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Highlights 

We performed analogue models of oblique rifting with structural inheritance. 
 
Structural inheritance is preponderant in the development of oblique rifts. 
 
Previous rifting events may have more influence than oblique lithospheric weakness. 
 
Inheritance initiates shifted spreading centres and transform zones or margins.  
 
The models are used to understand the evolution of the Gulf of Aden oblique rift. 

Abstract 

The geometry and kinematics of rifts are strongly controlled by pre-existing structures 

that may be present in both the crust and the mantle lithosphere. In the Gulf of Aden, the 

Tertiary oblique rift developed through inherited Mesozoic extensional basins that trend 

orthogonal to the direction of Oligo-Miocene divergence. Such inheritance may produce 

lateral variations in crustal thickness and thus in rheology of the crust and mantle 

lithosphere. How can such variations influence the present-day geometry of oblique rifts? 

May they locally overcome the impact of the oblique rheological weaknesses that in 
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certain cases control the overall trend of the rift system? Moreover, we observe that major 

fracture zones systematically crosscut the inherited basins: may such inheritance influence 

the localization of major fracture zones by shifting the initial spreading centers? 

The brittle-ductile multilayer analogue models presented in this contribution reproduce 

oblique rifts. We tested the effect of an initial oblique weakness in the lithospheric mantle 

(i.e. structural or thermal inheritance) by introducing an oblique rheological weakness, 

which is alternatively initially imposed or dismissed. We tested the effect of the 

orthogonal Mesozoic inheritance by adding an elongated thicker brittle mantle, orthogonal 

to the direction of extension, in two models. These models mainly show en-échelon 

patterns with orthogonal faults and few rift-parallel faults (parallel to the rift obliquity), 

suggesting that the inherited orthogonal discontinuity is more influential than the oblique 

weakness in the lithospheric mantle. 

These results suggest that the presence in the lithosphere of an inherited basin could 

constitute a barrier to the deformation and sufficiently offset the spreading centers to lead 

to independent rift systems separated by major fracture faults. Moreover, the genetic 

nature of the obliquity (boundaries-driven or inherited) could control the length of the 

transform offset between two spreading centers and thus, the length of the future 

transform margin (continental domain affected by a transform fault). 

1. Introduction 

Structural inheritance is a key factor to understand the tectonic evolution and structural 

deformation pattern of the lithosphere. In particular, successive rifting events often 

occurred in regions where oceanic crust is now forming. The multiple rifting events may 

have the same kinematics (rift and divergence trends) [e.g. Gop rift, Armitage et al., 2010] 

or different ones [e.g. Vøring margin, Talwani and Eldholm, 1972]. In the specific case of 
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oblique rifting, the rift trend may be inherited from a previous orthogonal rift stage [e.g. 

the Northern Main Ethiopian Rift, Bonini et al., 1997; Wolfenden et al., 2004]. Yet, 

oblique rifts are not always related to pre-structured lithospheres and they can develop as 

a result of both specific far-field stresses and local weaknesses that define a segment 

oblique to the far-field divergence [e.g. Gulf of Aden, Bellahsen et al., 2003, 2006]. For 

example, no evidence for oblique pre-rift structuration is found in the Gulf of Aden and no 

weakness parallel to the Gulf trend is recognized in the geological record. However, a 

group of N130°E, N110°E and N90°E-oriented Mesozoic (Jurassic to Cretaceous) basins 

trend sub-orthogonal to the far-field divergence (020°E) that prevailed during oblique 

rifting. They became partially reactivated during the Tertiary episode of oblique rifting 

[Ellis et al., 1996; Granath, 2001; Leroy et al., 2012; Fig. 1]. While the Mesozoic 

structuration trends mainly orthogonally (110°E) to the Tertiary extension direction, the 

Tertiary Gulf of Aden developed with an oblique trend (075°E). This observation could 

indicate that the Mesozoic inheritance had no influence on the rift obliquity. Conversely, 

the fact that the Mesozoic basin-bounding structures were locally reactivated along the 

oblique trend of the rift seemingly indicates that they play a role in the development of the 

Tertiary rift. It is also proposed that their reactivation could have controlled the strong 

margin asymmetry in the Eastern Gulf of Aden  [D’Acremont et al., 2005, 2006]. 

Moreover, the largest inherited basins appear to be cut by first order fracture zones 

(Fig.1). The main example is the Jiza-Qamar-Gardafui basin, which is cut by the Alula-

Fartak Fracture Zone (AFFZ on Fig. 1). These observations suggest that inherited basins 

could control at least partly the present-day geometry of an oblique rift and, in particular, 

the localization of major fracture zones that segment the Gulf of Aden. 

A variety of analogue models have been used to interpret the geometry and evolution of 

oblique rifts [e.g. Withjack and Jamison, 1986; Tron and Brun, 1991; Dauteuil and Brun, 
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1993; McClay and White, 1995; Abelson and Agnon, 1997; Bonini et al., 1997; Mart and 

Dauteuil, 2000; Clifton et al., 2000; Dauteuil et al., 2001; Clifton and Schlische, 2001; 

Corti et al., 2001, 2003, 2011; Agostini et al., 2009; Autin et al., 2010a; review of Corti, 

2012]. Moreover, recent results from numerical models [Brune et al., 2012] show that 

oblique extension significantly facilitates the rift process, as oblique deformation requires 

less force in order to reach the plastic yield limit than rift-perpendicular extension. These 

results emphasize the importance of understanding the significance of oblique extension 

processes for the development of rifted margins. In this study, we use analogue models to 

explore the interaction of oblique rifting with orthogonal inherited basins. Rift obliquity is 

alternatively forced by the lateral discontinuities in the model or by the combination of 

lateral discontinuities with an oblique weakness. We compare these results with a 

previous set of analogue models of oblique rifting without orthogonal inheritance [Autin et 

al., 2010a]. Finally, we infer (1) the influence of the inherited basins on the development 

of the Gulf of Aden, (2) the localizing effect of inherited basins on fracture zones and thus 

transform margins, and (3) how the genetic nature of the obliquity (boundaries-driven or 

inherited) influences the transform fault geometry. 

