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Abstract. We report a novel method for the fabrication of superconducting nano-
devices based on niobium. The well-known difficulties of lithographic patterning of
high-quality niobium are overcome by replacing the usual organic resist mask by
a metallic one. The quality of the fabrication procedure is demonstrated by the
realization and characterization of long and narrow superconducting lines and niobium-
gold-niobium proximity SQUIDs.
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1. Introduction

Superconductivity is an essential ingredient in quantum nano-electronics. Its
macroscopic phase coherence allows to produce easily large objects obeying quantum
mechanics [I, 2]. Aluminum is presently the emblematic material in this field. Tts
popularity is mainly due to the ease of its lithographic patterning and the high quality
of its native oxide. The critical temperature 7. = 1.17 K of bulk aluminum is however
rather low, calling for the use of dilution refrigerators and elaborate electronic filtering
as temperatures T' < T, are usually needed. Moreover, the relevant energy scale of
superconductivity, namely the superconducting gap A, is usually proportional to T,.. A
low critical temperature T, is therefore synonymous of a low critical current in short
Josephson junctions or superconducting quantum interference devices (SQUIDs) [3].

Higher T, elemental superconducting metals such as vanadium and lead are
occasionally used [4], but they suffer from rapid aging under ambient air conditions.
Niobium is the highest-7, simple element (9.2 K) and is also rather immune to aging.
Its main drawback is the strong sensitivity of its thin film superconducting properties to
contamination. As niobium is a refractory metal, its evaporative deposition implies
extremely high target temperatures. In the case of lift-off processes, this leads to
significant heating and outgassing of the organic resist mask, provoking a strong
reduction and scatter of the effective critical temperature T, [5, [6]. Nb nanostructures
with a high T, can be fabricated within a lift-off process using a deposition set-up in
which the Nb target is far away from the sample [7]; this method is however difficult to
transpose to most setups.

Several techniques have been used to circumvent this severe limitation to niobium
applications. Sputtering can provide niobium films of high quality without the use of
a high temperature target. Such films can be subsequently patterned by dry reactive
ion etching. This however sets constraints on possible materials combinations in hybrid
structures [§] and is incompatible with connecting niobium to fragile material such as
graphene, carbon nanotubes or thin sheets of topological insulators. Sputtering through
a mask (resist or mechanical) is also possible [9 10, 11 12] but, due to the lack of
directionality of the deposition, leads to poorly defined edges. This can cause a gradual
loss of the superconducting properties over a broad transition region.

Suspended masks made of Si, Ge or SiN, supported by thermostable resists like
poly-ethersulfones have further been developed [13, [14]. Such processes provided Nb
sub-micron structures with a critical temperature up to 8 K, including hybrid Josephson
junctions with a high Nb-Cu interface transparency [15]. The use of these particular
resists is nevertheless cumbersome; for instance, the ambient hygrometry has to be
controlled during resist spinning. Non-organic evaporation stencil masks based on a
suspended bilayer of SisNy and SiOy have been developed in the past [16]; lift-off and
integration of arbitrary non-superconductors (graphene etc.) are yet again impossible.
Finally, the possibility of using metallic bilayer masks has been demonstrated in the
past [I7]. This method was in particular used to pattern large niobium devices with
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Figure 1. (a) Process for a Nb device fabrication. From the top: starting with an
Al/Mo (200 nm/40 nm) multilayer, a thin layer of photoresist PMMA (350 nm) is spin
coated and patterned using e-beam lithography. In step 2, the Mo layer is patterned
using reactive ion etching. This is followed by the wet etching of Al with a basic
solution (see text), leaving the Mo top layer free-standing over about 200 nm from the
openings. The Nb layer is then evaporated in step 3. In the last step, the remaining
Al is dissolved, leaving the sole Nb devices on the substrate. (b) Scanning electron
micrograph of the Al/Mo bilayer mask for the wires prior to Nb evaporation. (c)
Atomic force micrograph of a small portion of a 400 nm wide Nb line. (d) Scanning
electron micrograph of a niobium-gold-niobium proximity SQUID (device C) with 210
nm spacing between the Nb contacts.

dimensions in the upper 100 pm range [18].

We report here a new and simple method for lithographic patterning of extremely
narrow and well-defined Nb nanostructures with a high critical temperature. Our
approach relies on replacing the traditional organic resist mask by a fully metallic one.
We take advantage of the high wet etch rates of aluminum, with respect to most other
metals, by high pH chemicals used as organic resist developers. We demonstrate the
fabrication and good operation of SQUIDs based on hybrid Josephson junctions.

