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HIGHER PREPROJECTIVE ALGEBRAS AND STABLY

CALABI-YAU PROPERTIES

CLAIRE AMIOT AND STEFFEN OPPERMANN

Abstract. In this paper, we give sufficient properties for a finite di-
mensional graded algebra to be a higher preprojective algebra. These
properties are of homological nature, they use Gorensteiness and bimod-
ule isomorphisms in the stable category of Cohen-Macaulay modules.
We prove that these properties are also necessary for 3-preprojective
algebras using [Kel11] and for preprojective algebras of higher represen-
tation finite algebras using [Dug12].
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1. Introduction

Preprojective algebras play an important role in many different parts of
mathematics. Such an algebra is associated to a quiver Q without oriented
cycles. It has been defined by Gelfand and Ponomarev in the 70’s to get
a better understanding of the representation theory of the path algebra of
the quiver Q. Recently, in the context of higher Auslander-Reiten theory,
Iyama generalized the definition of preprojective algebras. If Λ is a finite
dimensional algebra of global dimension d − 1, its d-preprojective algebra
Πd(Λ) is defined as the tensor algebra TΛ Extd−1

Λe (Λ,Λe) where Λe is the
enveloping algebra Λ⊗k Λ

op. It is naturally a positively graded algebra.
In this paper, we are interested in the properties that characterize finite

dimensional preprojective algebras. For d = 2, the preprojective algebra
Π = Π2(kQ) is finite dimensional if and only if Q is a Dynkin quiver, and,
in that case, by a classical result, the algebra Π is selfinjective and there is
a functorial isomorphism

Ext1Π(X,Y ) ∼= DExt1Π(Y,X)

for any X,Y ∈ modΠ. So in other words, the triangulated category modΠ
is 2-Calabi-Yau. The duality above comes from an isomorphism

HomΠe(Π,Πe) ∼= Ω3
ΠeΠ(1)

in the stable category of graded bimodules gr-Πe (where Π(1) is the graded
bimodule Π shifted by 1). This isomorphism can also be written

RHomΠe(Π,Πe)[3] ∼= Π(1) in Db(gr-Πe)/ gr-perf Πe

using the triangle equivalence gr-Πe ∼= Db(gr-Πe)/ gr-perf Πe. The main
result of this paper is the following.

Theorem 1.1 (Theorem 3.1). Let Π =
⊕

i>0Πi be a finite dimensional
graded algebra satisfying the following properties:

(a) pdimDΠ = idimΠ 6 d − 2, that is Π is of Gorenstein dimension
6 d− 2;

(b) RHomΠe(Π,Πe)[d + 1] ∼= Π(1) in Db(gr-Πe)/ gr-perf Πe;

(c) Extjgr-Πe(Π,Πe(i)) = 0 for all i < 0 and j > 0.

Then Π is isomorphic as a graded algebra to Πd(Λ) for some algebra Λ of
global dimension d− 1.

Note that the property (b) implies that the stable category of maximal
Cohen-Macaulay modules over Π is a d-Calabi-Yau triangulated category.

In a second part of the paper, we show that in certain situations also the
converse of the above theorem holds. We prove that properties (a), (b) and
(c) are satisfied by the finite dimensional preprojective algebras for d = 2
and d = 3 (Theorems 5.1 and 5.7). Moreover, using the results of Dugas
in [Dug12], we prove that properties (a), (b) and (c) holds for selfinjective
d-preprojective algebras for any d. More precisely we prove the following.

Theorem 1.2 (Theorems 4.8 and 5.9). The map Λ Πd(Λ) gives a one to
one correspondence between (d−1)-representation finite algebras Λ and finite
dimensional selfinjective graded algebras Π satisfying RHomΠe(Π,Πe)[d +
1] ∼= Π(1) in Db(gr-Πe)/ gr-perf Πe.
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This result is very similar to Theorem 4.35 of [HIO12] that asserts that
the preprojective construction gives a one to one correspondence between
(d−1) representation-infinite algebras Λ and homologically smooth algebras
Π satisfying RHomΠe(Π,Πe)[d] ∼= Π(1) in Db(gr-Πe).

Plan of the paper. The paper is organized as follows. We start in Section 2
with preliminaries on graded Gorenstein algebras, and Cohen-Macaulay
modules, and define the notion of bimodule stably (1)-twisted d-Calabi-
Yau algebras. The main result of the paper is proved in Section 3. Section 4
gives an interpretation of the Gorenstein dimension of an d-preprojective
algebra Πd(Λ) in term of some Hom-vanishing in the category Db(modΛ).
In Section 5, we prove that the converse of Theorem 3.1 is true for d = 2,
d = 3, and for preprojective algebras of (d−1)-representation finite algebras.

Notation. All algebras in this paper are finite dimensional algebras over
a field k. For an algebra A, we denote by Ae the tensor algebra A ⊗ Aop.
The dual Homk(A, k) of A is denoted by DA. When nothing else is stated
explicitly, tensor products are over the field k.

Acknowledgement. We thank Alex Dugas for helpful hints about his ar-
ticle [Dug12].

2. Preliminaries

2.1. Graded algebras and graded modules. Let A =
⊕

n∈N An be a
positively graded algebra. For a graded A-module M =

⊕
n∈ZMn, and for

any p ∈ Z, we denote by M(p) the graded module
⊕

n∈Z Mn+p, that is the
degree n part of M(p) is Mp+n. We denote by gr-A the category of finitely
generated graded A-modules. Morphisms in gr-A are graded morphisms
homogeneous of degree 0. The category gr-A is an abelian Krull-Schmidt
category.

By an abuse of notation, for M ∈ gr-A we will denote by M ∈ modA

its image in modA under the forgetful functor gr-A modA. Note that
the Aop-module HomA(M,A) has a natural structure of graded Aop-module
given by

⊕
p∈ZHomgr-A(M,A(p)).

We write

gr-proj60 A = add{A(i) | i > 0}, and

gr-proj>0 A = add{A(i) | i < 0}

for the subcategories of gr-projA of projectives generated in positive, re-
spectively in non-positive, degrees.

For an additive category A, we denote by Kb,−(A) (resp.Kb(A)) the ho-
motopy category of right bounded (resp. bounded) complexes of objects in
A.

Proposition 2.1. Let A be a positively graded algebra, such that A0 has fi-
nite global dimension. Then Db(gr-A) = Kb,−(gr-projA) has a semiorthog-
onal decomposition

Kb,−(gr-projA) =
〈
Kb(gr-proj60A),K

b,−(gr-proj>0A)
〉
.
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That is, we have HomKb,−(gr-projA)(K
b(gr-proj60 A),K

b,−(gr-proj>0 A)) =

0, and for X ∈ Kb,−(gr-projA) there is a triangle

X60︸︷︷︸
∈Kb(gr-proj60 A)

X X>0︸︷︷︸
∈Kb,−(gr-proj>0 A)

Remark 2.2. It follows that the triangle in Proposition 2.1 is functorial in
X. We will denote by (−)>0 and (−)60 the functors in the triangle.