2. Geological setting 

The Gulf of Aden trends 075°E and is oblique to the main direction of divergence 

[025°E to 035°E from East to West, Jestin et al., 1994; Vigny et al., 2006]. Along the 

entire Gulf, rifting started at about 34 Ma [Roger et al., 1989; Jestin et al., 1994; Robinet 

et al., 2013]. At this time, the subduction of Tethyan slabs underneath the Eurasian plates 

was blocked in the West where collision occurred, whereas it was going on in the East 

[Bellahsen et al., 2003]. This configuration combined with the Afar hot spot [45 Ma with 

main pulses at ca. 30 Ma, Hofmann et al., 1997; Ebinger and Sleep, 1998; George et al., 
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1998; Kenea et al., 2001] produced oblique rifts, whose geometries cannot be attributed to 

any preexisting lithospheric weakness [Bellahsen et al., 2003, 2006; Autin et al., 2010a]. 

The Afar hot spot is still active, as attested by present volcanic activity in the Afar area, 

by Quaternary volcanics along the Yemeni margins [Leroy et al., 2010b], and by 

shallower bathymetry and higher heat flow toward the West of the Gulf [Lucazeau et al., 

2010; Rolandone et al., 2013]. Moreover, melting anomalies and ridge jumps along the 

Sheba Ridge may also indicate that the hot spot melt and heat could have been 

channelized along the Aden Ridge [Fig. 1, d’ Acremont et al., 2010; Leroy et al., 2010b]. 

The spreading started at 17.6 Ma between Shukra El Sheik Fracture Zone (SSFZ) and the 

Africa-Arabia Shelf  [Fig. 1, D’Acremont et al., 2006; Leroy et al., 2012], at 6 Ma West of 

SSFZ [Audin et al., 2004] and at 20 Ma in the extreme eastern part [Fournier et al., 2010]. 

The structural pattern in the whole Gulf is strongly controlled by Mesozoic inherited 

basins with trends between 90°E and 140°E [see Birse et al., 1997; Brannan et al., 1997; 

Leroy et al., 2012 for a synthesis]. Mesozoic rifting started in Late Jurassic with an 

increase of the subsidence eastward during Late Jurassic-Early Cretaceous [Bott et al., 

1992; Beydoun et al., 1996]. Therefore, the Mesozoic sediment thickness increases 

eastward from 1.8 to 6 km [As-Saruri et al., 2010]. These basins were partly reactivated 

during the oblique Tertiary rifting and their reactivated parts are consequently arranged 

en-échelon along the passive margins (Fig. 1). In the final evolution of distal margins, 

deformation commonly became localized in the thinnest areas, close to the future ocean-

continent transition (OCT). In the eastern Gulf of Aden, serpentinized mantle may be 

exhumed in the OCT and locally intruded by post-rift magmatic material [D’Acremont et 

al., 2006; Autin et al., 2010b; Watremez et al., 2011], which could have been channelized 

from the Afar hot spot along the oceanic ridge and the Alula-Fartak Fracture Zone and 

transform margin [Leroy et al., 2010b]. We thus need to better understand how such large 
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scale transform margin forms to study the interaction beween magma, ridge, fracture zone 

and transform margin in the Eastern Gulf of Aden. 

3. Model setup 

3.1. Model setup, materials and scaling 

The models were constructed in a deforming box (initial dimensions: 56 × 30 × 30 cm; 

Fig. 2) consisting of a bottomless drawer sliding in a rectangular box. In our model setup, 

the drawer is pulled by a motor-driven screw jack, which sets the direction of divergence. 

The different lengths of the drawer arms create two lateral discontinuities, imposing that 

the trend of deformation is overall oblique (Fig. 2).  

Extending continental lithospheres with average crustal thickness (about 35 km) and 

geotherm behaves as a brittle-ductile multilayer [Kirby, 1983], which can be described in 

terms of a four-layer type strength profile [Davy and Cobbold, 1988, 1991]. In the 

laboratory, such a multilayer is modeled using granular materials and silicone. Here, we 

used a microsphere mix (composed of 4/5 glass to 1/5 hollow aluminum microspheres) 

and silicone putty as analogues of brittle and ductile layers respectively.  

Upon this simplification, our models represent the oblique extension of a strong 

lithosphere as observed in cratons (in terms of strength not of thickness), and as such they 

consist of an brittle upper crust, a ductile lower crust, a brittle lithospheric mantle and a 

ductile lithospheric mantle (see Fig. 2 and Table 1 for details). The modeled lithosphere 

overlies a low viscosity, higher density glucose syrup that mimics the asthenosphere. 

Thicknesses, viscosities, densities and strain rates were appropriately scaled to simulate 

an extending continental lithosphere in the ambient gravity field. The description of the 

material used in these models as well as the complete scaling calculation can be found in 

Autin et al. [2010a]. 1 cm in the experimental model corresponds to 13 km in nature; 



7 

 

1 experimental hour corresponds to 0.85 Ma in nature. The experiments were performed 

with an extension velocity of V = 5 cm/h. In the fast range of rifting processes, this 

velocity, which corresponds to about 6 cm/yr in nature, is comparable to velocities applied 

in previous studies, as is the rheology of the model used here [McClay and White, 1995; 

Benes and Davy, 1996; Brun and Beslier, 1996; Sokoutis et al., 2007]. 

3.2. Experiments 

The initial rheology and scaling of the models aim to represent the strong lithosphere, in 

which the Gulf of Aden formed (Arabian Craton). As no thermal effects can be introduced 

in the analog models, the impact of the Afar hot spot cannot be reproduced. However, the 

hot spot should have weakened the adjacent lithosphere and thus the weaker models could 

represent hotter settings, even if they do not include the hot spot itself. The models aim to 

investigate (1) the role of orthogonal inheritance on the oblique rift and transform margins 

development (2) the influence of the genetic nature of the obliquity on the rift geometry.  

