported by a sequential de-
composition of gestures called PASR. Finally we have pre-
sented an application for the control of audio processing.

If we described a special case of mapping strategy based
on the alignment on gestures over audio samples, we be-
lieve that the hierarchical approach can generalize to other
types of mappings and sound synthesis. We are currently
experimenting with physical modeling sound synthesis, su-
perimposing instantaneous mapping strategies at various
levels of the hierarchy. For example, the proposed decom-
position can be used to modulate the types of excitation
of a physical model given particular gestures, with possi-
bilities of characterizing the sustain phase of continuous
excitation or the preparation preceding a strike, bringing
contextual information to the mapping process.

Finally, we aim at generalizing such machine learning al-
gorithms, in order to learn both temporal and spatial as-
pects of the mapping. Precisely, we are working on a gen-
eralization of the learning approach by developing multi-
modal methods able to learn jointly the gesture and sound
models, and to characterize their relationships. Another
major prospect is to conduct evaluations, both computa-
tional and from a user’s viewpoint, in order to quantify the
benefits of the proposed systems in terms of expressivity
and personalization.
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