This semi-orthogonal decomposition has already been used in [Orl05].

Proof of Proposition 2.1. Since A is positively graded the space Homgr-A(A(i), A(j))
vanishes whenever j < i. It follows that

Homgr-projA(gr-proj60A, gr-proj>0A) = 0,

and thus we have the Hom-vanishing of the proposition.
To obtain the triangle, we observe that any graded projective is the di-

rect sum of a graded projective generated in non-positive degree and a
graded projective generated in positive degree. Choosing such decompo-
sitions for all terms of a right bounded complex X of graded projective

A-modules gives rise to a short exact sequence X60 X X>0 and thus

to a triangle in the homotopy category, where X60 ∈ Kb,−(gr-proj60 A) and

X>0 ∈ Kb,−(gr-proj>0 A). Finally observe that, since A0 has finite global
dimension, we may assume that only finitely many terms of the complex are
not generated in positive degrees, that is X60 is also left bounded. �

2.2. Graded Cohen-Macaulay modules.

Definition 2.3. An algebra A is said to be Gorenstein if its injective di-
mension (denoted idA) and the projective dimension of its dual (denoted
pdDA) are both finite. For such an algebra, the Gorenstein dimension of
A is the integer idA = pdA. We define the category of (maximal) Cohen-
Macaulay modules by:

CM(A) := {X ∈ modA | ExtiA(X,A) = 0 for i > 0}

If moreover A is a graded algebra we denote by

gr-CM(A) := {X ∈ gr-A | ExtiA(X,A) = 0 for i > 0}

the category of graded (maximal) Cohen-Macaualy A-modules.

The next result is the graded version of a famous triangle equivalence
[Buc87, Theorem 4.4.1] (see also [KV87, Ric89]).

Theorem 2.4. Let A be a graded Gorenstein algebra, then gr-CM(A) is a
Frobenius category and there is a triangle equivalence

Db(gr-A)/ gr-perf A
∼

gr-CM(A).

Because of this equivalence, we will use the notation gr-CM(A) for the

category Db(gr-A)/ gr-perf(A). That is we may write M ∼= N in gr-CM(A)
even if M and N are not Cohen-Macaualy modules.

The next two lemmas are classical results on maximal Cohen-Macaulay
modules that will be used in this paper.
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Lemma 2.5. Let A be a graded Gorenstein algebra of dimension g. For
X ∈ gr-A, its g-th syzygy Ωg(X) is Cohen-Macaulay.

Lemma 2.6. Let A be a graded Gorenstein ring, M a graded A-module.
Then there is a short exact sequence

K CMM M

with pdK < ∞ and CMM ∈ gr-CMA.
In this situation CMM is called a Cohen Macaulay replacement of M .

Proof. This fact is well-known, but we include a sketch of the proof for the
convenience of the reader.

Sufficiently high syzygies of M are Cohen-Macaulay by Lemma 2.5, so the
claim trivially holds for them. Assume we already found the upper sequence
in the diagram below.

Ki CM(ΩiM) ΩiM

P̄i−1 Pi−1

Ki−1 CM(Ωi−1M) Ωi−1M

approx.

The right vertical sequence is the defining sequence of ΩiM , and the middle
one is obtained by taking a left projective approximation of CM(ΩiM) and
its cokernel. We obtain an induced map as indicated by the upper dashed
arrow, which can be assumed to be split epi (by enlarging P̄i−1 if necessary).
Then we obtain the desired sequence in the lower row of the diagram. Indeed,

Ki−1 has finite projective dimension since both the kernel of P̄i−1 Pi−1

and Ki do. �

Remark 2.7. The proof above also shows that, provided M is generated
in degree 0, we may choose CMM to only have projective summands which
are generated in degree 0.

Lemma 2.8. In the setup of Lemma 2.6 the following are equivalent:

(1) ∀j > 0 ∀i < 0: Extjgr-A(M,A(i)) = 0, and

(2) K can be chosen such that it has a projective resolution in gr-proj60A.

Proof. Since CMM is Cohen-Macaulay, applying the functor Homgr-A(−, A(i))
to the short exact sequence, we obtain isomorphisms

Extjgr-A(M,A(i)) ∼= Extj−1
gr-A(K,A(i)) for all j > 1

and an exact sequence

Homgr-A(M,A(i)) Homgr-A(CMM,A(i))

Homgr-A(K,A(i)) Ext1gr-A(M,A(i)).
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(1) =⇒ (2): Pick a minimal projective resolution of K

0 Pd · · · P0 K.

Let j be the leftmost position such that Pj is not contained in gr-proj60 A

(assuming such a term exists). It follows that Extjgr-A(K,A(i)) 6= 0 for some

i < 0. By (1) and the discussion above it follows that j = 0. Thus K has a
non-zero direct summand in gr-proj>0 A. Since Ext

1
gr-A(M, gr-proj>0 A) = 0

such a summand can be split off of the short exact sequence.
(2) =⇒ (1): Since K has a projective resolution in gr-proj60A, we have

Extjgr-A(K,A(i)) = 0 for all i < 0 and all j. The claim then immediately
follows from the discussion above. �

2.3. Stably graded Calabi-Yau algebras.

Definition 2.9. A Gorenstein graded algebra A is called stably (p)-twisted
d-Calabi-Yau if there is a functorial isomorphism

DExtigr-A(X,Y ) ∼= Extd−i
gr-A(Y (p),X)

for any X,Y ∈ gr-CMΠ and for any i ∈ Z.

Definition 2.10. A graded algebra A is called bimodule stably (p)-twisted
d-Calabi-Yau if there is an isomorphism

RHomAe(A,Ae)[d+ 1] ∼= A(p) in gr-CM(Ae).

The integer p is called the Gorenstein parameter.

Remark 2.11. Recall that a bimodule (d + 1)-Calabi-Yau algebra is an
homologically smooth algebra satisfying

RHomAe(A,Ae)[d+ 1] ∼= A in Db(gr-Ae).

So the choice of d for the Calabi-Yau dimension in our definition could seem
strange. But the reason of our choice is motivated by the following result.

Theorem 2.12. Let A be a finite dimensional graded Gorenstein algebra
which is bimodule stably (p)-twisted d-Calabi-Yau, then A is stably (p)-
twisted d-Calabi-Yau.

Proof. This can be shown using an Auslander-Reiten formula in gr-CMA
as it is done in [Yos90, 3.10] and [IY08, Theorem 8.3] for local isolated
singularities. Here we give a different argument using the description of the
category gr-CMA as the localisation Db(gr-A)/ gr-perf A.

From [Kel08, Lemma 4.1] we know that for any X,Y ∈ Db(gr-A) there is
a functorial isomorphism

DHomDb(gr-A)(X,Y ) ∼= HomDb(gr-A)(RHomAe(A,Ae)
L

⊗A Y,X).