(1) We considered that a Mesozoic inherited basin constitutes a rheological hardness. 

Indeed, the Mesozoic rifting took place more than 30 Ma prior to Tertiary oblique rifting. 

Thus, the upwelling lithospheric mantle, which then cools, should be thicker than the non-

stretched surrounding mantle [e.g. van Wijk and Cloetingh, 2002]. The rheological impact 

of such inheritance would thus consist in zones of stronger lithosphere, expected to 

localize the deformation at their edges. The influence of the Afar hot spot occurred after 

the Mesozoic lithosphere cooling. 

(2) The rift obliquity could either be produced by an oblique inheritance (inherited 

obliquity) or by plate boundaries effects on the initially homogeneous lithosphere 

(boundaries-driven obliquity). In the models (Fig. 2), we choose to model both types of 

obliquity. The obliquity is either forced by the modelled lateral discontinuities alone 

(boundaries-driven obliquity) or by the combination of lateral discontinuities with an 
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oblique weakness (mainly reproducing an inherited obliquity). This oblique weakness 

could either represent geological inheritance or a localized thermal weakening of the 

lithosphere by the adjacent Afar hot spot in the West (and possibly the Carlsberg ridge in 

the East). 

In this frame, we have elaborated four configurations of oblique extension (Fig. 2c): 

(a) an experiment with a stratified lithosphere of initially uniformly thick layers 

(model A), where obliquity is only induced by lateral discontinuities. It represents 

a rift with a boundaries-driven obliquity and no orthogonal inheritance; 

(b) an experiment with a strong orthogonal hardness (model B). It consists of a locally 

thicker lithospheric brittle mantle designed prior to the experiment (1 cm thick 

instead of 0.8 cm, along a 2 cm-wide zone, i.e. 26 km in nature). The model 

represents a rift with a boundaries-driven obliquity and orthogonal inheritance; 

(c) an experiment where a weakness zone trends parallel to the direction of obliquity 

imposed by the lateral discontinuities and joins them (model C). The weakness 

zone consists of a locally thinner lithospheric brittle mantle designed prior to the 

experiment (a thickness of 0.6 cm instead of 0.8 cm along a 5 mm-wide zone). The 

model represents a rift with inherited obliquity and no orthogonal inheritance; 

(d) an experiment with both the oblique weakness zone and the orthogonal hardness 

zone (model D). It represents a rift with inherited obliquity and orthogonal 

inheritance. 

The Gulf of Aden trends 075°E with a far-field divergence trending 025°E. Thus, the 

obliquity, i.e., the angle between the direction of far-field extension and the normal to the 

rift trend, is 40° and is the same in all models. The total displacement is 10 cm in all 

experiments, corresponding to an average extension of 20% throughout the entire model 

that focuses to 150 to 200% within the rift. For technical simplicity, but also in order to 
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fully observe the fault patterns, no extra sedimentation was applied during the 

experiments, since this tends to be an obstacle to clear identification of fault activity from 

the surface. This was achieved by comparing top-view photographs and scanned 

topography at successive steps of the experiment. Thermal effects or rheological changes 

occurring during rifting are not modeled in these experiments. 

Models that do not account for an orthogonal hardness zone (model A and C) were 

already studied in Autin et al. [2010a]. Thus, the present contribution will not focus on 

their development, but on the development of the models that take orthogonal pre-

structuration into account (models B and D). Models A and C led us to propose, in a 

previous study, that the Eastern Gulf of Aden would have rather developed in the absence 

of an oblique, rift-parallel weakness. 

4. Results 

In our previous study [Autin et al., 2010a], 3 main fault populations were observed that 

show different angles (θ) between the direction of divergence (θ = 0°) and the trend of the 

fault (Fig. 3). These are: (1) θ~50°: rift-parallel faults, (2) θ~70°: intermediate faults, (3) 

θ~90°: divergence-normal faults (e.g. orthogonal). We apply the same terminology in this 

study. 

4.1. Influence of extension-perpendicular crustal hardening in the case of no 
lithospheric oblique weakness 

A first approach is to compare the evolution of the models with or without orthogonal 

hardness, but without the effect of an oblique weakness (model A and B respectively, 

Fig. 3a and Fig. 3b). Model A serves as the reference model, wherein no hardening nor 

oblique lithospheric weakening is imposed and the deformation initiates close to the 

lateral discontinuities with an intermediate fault direction (2.5% extension, Fig. 3a). The 

ongoing deformation leads to the propagation of the 2 lateral deformation zones by en-
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échelon intermediate-oriented grabens. But, in the center of the model, the connection 

between these zones is formed by rift-parallel faults (4% extension). Then, deformation is 

limited to the existing grabens. They widen and deepen and new faults appear in the 

existing grabens (6.5 and 10 % extension). Clockwise rotations (> 20°) affect the 

structures and initially intermediate-oriented horsts become divergence-normal at 10-16% 

extension. The final development of the model (16 to 21% extension) shows numerous 

newly created divergence-normal faults located in the deepest parts of the most extended 

grabens. 

By comparison, model B is globally similar but with few notable differences in the 

evolution of the deformation. The presence of the orthogonal hardness is observable from 

the very beginning of development. Two grabens with an intermediate direction localize 

on the orthogonal hardness (2.5% extension, Fig. 3b and Fig. 4a). The subsequent 

deformation is localized in the 2 grabens until 3% extension. Then, deformation becomes 

more distributed when new en-échelon intermediate grabens develop to link the lateral 

discontinuities with the central grabens (4% extension). Rift-parallel faults are located at 

the extremities of the intermediate grabens all along the rift. The deeper central grabens 

prevents the lateral propagation of the deformation. Then, as for model A, the deformation 

is limited to the existing grabens. At 10.5% extension, the deformation is almost the same 

in each grabens of the model, showing that deformation is no more localized in the initial 

central grabens. Clockwise rotations of the structures (up to 50°) are even greater than in 

model A (> 20°), rotating initially intermediate horsts (θ~70°) to a θ~120° position at 23 

% extension (e.g. Fig. 4a, grabens marked by the red dots and the horst in between). This 

rotation is similar to the one affecting the orthogonal hardness (44°) from θ~90° to θ~134° 

(Fig. 5b). The final development of the model (16.5 to 23%) shows also numerous newly 

created divergence-normal faults located in the deepest parts of the most extended grabens 
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(Fig. 4 and Fig. 5). 