2. Fabrication process and submicron lines characterization

We start by depositing an Al/Mo (200 nm/40 nm) bilayer on a Si/SiOy substrate.
Electron-beam lithography is performed on an organic resist (PMMA) spun on top of
the metal bilayer, see Fig. [Th. In the developed regions, the Mo layer is removed by
a reactive ion etch with a 20 W SFg plasma for 2 minutes. The resist is afterwards
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Figure 2. (a) Resistance versus temperature of three niobium lines of different widths
(Ipias = 5 1A). (b) Voltage versus current characteristics of the same samples measured
at 4.2 K. These display hysteresis (as high as 32% for the 400 nm line) as well as random
fluctuations of the measured resistance at I =~ I..

removed by 10 minutes of 50 W Oy plasma etch. In the next step, a wet etch in a basic
solution (pH = 13) of MF-26A [19] etches Al isotropically through the openings in the
Mo layer, creating undercuts of about 200 nm after a 90 s time. This leaves a locally
suspended Mo mask on top of the over-etched aluminum supporting layer, see Fig. [1b,c.
This sequence of steps ensures vanishing organic contamination of deposited materials.

A niobium thin film is then e-gun evaporated in an ultra-high vacuum chamber.
The metallic Al/Mo mask is finally removed by a wet etch in MF-319 [20] for about
45 minutes. Including regularly spaced extra holes in the initial lithographic pattern
allows the etchant to start lifting the metal mask from a larger number of starting
points. The related minimization of this wet-etch time is important because beyond 2
hours we observe MF-319 starting to etch the Si/SiO, substrate as well as the metallic
layers (Nb, Au,...) present in the device.

As a first test, we have prepared Nb narrow lines using the technique described
above. In these samples, a 10 nm Ti layer was deposited in situ prior to Nb, as to
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improve adhesion and mimic the frequently used approach to contact a superconductor
to novel low-dimensional materials [21, 22, 23]. The presence of Ti however contributes
to reducing the T, of the wires. Atomic force microscopy (AFM) inspection of the Nb-
wires obtained (Fig. ) shows that the edges are extremely sharp and well-defined.
The 30 (standard deviations) line edge roughness of the wires is 10 nm, on the order of
the grain size of in both the Nb film and the Mo mask. Line edge smearing is inferior
to the lateral resolution of a standard AFM tip. The roughness of the Nb surface is 1.1
nm.

We have performed transport measurements on these samples in a variable
temperature (2-300 K) cryostat, using a d.c. 4-probe configuration. Figure shows
the temperature dependence of the low temperature resistance R of three devices,
based on lines of length 30 pm, thickness 30 nm and widths 400, 700 and 1000 nm
respectively. The devices display stepwise decrease of resistance below T= 7.3 K. Since
the entire on-chip structure is made of niobium, we attribute these steps to transitions
to the superconducting state of wire elements of decreasing width in series. The small
resistance steps in the low resistance region can also be related to pinning and depinning
of residual vortices. The rapid drop to R < 12 corresponds to the critical temperature
T, of the narrowest part of each circuit. While the critical temperature T, of the 400 nm
wide line is considerably reduced, it is hardly affected for widths above 700 nm. The
I(V') characteristics at 4.2 K show a marked resistive transition and some hysteresis. The
latter is due to Joule heating in the Nb wire once in the normal state, which elevates the
local electronic temperature compared to the bath temperature. As a result the critical
current is reduced, which creates an hysteresis in the current-voltage characteristics.
Thermal hysteresis is enhanced in narrower structures.

3. Fabrication and study of SQUIDs

We have further fabricated Nb-Au-Nb proximity SQUIDs (Figure ) using a two-step
process. We first patterned two long parallel lines of gold, 1 gm wide and 30 nm thick,
by conventional e-beam lithographic techniques. The metallic mask method described
above is then used to pattern Nb proximity junctions on top of these. We deposited a
50 nm thick Nb layer without sticking layer. Over the proximity junction, the metal
mask is free-hanging, as to form junctions as short as 200 nm. The device parameters
of the three tested devices, labelled A, B and C, are summarized in Table [1}

In a hybrid Josephson junction made of a normal metal bridging two
superconducting electrodes, as a Au wire between two Nb electrodes here, the length
scale for inducing superconductivity in the normal metal is set by the normal metal
thermal length Ly = \/AD/2rwkgT. Here, D is the electronic diffusion coefficient in
the normal metal. Ly is estimated to be about 180 nm at 135 mK while the junction
lengths L are in the range 200 — 400 nm.

Transport properties of the Nb-Au-Nb proximity SQUIDS were measured using a
four-probe d.c. current bias scheme inside a dilution refrigerator. Each electrical lead to
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the samples was thoroughly filtered by individual 2 m long lossy coaxial lines thermalized
at the cryostat base temperature. Fig. shows the V(I) characteristics of SQUID C
at zero magnetic field and 135 mK. A critical current I. is observed in the two shorter
Nb-Au-Nb SQUIDs B and C, while none is observed in A.