Moreover since the algebra A is Gorenstein, the functorRHomAe(A,Ae)
L

⊗A−
sends any perfect complex to a perfect complex. Therefore we can apply
[Ami08, Proposition 4.3.1] to deduce that the category Db(gr-A)/ gr-perf A

has a Serre functor whose inverse is given by RHomAe(A,Ae)[1]
L

⊗A −.
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Now for any objects X,Y ∈ gr-CMA and for any i ∈ Z we have functorial
isomorphisms

DExtigr-A(X,Y ) ∼= DHomgr-A(X,Y [i])

∼= Homgr-A(RHomAe(A,Ae)[i+ 1]
L

⊗A Y,X)

∼= Homgr-A(A[i− d](p)
L

⊗A Y,X)

∼= Homgr-A(Y (p),X[d − i])

∼= Extd−i
gr-A(Y (p),X).

�

Note that if A is bimodule stably (p)-twisted d-Calabi-Yau, then it is
bimodule stably d-Calabi-Yau as an ungraded algebra. Therefore, by the
same argument the stable category CMA is d-Calabi-Yau.

2.4. Higher preprojective algebras. Let Λ be a finite dimensional alge-

bra of global dimension d − 1. We denote by Sd−1 = −
L

⊗Λ DΛ[−d + 1] the
composition of the Serre functor with the (d−1) desuspension of the bounded
derived category Db(modΛ). It is an autoequivalence of Db(modΛ). We
denote by τd−1 the composition

modΛ Db(modΛ) Db(modΛ) modΛ
Sd−1 H0

The algebra Λ is called τd−1-finite if the functor τd−1 is nilpotent.

Definition 2.13. [IO13] The d-preprojective algebra of Λ is defined to be
the tensor algebra

Πd(Λ) := TΛ Extd−1
Λ (DΛ,Λ).

It is immediate to see that we have ΠdΛ ∼=
⊕

p>0 τ
−p
d−1Λ as Λ-bimodules.

Hence the algebra Λ is τd−1-finite if and only if Πd(Λ) is finite dimensional.

3. Homological characterization of finite dimensional

preprojective algebras

In this section we prove the main result of the paper, that gives a sufficient
condition for a finite dimensional graded algebra Π to be the d-preprojective
algebra of its degree zero subalgebra.

3.1. Main result and strategy of the proof.

Theorem 3.1. Let Π be a finite dimensional positively graded algebra, and
an integer d > 2, such that

(1) Π is Gorenstein of dimension at most d− 2, that is idΠ = pdDΠ =
g, for some g 6 d− 2;

(2) Π is bimodule stably (1)-twisted d-Calabi-Yau;

(3) Extjgr-Πe(Π,Πe(i)) = 0 for all i < 0 and j > 0.

Then Λ = Π0 is a τd−1-finite algebra of global dimension 6 d− 1, and Π is
the d-preprojective algebra of Λ.
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The main ingredient of the proof is the triangle

Π60 Π Π>0 in Db(gr-Πe)

given by Proposition 2.1, that is a decomposition of the projective bimodule
resolution of Π according to the degrees the projective bimodules are gener-
ated in. More precisely the strategy of the proof consists of the computation
of the cohomology groups of the triangle

Π60 ⊗
L

Π Λ Π⊗L

Π Λ Π>0 ⊗
L

Π Λ in Db(gr-Π⊗ Λop).

Let us start by reformulating some of the conditions. By Lemmas 2.6 and
2.8 and Remark 2.7 there is a short exact sequence of Πe-modules

K M Π,

such that K has a finite projective resolution, with terms geerated in non-
positive degree, and M is a Cohen-Macaulay Πe-module, all of whose pro-
jective summands are generated in degree zero.

We get the following immediate reformulation of Condition (2) in terms
of M :

Observation 3.2. We may reformulate the condition that Π is stably (1)-
twisted d-Calabi-Yau (Condition (2)) by adding the following isomorphisms
(in gr-CM(Πe)) in front of and after the defining one:

RHomΠe(M,Πe)[d+1] ∼= RHomΠe(Π,Πe)[d+1]
def
∼= Π(1) ∼= Ωd+1

Πe Π[d+1](1).

Note that since M is Cohen-Macaulay we may drop the R in the left-
most term. Moreover by Condition (1) we have that also Ωd+1

Πe Π is Cohen-
Macaulay. Thus, under Condition (1), Condition (2) is equivalent to

HomΠe(M,Πe)(−1) ∼= Ωd+1
Πe Π

up to projective summands generated in degree 1.

3.2. The global dimension of Λ.

Proposition 3.3. In the setup of Theorem 3.1 we have gl.dimΛ 6 d− 1.

Proof. It suffices to show that pdΛe Λ 6 d − 1. We have the following
isomorphisms of Λe-modules:

Ωd
ΛeΛ ∼= (Ωd

ΠeΠ)0

∼= (Ω−1
ΠeΩ

d+1
Πe Π)0 since Ωd

ΠeΠ is CM (Assumption (1))

∼= (Ω−1
Πe HomΠe(M,Πe)(−1))0 by Observation 3.2

∼= (HomΠe(ΩΠeM,Πe)(−1))0

= Homgr-Πe(ΩΠeM,Πe(−1))

From the short exact sequence K M Π, it is easy to construct a short

exact sequenceK ′ ΩΠeM ΩΠeΠ withK ′ having a projective resolution
in gr-proj60Π

e. Thus Homgr-Πe(K ′,Πe(−1)) vanishes and we have

Homgr-Πe(ΩΠeM,Πe(−1)) ∼= Homgr-Πe(ΩΠeΠ,Πe(−1)).



HIGHER PREPROJECTIVE ALGEBRAS AND STABLY CALABI-YAU PROPERTIES 9

Therefore we have

Ωd
Λe(Λ) ∼= Ext1gr-Πe(Π,Πe(−1)) = 0

by assumption (3). �

3.3. Proof of Theorem 3.1. We start with a technical lemma that will be
useful.

Lemma 3.4. In the setup of Theorem 3.1 we have an isomorphism

Hi(Π>0 ⊗
L

Π Λ) ∼= Hi+d(Π(−1) ⊗L

Λ RHomΛ(DΛ,Λ)) in gr-(Π⊗ Λop)

for all i > −d+ g + 1, where g is the Gorenstein dimension of Π.
In particular

H−1(Π>0 ⊗
L

Π Λ) ∼= Π(−1) ⊗Λ Extd−1
Λ (DΛ,Λ)

and

Hi(Π>0 ⊗
L

Π Λ) = 0 ∀i > 0.

Proof. Since K has a projective resolution with terms in gr-proj60Π
e we

have

Π>0
∼= M>0 in Db(gr-Πe).