4.2. Role of the oblique lithospheric weakness with extension-perpendicular 
hardening 

In a second approach, we analyze the evolution of the models without or with orthogonal 

hardening, in lithospheres with an initial oblique weakness (model C and D, respectively, 

Fig. 3c and Fig. 3d). Model C initiates with en-échelon intermediate grabens all along the 

rift. They are distributed along two oblique areas on both sides of the pre-existing oblique 

weakness (2.5% extension, Fig. 3c). From this early stage, the deformation is limited to 

the existing grabens. The ongoing deformation widens and deepens the grabens. Rift-

parallel faults join the intermediate grabens, which individualize one continuous central 

horst in the rift center, above the initial oblique weakness (4 and 7 % extension). At 

10.5% extension, the central horst starts to be cut by rift-parallel to intermediate faults, 

whereas divergence-normal faults are created in the deepest parts of the most extended 

grabens (16.5 to 19.5% extension). From its initiation to the end of the experiment, the 

central horst and the lateral grabens undergo a clockwise rotation of 8°, which is much 

less than the rotation displayed by the models without oblique weakness (models A and 

B). 

By comparison, model D, which includes the divergence-orthogonal hardness, shows 

another pattern of deformation. The initial stage of deformation is similar to model C with 

en-échelon intermediate grabens all along the rift on both sides of the oblique weakness 

(2.5% extension, Fig. 3d). Three central grabens (instead of 2 in model B) develop on the 

pre-existing orthogonal hardness (2.5% extension on Fig. 4b and Fig. 5d). They have an 

intermediate to divergence-normal trend. Two of them develop on the left side of the 

weakness and one on the right side. Contrarily to model B, these central grabens do not 

prevent the lateral propagation of deformation. Rift-parallel faults form at the extremities 

of the intermediate grabens and individualize an oblique central horst. Yet, this horst is 
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more segmented than in model C (Fig. 3d, 4 and 7% extension). Afterward, no new 

structures are created outside the existing grabens, where the deformation localizes. On 

both sides of the central horst, the grabens link to form a major intermediate zone of 

deformation at 10.5% extension. From 9.5 to 22.5% extension, this large graben rotates 

from intermediate to divergence-normal with a clockwise motion (24°, Fig. 4b). 

Divergence-normal faults are created in the deepest parts of the most extended grabens. 

It is noteworthy that the differences between models C and D (inherited obliquity) are 

much more important than differences between models A and B (boundaries-driven 

obliquity). In other words, the divergence hardness has a stronger role in presence of an 

oblique inherited weakness. 

4.3. Location and evolution of the main thinning areas 

In such multilayer models, the most resistant part of the lithosphere is the brittle mantle 

(Fig. 2b). We thus consider that the low thickness of the brittle mantle (top view in Fig. 6 

and thickness in Fig. 7) provides evidence for significant thinning of the lithosphere. The 

thinnest part coincides with the most stretched part of the sand layer. This deformation 

can be compared to the pattern of the upper crust deformation (Fig. 6b) and the whole 

crust thickness (Fig. 7). In four-layer analogue models [e.g. Brun and Beslier, 1996], the 

thinning of the two brittle layers does not occur at the same place: where a graben is 

observed in the brittle crust, a brittle mantle horst is present at depth. This is explained by 

the offset between brittle crust and brittle mantle structures being accommodated by low-

angle shear zones in the intermediate ductile crust [see Brun and Beslier, 1996]. 

In model A, the deepest areas of the brittle mantle have a right-stepping en-échelon 

divergence-normal disposition, which indicates rather distributed horizontal deformation 

throughout the entire model (Fig. 6a). In model B (orthogonal mantle hardening), the main 

thinning areas in the mantle are disposed on both sides of the band of thick brittle mantle 
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(120°-oriented). The thinnest parts are not located in the rift center but close to the 

hardness inflection points (circles on Fig. 7). It is noteworthy that models A and B locally 

show areas where the thinned brittle crust and the thinned brittle mantle are superimposed 

with crossed directions (Fig. 6b, point P). They may result from large rotations (50° in 

model B, red dots grabens in Fig. 4a). Indeed, the rotation of the structures leads to an 

overprinting of the deformation: thinned areas were formed when the structures had an 

intermediate direction, then the structures rotated and a new thinned area started to 

develop in a divergence-normal direction. 

In model C (oblique weakness), the brittle mantle is extremely thinned (oblique breakup 

of the brittle mantle, Fig. 6a). The thinning area is oblique and corresponds to the location 

of the oblique weakness. The deformation localizes on the weakness zone and leads to the 

breakup of the brittle mantle.  

In model D (both orthogonal hardening and oblique weakness), the deepest brittle mantle 

topography is in the center of the rift (Fig. 6a). This area has a divergence-normal 

direction and crosses the oblique weakness. The first order deformation shows a 

divergence-normal direction of the deformation in both the brittle crust and brittle mantle 

(Fig. 6b). Nevertheless, the deepest areas of the brittle mantle (Fig. 6) do not correspond 

to the thinnest brittle mantle (Fig. 7). Indeed, the relative thickness of the brittle mantle 

shows that the thinnest areas are not located in the rift center but near both inflection 

points of the mantle hardness under the rift margins (circles on Fig. 7), as in model B.  