SQUID L(nm) W(um) Ry () pn(uS2.cm) D(cm?/s) Ly(nm) I.(puA) €.(ueV)

A 430 098 1.99 13.6 29 160 - 10.2
B 340  1.00 1.04 9.20 42 190 2.7 241
C 210 098 0.89 12.4 31 170  11.8  46.7

Table 1. Device parameters of the Nb-Au-Nb SQUIDs. L is the geometrical length
of the normal weak link (uncovered gold line). Ry is the normal state resistance of
the weak link only, measured at 4.2 K, py the corresponding resistivity and D the
diffusion coefficient. Ly is the calculated thermal length at T = 135 mK. I, is the
maximum critical current measured at 135 mK. ¢, = hD/L? is the Thouless energy
assuming the weak link length is L.

As proximity Josephson junctions have a vanishing capacitance, they are over-
damped. The V/(I) characteristic is thus expected to follow V = R,,/I? — I2? for
[I| > I. [3]. The characteristics fit rather well this prediction, see Fig. [3h. A finite
hysteresis is nevertheless observed for the highest I, SQUID (device C) at the lowest
temperatures. While sweeping the current down from large values |I| > I.., the SQUID
C turns non-resistive at a retrapping current [, < I.. This hysteresis is known to be of
thermal origin [24]: the Joule heat dissipated in the normal metal elevates the electronic
temperature with respect to the phonon temperature as the electron-phonon coupling
is the bottleneck for the electron thermalization to the bath. Retrapping happens when
the bias current becomes of the order of the critical current at the current electronic
temperature.

Our samples are in the long junction limit defined as a normal metal length larger
than the superconductor coherence length: L > £, ~ 30 nm. In this case, the relevant
energy scale for the superconducting proximity effect is the Thouless energy ¢, = LD /L?
which is much smaller than the energy gap A. The evolution of critical current with
temperature in a normal metal weak link at arbitrary temperatures can be understood
by solving the Usadel equations. At low temperatures and in the long junction limit
(A/ec — o), the numerical solution to the Usadel equation can be approximated by
I3

eR, 1 a €
nC = 1—-0 S ) 1
. ”“[ eXp( 3.2 k;BT) (1)

where a = 10.82, b = 1.30 and n = 1 for perfectly transparent S-N interfaces. From
the fit to the experimental data of SQUID C, shown in Figure [3p, values of ¢, = 36.7
peV and 1 ~ 0.017 are found. The estimate of €. agrees well with the value found from

geometrical arguments, see Table [I The minor discrepancy can be understood as an
effective junction length L = (/hD/e. = 236 nm slightly longer than the geometrical
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Figure 3. (a) I(V) characteristic of device C (circles) at T = 135 mK and B=0T. The
line is a fit using the over-damped junction theoretical I-V relation, see text. (b) Same
device critical current versus temperature. Quantities are normalized to the adjusted
Thouless energy ¢, = 36.7 pueV. The line is a fit by Eq. ‘ (c) Critical current (full
symbols) and retrapping current (hollow symbols) oscillations versus applied magnetic
field flux in device B (squares, T = 125 mK) and device C (bullets, T = 135 mK).

value [15]. The reduced value of 7 reflects a lower than ideal I., which is attributed to
an imperfect transmission at the Nb-Au interface. Argon plasma of the Au structures
prior to Nb deposition should lead to improved contact transparencies.

Finally, we have measured SQUID B and C critical current variation with the
magnetic field applied perpendicular to the loop. Figure [3k shows data as a function of
the magnetic flux ¢ = B.S, where S = 37.6 um? for SQUID B and 19.2 um? for SQUID
C is the geometric loop area. The critical current follows the expected ¢ periodicity,
where ¢g is the magnetic flux quantum. At a bath temperature T = 135 mK, the
modulation depth of I. reaches 80 % in sample B. The retrapping current follows the
same behavior. The extremal values of I. upon flux modulation reflect the sum and the
difference respectively of the critical currents of each of the two Josephson junctions in
parallel. The obtained flux sensitivity is about 2 uV//¢y. This performance is within the
expected range for hybrid SQUIDs that are characterized by a rather low normal state
impedance.
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4. Conclusion

We have devised a new method for the nano-fabrication of superconducting Nb
structures using an all-metal mask. The method is easy to implement and uses only
standard clean room chemicals and methods. It allows producing superconducting nano-
devices with a high critical temperature and dimensions down to the 100 nm-scale. Its
application to the realization of sensitive SQUIDS with little hysteresis is demonstrated.
Applications of this technique will allow probing Josephson physics in exciting novel
material systems such as single crystal nanowires [25], ferromagnetic nanowires [26],
semiconducting nanowires [27] and graphene [21]. This method can also be used for the
fabrication of tunnel junction-based devices like single-electron transistors.
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