From Observation 3.2 we know that the graded Cohen-Macaualy Πe-modules
M and HomΠe(Ωd+1

Πe Π,Πe)(−1) are isomorphic up to projective summands
generated in degree 0. Thus

Π>0
∼= (HomΠe(Ωd+1

Πe Π,Πe)(−1))>0.

Next we denote by P the complex formed by the first d + 1 terms of a
graded projective resolution of Π as Πe-module. Thus we have a triangle

Ωd+1
Πe Π[d] P Π in Db(gr-Πe).

Applying the functor (RHomΠe(−[−d],Πe)(−1))>0 we obtain

(RHomΠe(Π[−d],Πe)(−1))>0 (HomΠe(P [−d],Πe)(−1))>0 Π>0 .

Observe that since Ωg
ΠeΠ is Cohen-Macaulay, the complexRHomΠe(Ωg

ΠeΠ,Πe)
is concentrated in homological degree 0, hence the complex RHomΠe(Π,Πe)
is concentrated in homological degrees 0, . . . , g. Therefore the complex

RHomΠe(Π[−d],Πe)(−1) = RHomΠe(Π,Πe)[d](−1)

is concentrated in homological degrees−d, . . . ,−d+g. Thus alsoRHomΠe(Π[−d],Πe)(−1)⊗L

Π
Λ is concentrated in homological degrees 6 −d+ g.

It follows that for i > −d+ g + 1 we have

Hi(Π>0 ⊗
L

Π Λ) ∼= Hi(HomΠe(P [−d],Πe)(−1))>0 ⊗
L

Π Λ)(3.1)

∼= Hi+d((HomΠe(P,Πe)(−1))>0 ⊗
L

Π Λ).

Moreover observe that

(HomΠe(P,Πe)(−1))>0
∼= HomΠe(P,Πe)>−1(−1) ∼= HomΠe(P60,Π

e)(−1).

Since Π is a positively graded algebra, P60 is generated in degree 0. Hence
P60 = Π⊗Q⊗Π, where Q is the complex formed by the first (d+1) terms
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of a projective resolution of Π0 = Λ as Λe-module. Since gl.dimΛ 6 d − 1,
Q is a projective resolution of Λ as Λe-module, this leads to

(3.2) (HomΠe(P,Πe)(−1))>0
∼= Π⊗Λ HomΛe(Q,Λe)⊗Λ Π(−1).

Combining (3.1) and (3.2) we obtain

Hi(Π>0 ⊗
L

Π Λ) ∼= Hi+d((HomΠe(P,Πe)(−1))>0 ⊗
L

Π Λ)

∼= Hi+d(Π⊗Λ HomΛe(Q,Λe)⊗Λ Π(−1)⊗Π Λ)

∼= Hi+d(Π(−1)⊗L

Λ RHomΛe(Λ,Λe))

∼= Hi+d(Π(−1)⊗L

Λ RHomΛ(DΛ,Λ))

for i > −d+ g + 1.
Now since g 6 d−2, we have g−d+1 6 −1. Moreover the global dimension

of Λ is at most d − 1, so the complex RHomΛ(DΛ,Λ) is concentrated in
degrees 6 d− 1. Hence we have

Hi+d(Π(−1) ⊗L

Λ RHomΛ(DΛ,Λ)) ∼= Π(−1)⊗Λ Extd−1(DΛ,Λ) for i = −1

= 0 for i > 0.

This finishes the proof. �

We now obtain the following short exact sequence, which is an essential
ingredient to our proof.

Proposition 3.5. In the setup of Theorem 3.1 we have a short exact se-
quence of graded Πop ⊗ Λ-modules

Π(−1)⊗Λ Extd−1
Λ (DΛ,Λ) Π Λ,

where Π Λ is the natural projection.

Proof. Consider Π as object in Db(gr-Πe), and the triangle

Π60 Π Π>0

given by Proposition 2.1. Applying the functor −⊗L

ΠΛ we obtain a triangle

Π60 ⊗
L

Π Λ Π⊗L

Π Λ Π>0 ⊗
L

Π Λ in Db(gr-Π⊗ Λop).

Recall that from Observation 3.2, Ωd+1
Πe Π and HomΠe(M,Πe)(−1) are iso-

morphic up to projective summands generated in degree 1. Hence we have
the following isomorphisms in Db(gr-Πe):

(Ωd+1
Πe Π)60

∼= (HomΠe(M,Πe)(−1))60

∼= (HomΠe(Π,Πe)(−1))60 since the projective resolution

of K is generated in non-positive

degrees

= 0 since Π is a positively graded algebra.

So we get Π60
∼= P60 = Π⊗Λ Q⊗Π where Q is a projective resolution of Λ

as Λe-module. Therefore we obtain Π60 ⊗
L

Π Λ ∼= Π.

Since we clearly have Π⊗L

Π Λ = Λ we obtain an exact sequence

H−1(Π>0 ⊗
L

Π Λ) Π Λ H0(Π>0 ⊗
L

Π Λ).
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Now the claim follows from the “in particular” part of Lemma 3.4 above.
�

By Proposition 3.5 we have an isomorphism of graded Π⊗ Λ-modules

Π(−1)⊗Λ Extd−1
Λ (DΛ,Λ) ∼= Π>0.

The next Proposition shows that this is enough to identify Π as the tensor
algebra TΛ Extd−1

Λ (DΛ,Λ) and thus finishes the proof of Theorem 3.1.

Proposition 3.6. Let Π be a positively graded ring, Λ = Π0, and X a
Λ⊗ Λop-module. Assume there is an isomorphism

Π(−1)⊗Λ X ∼= Π>0

of graded Π⊗ Λop-modules.
Then, as graded rings,

Π ∼= TΛX.

Proof. Let h : Π(−1)⊗Λ X
∼=

Π>0 as in the assumption.
We define an isomorphism of graded Λ⊗ Λop-modules

ϕ : TΛX Π

iteratedly by ϕ0 = idΛ and by letting ϕn be the composition

(TΛX)n = X⊗Λn
ϕn−1 ⊗ idX

Πn−1 ⊗Λ X ∼= Πn,

where the last isomorphism is the degree n-part of h.
It only remains to check that ϕ respects the ring-multiplication. It suffices

to check that

ϕn+m(f ⊗ g) = ϕn(f)ϕm(g)

for any f ∈ X⊗Λn and g ∈ X⊗Λm. We show this by induction on m. For
m = 0 this is just the Λ-linearity of ϕn. For m = 1 we have

ϕn+1(f ⊗ g)
def
= h(ϕn(f)⊗ g) = ϕn(f)h(1⊗ g)

def
= ϕn(f)ϕ1(g).