To summarize, at final stages, the model with uniformly thick lithospheric layers (model 

A) shows distributed divergence-normal deformation whereas the model with oblique 

weakness alone (model C) localizes the deformation obliquely. The models with 

hardnesses (models B and D) localizes the deformation along the hardness and 

particularly close to its inflection points (circles on Fig. 7). This suggests again that the 



14 

 

hardness prevents the lateral propagation of deformation, at least in the brittle mantle, 

accumulating it along its borders. 

5. Discussion 

5.1. Reactivation of the orthogonal hardness 

In these analogue models, we interpret the structures that develop above the initial 

hardness zone as reactivation of previous structures. Of course, for technical reasons due 

to our modeling approach, this reactivation does not strictly consider inherited faults but 

only the deep pre-structuration of the lithosphere strengthened by previous crustal 

thinning and subsequent cooling. In the models that account for what we now refer to as 

“Mesozoic inheritance” (models B and D, Fig. 3b and Fig. 3d), some grabens are 

reactivated at the beginning of the deformation. In both cases, they trend at an 

intermediate direction in between the divergence-perpendicular trend and the rift trend. It 

suggests that their trend is not only controlled by the hardness (and the resulting strength 

contrast) but also by the rift obliquity. Actually, in the earliest stages, it seems that the 

hardness controls only the locations of the faults, their trend being controlled by the rift 

obliquity (Fig. 3 and Fig. 5). 

In a more realistic setting however [with preexisting faults such as in Bellahsen and 

Daniel, 2005], the preexisting inherited divergence-normal faults would have been 

reactivated instead of creating intermediate faults and we can imagine that the inherited 

basins would have been reactivated in transtension. 

The evolution of the reactivated basins depends on whether the obliquity is boundary-

driven or inherited (i.e. absence or presence of an initial oblique weakness, Fig. 4). In 

model B (boundaries-driven obliquity), the reactivated grabens are located along the 

orthogonal inheritance with an intermediate trend (Fig. 4a). Nevertheless, the reactivated 
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grabens prevent the lateral propagation of the deformation and they accommodate most of 

the displacement. The hardness prevents the development of rift-parallel faults (θ~50°) in 

the center of the model, which are characteristic of the oblique evolution observed in 

model A (Fig. 3a at 4% extension). Rift-parallel faults localize in between en-échelon 

intermediate grabens where they seem to correspond to transfer zones rather than normal 

faults (no associated subsidence, Fig. 3b at 4 and 7% extension). Thus, it seems that the 

inheritance favors the en-échelon pattern of deformation over oblique structures. With 

continuing extension a divergence-perpendicular deformation belt is formed, separating 

the northern and southern parts of the rift and, due to clockwise roation, the deformation 

belt becomes almost perpendicular to the rift axis, above the sigmoid hardness (Fig. 5b). 

Then, the reactivated grabens located in the belt propagate laterally but remain separated 

by a large horst (Fig. 4a at 23% extension). Their final position shows a left-stepping en-

échelon pattern. 

In model D (inherited obliquity), three reactivated grabens are formed: two are located 

on the left side of the oblique weakness zone and one on the right side (Fig. 4b and Fig. 

5d). They develop later (2.5% extension) than in model B (1.5% extension). It seems that 

the oblique weakness delays the reactivation of the grabens. They are not initially aligned, 

as the graben located on the right side of the weakness remains separated from the other 

two by a large horst, which develops initially on the oblique weakness. The two grabens 

on the left side link together (and with a newly formed graben) to form the major 

obliquely thinned area of the brittle crust (Fig. 7). Thus, the oblique weakness has a strong 

influence on the reactivation since it separates two domains of deformation. Moreover, the 

reactivated grabens are used to create an oblique structure, which then will rotate in a 

divergence-normal position (Fig. 4b at 9.5% extension).  

Consequently, the final disposition of the reactivated grabens shows an en-échelon 
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pattern in model B, whereas model D shows an alignment of the reactivated basins 

accompanied by a strong rotation (from an oblique trend to a divergence-normal trend). 

Thus, in oblique settings, the way inherited basins are reactivated may be strongly 

dependent on the origin of the obliquity. 

5.2. Orthogonal hardening vs. oblique weakness 

The observation of model C indicates that the oblique weakness strongly influences the 

development of oblique areas of major deformation (Fig. 5c). Moreover, it even induces 

the oblique breakup of the brittle mantle (no more material on Fig. 6a), i.e. the most 

resistant layer of the modelled lithosphere (Fig. 1). The “reactivation” of the inherited 

oblique weakness is thus very efficient. Model B shows the influence of the orthogonal 

inheritance, which strongly localizes the deformation in an E-W belt and where 

reactivation is located in en-échelon grabens (Fig. 4a, red dots). The final thinning of the 

brittle mantle occurs along divergence-normal en-échelon zones (Fig. 6b). It is noteworthy 

that rotations in models that do account for orthogonal inheritance (44° in model B, 24° in 

model D) are always larger than in models that ignore it (20° in model A, 8° in model C), 

suggesting that the hardness zone rotates because it resists deformation. Model D 

indicates that the influence of orthogonal inheritance conceals that of the oblique 

weakness. Indeed, oblique development of the deformation is less obvious than in 

model C either in the brittle crust or in the brittle mantle. Moreover, the initial central 

horsts, which were aligned along the initial weakness, rotate in a divergence-normal 

direction at the final stage, so that the influence of the oblique weakness is no longer 

visible (Fig. 4b and Fig. 5d). Oblique deformation is however present on the borders of 

the rift. One could argue that our analogue model of the orthogonal inheritance was 

unrealistically determinative. The 2 cm wide initial brittle mantle hardeness scales to a 

27 km-wide zone of deformation. The largest reactivated basin along the Gulf of Aden 
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(Jiza-Qamar Basin) is 100 km wide after reactivation. If we consider that the Jiza-Qamar 

Basin underwent the improbable maximum stretching factor of 4 [for which the entire 

crust becomes brittle leading to mantle serpentinisation or strong magmatism, Pérez-

Gussinyé and Reston, 2001], the initial inherited basin would have been 25 km wide. This 

suggests that our model scales well with nature. 