For m > 1 we may assume that g = x ⊗ g′ for some x ∈ X. (An arbitrary
element is a sum of elementary tensors, but since all maps involved are linear
it suffices to consider a single elementary tensor.) Now

ϕn+m(f ⊗ g) = ϕn+m(f ⊗ x⊗ g′)

= ϕn+1(f ⊗ x)ϕm−1(g
′) by inductive assumption

= ϕn(f)ϕ1(x)ϕm−1(g
′) by the case m = 1

= ϕn(f)ϕ1(x⊗ g′) by inductive assumption

= ϕn(f)ϕm(g). �

Observation 3.7. Since Π is a finite-dimensional algebra, it follows that
Λ is τd−1-finite, since this is equivalent to TΛ Extd−1

Λ (DΛ,Λ) being finite
dimensional.
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4. The Gorenstein dimension

4.1. Gorenstein dimension and cluster tilting subcategories. In this
section, we express the Gorenstein dimension of the algebra Π of Theo-
rem 3.1 in terms of certain vanishing of extensions in the derived category
Db(modΛ). We start with the following result/definition:

Theorem 4.1 ([Ami08, 5.4.2][Iya11, 1.22]). Let Λ be a τd−1-finite algebra.
Then the category

U = add{Sid−1Λ | i ∈ Z} ⊆ Db(modΛ)

is a (d− 1)-cluster tilting subcategory, that is

U = {X ∈ Db(modΛ)|ExtiΛ(U ,X) = 0 ∀i = 1, . . . , d− 2}

= {X ∈ Db(modΛ)|ExtiΛ(X,U ) = 0 ∀i = 1, . . . , d− 2}.

Note that if Π is an algebra as in Theorem 3.1, its degree zero subalgebra
Λ is always τd−1-finite, so the result above applies. The aim here is to express
the Gorenstein dimension g of Π using the subcategory U . More precisely
the main result of this section is the following.

Theorem 4.2. In the setup of Theorem 3.1 the Gorenstein-dimension g of
Π is given by

g = d− 1 + max{i < 0 | HomDb(modΛ)(U ,U [i]) 6= 0}.

The proof of this theorem consists of two main steps: First, in Lemma 4.3
and Proposition 4.4, we calculate g in terms of the non-vanishing of ho-
mologies of the complex Π ⊗L

Λ RHomΛ(DΛ,Λ). Second we show that this
description coincides with the right hand side term given in the theorem.

Lemma 4.3. In the setup of Theorem 3.1 we have

Hi(Π⊗L

Λ RHomΛ(DΛ,Λ)) = 0 ∀i ∈ {g + 1, . . . , d− 2}.

Proof. By Lemma 3.4 we have

Hi(Π⊗L

Λ RHomΛ(DΛ,Λ)) = Hi−d(Π>0 ⊗
L

Π Λ) ∀i > g + 1.

Looking at the proof of Proposition 3.5 we see that

Hi(Π>0 ⊗
L

Π Λ) = 0 ∀i 6= −1.

The claim follows from these two statements. �

We now prove a converse of Lemma 4.3.

Proposition 4.4. In the setup of Theorem 3.1 we have

g = max{i 6 d− 2 | Hi(Π⊗L

Λ RHomΛ(DΛ,Λ)) 6= 0}.

Proof. We have the inequality “>” by Lemma 4.3. It remains to show that
Hg(Π ⊗L

Λ RHomΛ(DΛ,Λ)) 6= 0. To do so, we analyse what happens in the
proof of Lemma 3.4 for i = −d + g. As in the proof there, we obtain the
triangle

(RHomΠe(Π[−d],Πe)(−1))>0⊗
L

ΠΛ (HomΠe(P [−d],Πe)(−1))>0⊗
L

ΠΛ Π>0⊗
L

ΠΛ
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where P is the complex formed by the first (d+1) terms of a projective
resolution of Π as a graded Π-bimodule. Since Hi(Π>0⊗

L

ΠΛ) = 0 for i 6= −1
it follows that

Hi((RHomΠe(Π[−d],Πe)(−1))>0⊗
L

ΠΛ)
∼= Hi((HomΠe(P [−d],Πe)(−1))>0⊗

L

ΠΛ)

whenever i < −1. In particular

Hg((RHomΠe(Π,Πe)(−1))>0 ⊗
L

Π Λ) = Hg−d((RHomΠe(Π[−d],Πe)(−1))>0 ⊗
L

Π Λ)

∼= Hg−d((HomΠe(P [−d],Πe)(−1))>0 ⊗
L

Π Λ)

(since g − d 6 −2)

= Hg((HomΠe(P,Πe)(−1))>0 ⊗
L

Π Λ).

As in the proof of Lemma 3.4 we observe that

(HomΠe(P,Πe)(−1))>0 ⊗
L

Π Λ ∼= (HomΠe(P60,Π
e)(−1)) ⊗L

Π Λ

∼= Π(−1)⊗L

Λ HomΛe(Q,Λe)

∼= Π(−1)⊗L

Λ RHomΛ(DΛ,Λ)

where Q is a projective resolution of Λ as a Λ-bimodule. Hence it suffices
to show that

Hg((RHomΠe(Π,Πe)(−1))>0 ⊗
L

Π Λ) 6= 0.

Since the complex RHomΠe(Π,Πe) is concentrated in homological degrees
at most g we have

Hg((RHomΠe(Π,Πe)(−1))>0 ⊗
L

Π Λ) = Hg((RHomΠe(Π,Πe)(−1))>0)⊗Π Λ.

Tensoring with Λ cannot kill a finitely generated Π-module, so it suffices to
show that

Hg((RHomΠe(Π,Πe)(−1))>0) 6= 0.

By assumption (3) the homology of the complex of graded Πe-modules
RHomΠe(Π,Πe)(−1) is concentrated in positive degrees, and hence we have

(RHomΠe(Π,Πe)(−1))>0 = RHomΠe(Π,Πe)(−1).

Thus it suffices that

Hg(RHomΠe(Π,Πe)(−1))︸ ︷︷ ︸
=Extg

Πe(Π,Πe)(−1)

6= 0,

which holds by definition of g. �

Therefore to prove Theorem 4.2 it is sufficient to prove

max{i 6 d− 2 | Hi(Π⊗L

Λ RHomΛ(DΛ,Λ)) 6= 0}

= d− 1 + max{i < 0 | HomDb(modΛ)(U ,U [i]) 6= 0}.

For the proof, we prepare the following two lemmas.

Lemma 4.5. Let Λ be an algebra of global dimension at most d−1. Assume
for some j > 0 and some p 6 −1 we have

Hi(S−j
d−1(Λ)) = 0 ∀i ∈ {p, . . . ,−1}.

Then
Hi(S

−(j+1)
d−1 (Λ)) ∼= Hi(S−1

d−1(τ
−j
d−1Λ)) ∀i > p.
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Proof. Since Λ has global dimension 6 d − 1 an easy induction shows that

the functor S
−j
d−1 preserves the left aisle Db(modΛ)60 of the canonical t-

structure of Db(modΛ). Therefore S−j
d−1Λ is in negative degrees and we can

consider the triangle

trunc<0(S−j
d−1(Λ)) S

−j
d−1(Λ) H0(S−j

d−1(Λ))︸ ︷︷ ︸
=τ

−j

d−1
Λ

,

where trunc<0X is the usual truncation of the complex X. Applying S
−1
d−1

to it we obtain the triangle

S
−1
d−1(trunc

<0(S−j
d−1(Λ))) S

−(j+1)
d−1 (Λ) S

−1
d−1(τ

−j
d−1Λ) .