To summarize, according to our analogue models, the presence of an orthogonal 

inherited rift would promote the development of en-échelon patterns of deformation as 

well as important rotations, whereas an oblique weakness zone within the lithospheric 

mantle would localize the deformation in a narrower rift. Moreover, in the presence of 

both heterogeneities, it seems that the influence of orthogonal inheritance conceals that of 

the oblique weakness. 

5.3. Comparison with the Gulf of Aden 

5.3.1. Model settings related to the Gulf of Aden features  

In a previous paper [Autin et al., 2010a], we argued that the Eastern Gulf of Aden is 

better reproduced by the model that initially has lithospheric layers with uniform 

thicknesses (model A) than by the one that accounts for oblique lithospheric weakening 

prior to extension (model C). This is supported by the absence of any observed oblique 

heterogeneity and the correspondence of the fault pattern and chronology [Lepvrier et al., 

2002; Huchon and Khanbari, 2003; Fournier et al., 2004, 2007; D’Acremont et al., 2005; 

Bellahsen et al., 2006; Autin, 2008; Leroy et al., 2012] as well as the formation of 

displacement-parallel transfer zones. It implies that oblique rifts are not necessarily 

produced by an oblique weakness zone (inherited obliquity) but can result from two 

weakness points aligned obliquely compared to the displacement direction [boundaries-

driven obliquity, e.g. Hubert-Ferrari et al., 2003]. Bellahsen et al. [2003] even suggest 

that one weakness point (Afar hot spot), with the specific far-field conditions resulting 
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from the Tethys Ocean subduction, is enough to generate oblique rifts.  

On the other hand, the influence of the Afar hot spot has undoubtedly weakened the 

lithosphere in the Western Gulf of Aden. The strong four-layer rheology used in our 

model is thus not representative of the Western Gulf of Aden. However, we propose that a 

first-order approach could be considered: models where the brittle mantle is thinner along 

the obliquity (models C and D) are weaker and thus they could be more representative of 

the western Gulf of Aden. Of course, this implies that the hot spot has weakened the 

lithosphere with a preferential direction, the one of the obliquity. This trend may have 

been controlled by the first thinning event, which displays the triple junction pattern of the 

Red Sea/Gulf of Aden/East African Rift. The trend can also be controlled by the 

alignment of the Afar hot spot in the West and the Carlsberg ridge in the East [Hubert-

Ferrari et al., 2003]. Moreover, Bellahsen et al. [this volume] propose that the buoyancy 

forces responsible for oblique structures are stronger in the Western part due to the 

warmer conditions imposed by the presence of the nearby Afar hot spot and plume 

connection (Fig. 8). Thus, these conditions could have produced a pattern similar to the 

one produced by an oblique lithospheric weakness.  

Following this reasoning, we can propose, as a working hypothesis, that the oblique 

weakness introduced in model D could be similar to a lithosphere locally weakened by the 

Afar hot spot and thus this model would correspond to the Western Gulf of Aden with the 

reactivation of the Mesozoic Balhaf and Berbera Basins (Fig. 1), now shifted by the 

Khanshir Al Irquah Fracture Zone (KAFZ). On the other hand, model B (no oblique 

weakness zone) would better reproduce the influence of reactivated Mesozoic basins in 

the Eastern Gulf of Aden, where initial thermal weakening is probably absent. This setting 

corresponds to the Mesozoic Jiza-Qamar and Gardafui Basins (Fig. 1), now offset by the 

Alula-Fartak Fracture Zone (AFFZ).  
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It is noteworthy that the influence of inheritance may be underestimated in the analog 

models. Indeed, in the Gulf of Aden, the Mesozoic sediment thickness reaches 6 km, 

which corresponds to a thinning factor of 1.6 (37.5% of thinning) after an estimation using 

the McKenzie model [1978]. In this model, for an initial crustal thickness of 40 km, the 

calculated final thickness is 25 km with a Moho shallowing of 9 km. In the models, we 

reduced the thickness of the layers representing the crust from 22 to 20 mm under the 

modelled inherited basin, i.e. a thinning factor of 1.1 (9.1% thinning).  

5.3.2. Implications for the deformation of the Mesozoic Basins  

In the models, the final pattern corresponds to an advanced stage of rifting (20% 

extension, i.e. a stretching factor of 1.25) before any crustal breakup, mantle exhumation 

or oceanic accretion. However, this pattern nicely show where the thinnest parts of the 

lithosphere would form at the late rift stage and eventually during breakup. Thus, the 

reactivated features in the models can be regarded as indicators of deformation that 

affected the Mesozoic basins from the onset of the Tertiary rifting to its end (before 

crustal breakup). 

Surprisingly, the reactivated basins in both models C and D are not aligned but separated 

by horsts (Fig. 4). At depth, they localize above the best preserved parts of the hardness in 

the brittle mantle. Further connection between these basins is prevented by the strong 

rotations that affect both the rift center and the inherited hardness (see Fig. 4 and 

descriptions in part. 4.1 and 4.2). In natural setting the presence of divergence-normal 

faults would certainly have favored the alignment of the reactivated basins, in order to 

accommodate the transtension. Nevertheless, the rotations may have helped to connect 

them with newly formed grabens in the surroundings (Fig. 4, connection of red-dotted and 

blue-dotted grabens). These models highlight that a pre-existing basin will not necessarily 

be reactivated along its full length and not with its initial pattern: A single basin can be 
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reactivated in two offset places that can experience rotations. Consequently, kinematic 

reconstructions in oblique settings should not tend to align the reactivated parts of the 

inherited basin but rather to restore the displacement induced by rotations during oblique 

rifting. 

5.3.3. Localizing effect of  Mesozoic basins on future fracture zones 

As already stated, throughout the Gulf of Aden, all reactivated basins are offset by 

fracture zones. In the light of our models, we can propose that the presence of the 

inheritance could have localized the deformation and thus created contrasts in thickness, 

which could favor the emplacement of future transform zones (although they are not 

reproduced in the models) by initiating shifted spreading centers. Moreover, in both 

models B and D, the inherited hardness is submitted to strong clockwise rotation, bending 

it into a sigmoid shape. We think that this movement could be the precursor of the right-

lateral shift separating the conjugate margins of the oblique rift. 

In the models, the strongest layer is the brittle mantle and thus, its thinning indicates the 

weakest part of the final rift. In model B, the thinnest parts of the brittle mantle (Fig. 7) 

follow the sigmoid shape on each side of the hardness zone. Moreover, it is even thinner 

toward the inflection points of the sigmoid. This suggests that the hardness prevents any 

further propagation of the deformation along the rift borders and localizes it along its 

boundaries and in particular in the narrow corners where the hardness zone meets the rift 

borders (circles on Fig. 7). Since rheological contrasts are known to localize effectively 

deformation, one can hypothesize that the stresses accumulate at the boundary between 

the thinned lithosphere and the stronger one, along the hardness. A similar localizing 

boundary exists where the thinned lithosphere is juxtaposed with the unthinned 

lithosphere on the rift borders at late stages of rifting. Both boundaries meet at the 

hardness inflection points. Following this hypothesis the weakest part of the lithosphere 
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would localize in these corners, triggering the development of two independent spreading 

centers. In a numerical model [Brune and Autin, this volume], clockwise rotations are also 

observed and they finally lead to shear zones parallel to the divergence direction in the rift 

center. Thus, with further extension, further rotation of the hardness zone in the rift center 

would be expected and implies that these spreading centers would initiate with a right-

lateral shift and would consequently require the development of a transform fault in 

between them (Fig. 9). In model D, we also observe stronger deformation along the 

inherited hardness and similar rotation and corner localization would lead to the initiation 

of shifted spreading centers. Nevertheless, the presence of the oblique weakness zone 

focuses the deformation in a narrower area, which would create closer spreading centers. 

This is compatible with natural observations: (1) In the Western Gulf of Aden, the 

deformation pattern is similar to models with an oblique weakness [Bellahsen et al., this 

volume] (Fig. 8) and the fracture zones moderately affect the continental domain 

(<100 km along the KAFZ,), indicating relatively closely spaced spreading centers. (2) In 

the Eastern part, conversely, the deformation pattern is similar to models that ignore the 

oblique weakness zone and the spreading centers are widely spaced (>200 km along the 

AFFZ,). (3) This evolution could explain the strong asymmetry observed between the 

conjugate margins of the Eastern Gulf of Aden. Indeed the southern margin is wider 

(300 km) than the northern margin (140 km) [D’Acremont et al., 2005, 2006]. These 

authors already proposed that inheritance causes the asymmetry by reactivation of the 

inherited basin. In our hypothesis, since the ridges localize close to the rift borders, it 

would also imply that (1) East of AFFZ, the largest part of the thinned continental domain 

is located on the Southern margin, between the OCT (red) and the Gardafui Basin; and (2) 

West of AFFZ, the northern continental margin should be wider, between the OCT and the 

Jiza-Qamar basin (Fig. 9). 
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Conclusion 

In these analogue models, we study the development of oblique rifting in a pre-

structured lithosphere (extension-orthogonal inherited basin), as well as the influence of 

the origin of obliquity (boundaries-driven or inherited).  

Our modelling results suggest that the way inherited basins are reactivated may be 

strongly dependent on the way obliquity is constrained. This has implications for 

kinematic reconstructions as inherited basins can be reactivated in two offset locations 

that can experience strong rotations. We also propose that extension-orthogonal inherited 

basins promote the development of en-échelon patterns of deformation and important 

rotations about a vertical axis, whereas an initial oblique weakness zone within the 

lithospheric mantle would localize the deformation in a narrower rift. Moreover, in the 

presence of both types of heterogeneities (inherited basin and oblique weakness), it seems 

that the influence of orthogonal inheritance conceals that of the oblique weakness. 

Comparing our results to the Gulf of Aden evolution suggests that reactivated basins 

could have favored the localization of future fracture zones (although not reproduced by 

our models). The inherited structure (hardness) is submitted to strong rotations and, at late 

stage of deformation, it acquires a sigmoid shape and cross-cuts the oblique rift. In the 

brittle mantle (strongest layer of the lithosphere), it prevents lateral propagation of the 

deformation along the rifted zone and localizes it along its boundaries, accumulating 

stresses. In particular, the stresses accumulate at the hardness inflection points, where the 

thinnest lithosphere is observed in the models. With ongoing rotation, the weakest part of 

the lithosphere would localize in these corners with a right-lateral shift, triggering the 

development of two independent spreading centers, allowing the development of a 

transform fault in between them. The presence of an additional oblique weakness would 

induce closer spreading centers and thus a shorter transform fault. 
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These model observations are comparable with natural observations in the Gulf of Aden, 

where inherited Mesozoic basins seem to play an important role during Tertiary rifting: 

(1) In the Western Gulf of Aden, the deformation pattern is similar to models with an 

oblique weakness (model C) and to models with both oblique weakness and orthogonal 

hardness (model D) where Mesozoic basins are present. The fracture zones moderately 

affect the continental domain (e.g. KAFZ, <100 km), indicating relatively close spreading 

centers. (2) In the Eastern part, conversely, the deformation pattern is similar to models 

that ignore the oblique weakness zone [model A, Autin et al., 2010a] and to models with 

orthogonal hardness (model B) where Mesozoic basins are present. The fracture zones 

strongly affect the continental domain (e.g. AFFZ, >200 km), with widely spaced 

spreading centers. (3) This evolution could explain the strong asymmetry observed 

between the conjugate margins of the Eastern Gulf of Aden. 
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Tables 