By assumption we have that trunc<0(S−j
d−1(Λ)) is concentrated in degrees

6 p − 1. Hence S
−1
d−1(trunc

<0(S−j
d−1(Λ))) is also concentrated in degrees

6 p− 1. Thus the triangle gives the desired isomorphism of homologies. �

Lemma 4.6. Let Λ be an algebra of global dimension at most d − 1. The
following are equivalent:

(1) ∀i ∈ {p, . . . ,−1} ∀j > 0: Hi(S−j
d−1(Λ)) = 0;

(2) ∀i ∈ {p, . . . ,−1} ∀j > 0: Hi(S−1
d−1(τ

−j
d−1Λ)) = 0.

Proof. (1) =⇒ (2) follows immediately from Lemma 4.5.
(2) =⇒ (1) follows from Lemma 4.5 by induction on j. �

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We first note that RHomΛ(DΛ,Λ)
L

⊗Λ− is the inverse

Serre functor on Db(modΛ), and that Π is isomorphic to
⊕

j>0 τ
−j
d−1Λ as a

Λ-module. Hence we get the following equivalences for ℓ 6 d− 2:

Hi(RHomΛ(DΛ,Λ)
L

⊗Λ Π) = 0 ∀i ∈ {ℓ, . . . , d− 2}

⇐⇒ Hi(S−1(Π)) = 0 ∀i ∈ {ℓ, . . . , d− 2}

⇐⇒ Hi(S−1(τ−j
d−1Λ)) = 0 ∀i ∈ {ℓ, . . . , d− 2} ∀j > 0

⇐⇒ Hi(S−1
d−1(τ

−j
d−1Λ)) = 0 ∀i ∈ {−d+ 1 + ℓ, . . . ,−1} ∀j > 0

⇐⇒ Hi(S
−(j+1)
d−1 (Λ)) = 0 ∀i ∈ {−d+ 1 + ℓ, . . . ,−1} ∀j > 0,

where the last equivalence is Lemma 4.6 for p = −d+ 1 + ℓ.

We may drop the restriction to non-negative j, since S
−j
d−1(Λ) is concen-

trated in positive degrees for negative j. So we have

Hi(RHomΛ(DΛ,Λ)
L

⊗Λ Π) = 0 ∀i ∈ {ℓ, . . . , d− 2}

⇐⇒ Hi(S−j
d−1(Λ)) = 0 ∀i ∈ {−d+ 1 + ℓ, . . . ,−1} ∀j

⇐⇒ HomDb(modΛ)(Λ,U [i]) = 0 ∀i ∈ {−d+ 1 + ℓ, . . . ,−1}.

Therefore we get

max{i 6 d−2 | Hi(Π⊗L

ΛRHomΛ(DΛ,Λ)) 6= 0} = d−1+max{i < 0 | HomDb(modΛ)(U ,U [i]) 6= 0}

which finishes the proof of Theorem 4.2.
�
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4.2. The selfinjective case. The situation of Theorem 3.1 is especially
nice when the Gorenstein dimension g of the algebra Π is 0, that is when Π
is selfinjective. In that case we prove that the algebra Π is the preprojective
algebra of a (d− 1)-representation finite algebra.

Definition 4.7 ([IO11, Def 2.2], [IO13, Thm 3.1]). A τd−1-algebra Λ is said
to be (d − 1)-representation finite if the subcategory U ⊂ Db(modΛ) is
stable under the Serre functor, that is SU = U .

Theorem 4.8. Let Π be a finite dimensional selfinjective positively graded
algebra which is bimodule stably (1)-twisted d-Calabi-Yau. Then Λ = Π0 is
a (d−1)-representation finite algebra and there is an isomorphism of graded
algebra Π ∼= Πd(Λ).

In order to prove this result, we introduce a technical definition.

Definition 4.9. [IO13] Let Λ be a τd−1-finite algebra. We say that Λ has
the vanishing of small negative extensions property (vosnex for short) if

HomDb(modΛ)(U ,U [i]) = 0 ∀i ∈ {−(d− 3), . . . ,−1}.

From Theorem 4.2, we immediately deduce the following result, giving an
equivalent but more transparent characterization of what it means for an
algebra to satisfy the vosnex property.

Corollary 4.10. In the setup of Theorem 3.1 the following are equivalent:

(a) the graded algebra Π has Gorenstein dimension 6 1
(b) the algebra Λ = Π0 has the vosnex property.

Using this corollary together with Theorem 3.1 and some results in [IO13],
we achieve the proof of Theorem 4.8.

Proof of Theorem 4.8. First note that an algebra is selfinjective if and only if
it is Gorenstein of dimension 0. Moreover if Π is selfinjective, then it clearly
satisfies hypothesis (3) of Theorem 3.1. Hence Π is the d-preprojective
algebra of its degree zero part Λ. Moreover, by [IO13, Corollary 3.7], the
vosnex property implies that Λ is a (d−1)-representation finite algebra. �

5. Bimodule Calabi-Yau properties of preprojective algebras

Throughout this section k is assumed to be an algebraically closed field.

By a classical result due to Ringel [Rin98], if Q is an acyclic quiver, the
2-preprojective algebra Π of the hereditary algebra kQ is the usual pre-
projective algebra of Q. If Q is Dynkin, then it is well-known that Π is
selfinjective, finite-dimensional and that modΠ is 2-Calabi-Yau.

On the other hand, if Λ is a τ2-finite algebra of global dimension 2, its
preprojective algebra Π = Π3(Λ) is the endomorphism algebra of a cluster-
tilting object in a 2-Calabi-Yau category [Ami09, Theorem 4.10]. Hence by
[KR07, Theorem 3.3], the algebra Π is Gorenstein and the stable category
CMΠ is 3-Calabi-Yau.

More generally, if Λ is an τd−1-finite algebra of global dimension d −
1, its preprojective algebra Π = Πd(Λ) is the endomorphsim algebra of a
(d − 1)-cluster-tilting object in a (d − 1)-Calabi-Yau category by [Guo11,
Theorem 4.9]. If moreover Λ is (d − 1)-representation finite, the stable
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category modΠ is d-Calabi-Yau by [IO13, Corollary 4.6] (see also [Dug12,
Proposition 3.3]).

In this section, we prove that these Calabi-Yau properties can be deduced
from bimodule properties of the preprojective algebra. More precisely, we
prove that in the above cases, the preprojective algebra satisfies the prop-
erties (1), (2) and (3) of Theorem 3.1.