 Nature Model 

Crust 

Brittle upper crust 
Thickness 20 km 1.5 cm 

Density 2.6 - 2.8 g.cm-3 1.2 g.cm-3 

Ductile lower crust 
Thickness 10 km 0.7 cm 
Density 2.9 g.cm-3 1.25 g.cm-3 

Viscosity 1021 Pa.s  4.104 Pa.s  

Mantle 

Lithospheric brittle 
mantle 

Thickness ~ 12 km 0.8 cm 

Density 3.3 g.cm-3 1.2 g.cm-3 

Lithospheric ductile 
mantle 

Thickness ~ 50 km 2 cm 

Density 3.3 g.cm-3 1.33 g.cm-3 

Viscosity 1023 Pa.s 7.104 Pa.s 

 Asthenosphere 
Density 3.2 - 3.4 g.cm-3 1.41 g.cm-3 

Viscosity 1019 Pa.s 10 Pa.s 

Table 1: Main physical properties of natural and analog materials used in our models 

Figure captions 

Fig. 1: Reactivation of inherited Mesozoic basins in the Gulf of Aden [after Leroy et al., 
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2012]. a) Possible schematic geometry of the main Mesozoic basins. b) Reactivation of 

the Mesozoic basins by the Tertiary rifting. Note the local en-échelon reactivation of the 

inherited basins and their systematic shift by fracture zones in their center. c) Present-day 

distribution of the reactivated basins along the conjugate margins of the Gulf of Aden. 

SSFZ: Shukra El Sheik Fracture Zone, KAFZ: Khanshir Al Irquah Fracture Zone, AFFZ: 

Alula-Fartak Fracture Zone. 

Fig. 2: a) Deforming box used for the models whose size is initially 56 × 30 × 30 cm. 

The different lengths of the drawer arms create two lateral discontinuities, imposing that 

the trend of deformation is overall oblique. The obliquity is either forced by the lateral 

discontinuities alone (boundaries-driven obliquity) or by the combination of lateral 

discontinuities with an oblique weakness (mainly reproducing an inherited obliquity). b) 

Strength profile for the experimental lithosphere, including both the oblique weakness and 

the orthogonal hardness. c) Experimental setup for the four models discussed in this study. 

Fig. 3: Evolution of deformation in the brittle upper crust from surface views of the four 

models. It is noteworthy that the differences between models C and D are much more 

important than differences between models A and B. In other words, the mantle hardness 

(the inherited basin) has a stronger role in presence of an oblique inherited weakness. 

Fig. 4: Evolution of the reactivated grabens (red dots) in models B (a) and D (b) with 

orthogonal inheritance. The final disposition of the reactivated grabens shows an en-

échelon pattern in model B, whereas it shows also alongside reactivated basins in 

model D. Thus, in oblique settings, the way inherited basins are reactivated is strongly 

dependent on the way obliquity is constrained. 

Fig. 5: Evolution of the fault pattern in the brittle upper crust and of the oblique 

weakness and orthogonal inheritance for the 4 models. 

Fig. 6: Comparison of deformation in the brittle upper crust and the brittle lithospheric 
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mantle. a) Top of the brittle mantle at the end of the experiment. b) Thinned areas in the 

brittle upper crust (blue) and in the brittle mantle (orange) at the end of the experiment. 

Note the phase opposition of deformation in the crust and the mantle. 

Fig. 7: Relative thickness of the most resistant layer in models B and D: the brittle 

mantle. Note that the highest thinned zones are localized on both sides of the inherited 

hardness and in particular close to the inflection points (circles). 

Fig. 8: Two types of rift/ridge geometries in the Gulf of Aden [Bellahsen et al., this 

volume]. In the East, the Sheba ridge strikes parallel to long segments of the continental 

rifted margins (110°E) and OCT and few (rather) large transform faults are active. In such 

a domain, the asthenosphere is rather cold and buoyancy forces were rather weak (but 

active) during rifting. In the West, the Aden ridge is highly segmented, with short 

segments, small and very numerous transform faults or accommodation zones between 

segments (same abbreviations as in Fig. 1). The ridge is parallel to the OCT (070°E) but 

very oblique to the (110°E to 140°E) syn-rift basins. This suggests strong active buoyancy 

forces due to a hotter asthenosphere than in the East, as a consequence of the nearby Afar 

hot spot activity. 

Fig. 9: Comparison of model B with the Eastern Gulf of Aden. Right map from Leroy et 

al. [2012] based on a synthesis from field work and seismic reflection data [Beydoun and 

Bichan, 1969; Platel and Roger, 1989; Roger et al., 1989, 1992; Menzies and al, 1994; 

Fantozzi, 1996; Andrew Samuel et al., 1997; Morrison et al., 1997; Birse et al., 1997; 

Brannan et al., 1997; Watchorn et al., 1998; Khanbari, 2000; Lepvrier et al., 2002; Leroy 

et al., 2004, 2010a; Fournier et al., 2004; D’Acremont et al., 2005, 2006; Bellahsen et al., 

2006; Autin et al., 2010b]. OCT: ocean continent transition. The 3 left figures are views of 

the model at the end of the experiment. The thinnest parts of the brittle mantle could lead, 

after rotation, to the initiation of shifted spreading centers on both side of the inherited 
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hardness (OCT / future spreading centers of the Gulf of Aden are reported in red). This 

shift could be at the origin of the initiation of a transform fault. This evolution could 

explain the strong asymmetry of the conjugate margins in the Eastern Gulf of Aden. In our 

hypothesis, since the ridges localize close to the rift borders, it would also imply that (1) 

East of AFFZ, the largest distal continental domain is located on the Southern margin, 

between the OCT (red) and the Gardafui Basin; and (2) West of AFFZ, the northern distal 

margin should be wider, between the OCT and the Jiza-Qamar basin. 
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