5.1. Classical preprojective algebras. Let Q be an acyclic quiver. Then
the 2-preprojective algebra Π2(kQ) = TkQExt1kQ(DkQ, kQ) is given by the

double quiver Q̄, obtained from Q by adding for any a : i j an arrow

ā : j i, with the preprojective relations:
∑

a∈Q1
aā− āa. The functor τ1

is isomorphic to the Auslander-Reiten translation of Db(mod kQ). Thus kQ
is τ1-finite if and only if the quiver Q is of Dynkin type.

Using this description, we prove the converse of Theorem 3.1 for the case
d = 2.

Theorem 5.1. Let Λ be a basic τ1-finite algebra of global dimension 6 1.
Then the 2-preprojective algebra Π := Π2(Λ) satisfies the following proper-
ties:

(1) Π is selfinjective (=Gorenstein of dimension 0);
(2) Π is bimodule stably (1)-twisted 2-Calabi-Yau.

In particular, modΠ is a 2-Calabi-Yau category.

Note that the selfinjectivity of Π immediately implies that Extjgr-Πe(Π,Πe(i))

vanishes for all i and all j > 0, so condition (3) of Theorem 3.1 is automat-
ically satisfied.

Proof. (1) is well known.
The beginning of the minimal projective resolution of Π as a graded Π-

bimodule is of the following form:

P• :=
⊕

i∈Q0

Πei⊗eiΠ(−1)
d2 ⊕

a∈Q1

(Πet(ā)⊗es(ā)Π(−1)⊕Πet(a)⊗es(a)Π)
d1 ⊕

i∈Q0

Πei⊗eiΠ,

where the maps d1 and d2 are given on components by

d
a i

1 : Πe
t(a) ⊗ e

s(a)Π Πei ⊗ eiΠ

et(a) ⊗ es(a) aei ⊗ ei − ei ⊗ eia

and

d
i a

2 : Πei ⊗ eiΠ Πet(ā) ⊗ es(ā)Π⊕Πet(a) ⊗ es(a)Π

ei ⊗ ei
∑

a, s(a)=i

ei ⊗ es(ā)a+ āet(a) ⊗ ei

(cf [Scho, ES98] for a non graded version).
Then one easily checks that HomΠe(d2,Π

e) ∼= d1(1), that is HomΠe(P•,Π
e)[2] ∼=

P•(1) in Kb(gr-projΠe). Hence taking H−2, one obtains HomΠe(Π,Πe) ∼=
Ω3
Πe(Π)(1) in gr-Πe, which implies (2) by Observation 3.2 (note that Π is

Cohen-Macaulay by (1)). �
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5.2. The case d = 3. For the case d = 3, we use a result due to Keller
which shows that any 3-preprojective algebra is given by a quiver with po-
tential. So we start by recalling some definitions due to Derksen, Weyman
and Zelevinsky [DWZ08].

Definition 5.2. Let Q be a quiver, and W a potential, that is a (possibly
infinite) linear combination of cycles in Q. Then the associated Jacobian
algebra is

J = Jac(Q,W ) = k̂Q/(∂aW | ϕ ∈ Q1),

where k̂Q is the completion of path algebra kQ, and ∂a is the unique linear
map such that ∂ap =

∑
p=uav vu for a path p.

Observation 5.3. Let (Q,W ) be a quiver with potential. We have

kQ0 = J/Rad J, and

kQ1 = the kQ0 ⊗ kQop
0 -module generated by the arrows of Q.

The complex

(5.1)
⊕

a∈Q1

Je
s(a) ⊗ e

t(a)J
d2 ⊕

a∈Q1

Je
t(a) ⊗ e

s(a)J
d1 ⊕

i∈Q0

Jei ⊗ eiJ

is the beginning of a projective resolution of J as Je-module.
Here the maps are given on components by

d
a i

1 : Jet(a) ⊗ es(a)J Jei ⊗ eiJ

e
t(a) ⊗ e

s(a) aei ⊗ ei − ei ⊗ eia

and d
a b

2 = ∂a,bW , where for a cyclic path p we define

∂a,b(p) : Jes(a) ⊗ et(a)J Jet(b) ⊗ es(b)J

e
s(a) ⊗ e

t(a)

∑

p=u1au2bu3

e
s(a)u2et(b) ⊗ e

s(b)u3u1et(a)

+
∑

p=u1bu2au3

e
s(a)u3u1et(b) ⊗ e

s(b)u2et(a)

Observation 5.4. Let Π be a finite dimensional algebra, and let {ei | i ∈
{1, . . . , n}} be a complete set of idempotents. Then

Πei ⊗ ejΠ HomΠe(Πej ⊗ eiΠ,Π
e)

a1ei ⊗ eja2

[
b1ej ⊗ eib2 b1eja2 ⊗ a1eib2

]

is an isomorphism for any i, j ∈ {1, . . . , n}.

Lemma 5.5. Let (Q,W ) be a quiver with potential. Let a and b be two
arrows of Q.

Then, with the identification of Observation 5.4,

HomJe(∂a,bW, Je) = ∂b,aW.
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Proof. It is enough to check this for a cyclic path p. More precisely we have
to check that

i ◦ ∂b,a(p) = HomJe(∂a,b(p), J
e) ◦ i.

where i is the isomorphism of Observation 5.4. This can be verified by a
straight-forward calculation. �

There is a link between 3-preprojective algebras and Jacobian algebras
given by the following result.

Theorem 5.6. [Kel11, Theorem6.12 a)] Let Λ be a basic finite dimensional
algebra of global dimension 6 2. Let Q be the quiver of Λ, and let R be
a minimal set of relations, such that Λ ∼= kQ/(R) and such that R is the
disjoint union of sets representing a basis of the Ext2Λ-space between any two
simple Λ-modules.

Then there is an isomorphism TΛ Ext2Λ(DΛ,Λ) ∼= Jac(Q̄,W ), where Q̄

is obtained by adding to Q an arrow ar : t(r) s(r) for each r ∈ R, and

W =
∑

r∈R arr. The grading on TΛ Ext2Λ(DΛ,Λ) is given by the arrows
of Q having degree 0, and the arrows corresponding to the relations having
degree 1.

Using Keller’s description of 2-preprojective algebras as Jacobian alge-
bras, we can prove the converse of Theorem 3.1 for the case d = 3.

Theorem 5.7. Let Λ be a τ2-finite algebra of global dimension 6 2. Let
Π = TΛ Ext2Λ(DΛ,Λ) be the associated 3-preprojective algebra. Then

(1) Π is Gorenstein of dimension 6 1;
(2) Π is bimodule stably (1)-twisted 3-Calabi-Yau;

(3) ExtjΠe(Π,Πe(i)) = 0 for all i < 0 and all j > 0.

In particular, the category CMΠ is 3-Calabi-Yau.

We start by the following lemma which gives an equivalent condition for
(2) in terms of the second syzygy of Π.

Lemma 5.8. A finite dimensional graded algebra of Gorenstein dimension
6 1 is bimodule stably (1)-twisted 3-Calabi-Yau if and only if there is an
isomorphism HomΠe(Ω2

ΠeΠ,Πe) ∼= Ω2
ΠeΠ(1) in gr-CMΠe.

Proof. First note that since the Gorenstein dimension of Π is 6 1, ΩΠeΠ is
Cohen-Macaulay by Lemma 2.5. Therefore Ω2

Πe(Π) is also Cohen-Macaulay
and does not have any projective direct summands. Then we observe that

RHomΠe(Π,Πe)[4] ∼= Π(1) in gr-CM(Πe)

⇐⇒ RHomΠe(Π[−2],Πe) ∼= Π[−2](1) in gr-CM(Πe)

⇐⇒ HomΠe(Ω2
ΠeΠ,Πe) ∼= Ω2

ΠeΠ(1) in gr-CM(Πe)

⇐⇒ HomΠe(Ω2
ΠeΠ,Πe) ∼= Ω2

ΠeΠ(1) in gr-CM(Πe).

The last equivalence holds since both HomΠe(Ω2
ΠeΠ,Πe) and Ω2

ΠeΠ(1) are
Cohen-Macaulay without projective summands. �

Proof of Theorem 5.7. (1) holds by [KR07, Proposition 2.1].
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By Theorem 5.6, there exists a quiver with potential (Q̄,W ) with an
isomorphism Π ∼= Jac(Q̄,W ). We consider the graded version of the exact
sequence in (5.1), and its terms by

P2 =
⊕

a∈Q̄1

Πes(a) ⊗ et(a)Π(−1 + deg a),

P1 =
⊕

a∈Q̄1

Πet(a) ⊗ es(a)Π(−deg a), and

P0 =
⊕

i∈Q̄0

Πei ⊗ eiΠ(0).

By Lemma 5.5, keeping track of the external grading, we have

(5.2) HomΠe(d2,Π
e) = d2(1).

We denote (−)∨ = HomΠe(−,Πe). Since the Gorenstein dimension of Π
is 6 1, the cokernel of d2 is Cohen-Macaulay, and we have an isomorphism

(Coker d2)
∨ ∼= Ker(d∨2 ).

Using (5.2) we get the following isomorphisms

(Ω2
ΠeΠ)∨ ∼= (Im d2)

∨ ∼= Coker((Coker d2)
∨ P∨

1 )

∼= Coker(Ker(d∨2 ) P∨

1 )

∼= Coker(Ker(d2(1)) P2(1))

∼= Im d2(1) ∼= Ω2
ΠeΠ(1)

Hence we get (2) by Lemma 5.8.

By (1), ExtjΠe(Π,Πe) vanishes for j > 2.
Denote by N the maximal summand of ΩΠeΠ without projective sum-

mands. The module N is Cohen-Macaulay and we have ΩΠeΠ ∼= N ⊕ P .

The projective module P is a summand of P1 and the induced map P2 P
vanishes. Since the arrows of degree 1 correspond to minimal relations of
Λ, and hence also to certain minimal relations of TΛ Ext2Λ(DΛ,Λ), P is
generated in degree 0, that is P ∈ addΠe(0).

Now since Π is bimodule stably (1)-twisted 3-Calabi-Yau, we have iso-
morphisms

HomΠe(N,Πe) ∼= Ω2
ΠeN(1) ∼= Ω3

ΠeΠ(1) in gr-CMΠe

The right isomorphism holds since Ω3
ΠeΠ does not have any projective sum-

mands.
Now we have

Ext1gr-Πe(Π,Πe(i)) ∼= Homgr-Πe(ΩΠeΠ,Πe(i))

∼= (HomΠe(ΩΠeΠ,Πe))i
∼= (HomΠe(N,Πe))i ⊕ (HomΠe(P,Πe))i
∼= (Ω3

ΠeΠ)i+1 ⊕ (HomΠe(P,Πe))i
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Now if i < 0, (HomΠe(P,Πe))i clearly vanishes since P , hence HomΠe(P,Πe)
are generated in degree 0. Moreover since gl.dimΛ 6 2 the minimal projec-
tive resolution of Π is generated in strictly positive degrees from position 3
on, that is (Ω3

ΠeΠ)60 vanishes and thus claim (3) here holds. �

5.3. The (d− 1)-representation finite case.

Theorem 5.9. Let Λ be a (d− 1)-representation finite algebra. Then its d-
preprojective algebra Π is finite dimensional selfinjective and stably bimodule
(1)-twisted d-Calabi-Yau. In particular, modΠ is d-Calabi-Yau.

Proof. Finite dimensionality and selfinjectivity are proved in [IO13, Corol-
lary 3.4].

Let Λ be a (d − 1)-representation-finite algebra. Then the category U

is a (d − 1)-cluster tilting subcategory of Db(modΛ), which satisfies U =
U [d − 1]. Moreover the category Db(modΛ) is an algebraic triangulated
category, that is it is equivalent to the stable category of some Frobenius
category. Hence we can apply Theorem 3.2 of [Dug12] and we obtain an
isomorphism

Ωd+1
U ⊗U op(HomU (−,−)) ∼= HomU (−,−[−d+ 1])

in mod(U ⊗ U op) up to projective summands.
So we have the following isomorphisms in gr-Πe:

Ωd+1
Πe (Π) ∼=

⊕

i>0

HomDb(modΛ)(Λ,S
−i
d−1Λ[−d+ 1])

∼=
⊕

i>0

HomDb(modΛ)(SΛ,S
−i+1
d−1 Λ)

On the other hand

HomΠe(Π,Πe) ∼= HomΠ(DΠ,Π)

∼=
⊕

i∈Z

HomDb(modΛ)(DΛ,S−i
d−1Λ).

Combining these two isomorphisms, and observing that SΛ = DΛ, we
obtain Ωd+1

Πe (Π) ∼= HomΠe(Π,Πe)(−1) in gr-Πe. Since Π is selfinjective, Π
is Cohen-Macaulay, so Π is bimodule stably (1)-twisted d-Calabi-Yau by
Observation 3.2. �

Remark 5.10. Let Λ be an algebra which is τd−1-finite and satisfying the
vosnex property. In [IO13], the authors prove that the algebra Π = Πd(Λ) is
Gorenstein of dimension 6 1 and that the stable category CMΠ is d-Calabi-
Yau (Theorem 1.2(1)). It follows from the proof (see [IO13, Theorem 5.11])
that moreover the category of graded Cohen-Macaulay modules gr-CMΠ is
(1)-twisted d-Calabi-Yau.

Unfortunately, it is not clear from the proof that this Calabi-Yau property
comes from a bimodule property. So we cannot use the results in [IO13] to
prove a result similar to Theorem 5.9 in the case where the algebra Π has
Gorenstein dimension 1.
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