N
N

N

HAL

open science

Adaptive Cooperative Caching for Many-cores systems

Safae Dahmani, Loic Cudennec, Guy Gogniat

» To cite this version:

Safae Dahmani, Loic Cudennec, Guy Gogniat. Adaptive Cooperative Caching for Many-cores systems.

2013, pp.89-92. hal-00847002

HAL Id: hal-00847002
https://hal.science/hal-00847002v1
Submitted on 22 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00847002v1
https://hal.archives-ouvertes.fr

Adaptive Cooperative Caching for
Many-cores systems

Safae Dahmani* !, Loic Cudennec*?,

Guy Gogniat'?

* CEA, LIST, Embedded Real Time Systems Laboratory, 91191 Gif-sur-Yvette, France
T Lab-STICC Laboratory, University of Bretagne Sud, Lorient, France

ABSTRACT

Nowadays, many-core processors emerge as a serious alternative to regular processors by of-
fering high computing performances while controlling power consumption. As for every complex
parallel and distributed systems, data sharing and data consistency is of major importance. In this
paper we propose a short overview of one particular coherency protocol, the data sliding mecha-
nism, based on cooperative caching. We also present some perspectives to this work, and its global
integration within a complete system.

KEYWORDS: Many-cores, Cooperative Caching, Data Sliding, Adaptive Protocol.

1 Introduction

New emerging classes of applications are known to need very high performance comput-
ing systems. As it becomes difficult to increase core’s performance due to complex design
and energy consumption, embedding thousands of cores on a single chip is expected to be
very prevalent over the next few years. This leads to a new generation of massively paral-
lel systems called many-cores. However, the on-chip memory capacity is still an issue for
such systems because of several technological and physical constraints. Thus, high speed
cache memories are mainly used to improve on-chip data storage and reduce access latency.
Despite the increasing number of embedded cores and the overall caching capacity on the
chip, cache size per core is quite limited in many-cores comparing to multi-core processors.
Besides, the way cached data are handled directly affects application performance. In such
a context, data consistency is one of the big issues that has always interested system de-
signers. Many cache coherency models, are proposed for massively parallel architectures. In
the ALMOS [Alm11] operating system, data is managed according to transactional memory
model, a technique that is also tested in some AMD multi-core platforms [CCD™10]. Other
works proposed the extensions of the MESI protocol; such as the CoCCA [MLCT12|] and the
Data Sliding mechanism [DCG13] that we present in this paper.

I'E-mail: {firsthame.name}@cea.fr
2E-mail: {guy.gogniat}@univ-ubs.fr

Data sliding is based on the cooperative caching concept. Multiple distributed caches are
aggregated to form virtual shared areas. Cooperating cores are allowed to use each others
free cache space in order to balance workloads over the chip. In this short paper, we present
our current and future works on cache management techniques. We first describe some rel-
evant works from the state of art. Afterwords, we present the Data Sliding mechanism for
cooperative caching in many-cores and some related results. Finally, we discuss extension
ideas from this mechanism for a better memory scalability.

2 Hierarchical cache structure

A wide range of processors with tens to hundreds cores are available such as Intel Xeon-
phi(60 cores), Tilera TileGx(63 cores), STHORM platform(69 cores), and Kalray MPPA chip
(256 cores). They are all based on a hierarchical cache organization that consists on up to
3 levels, where memory cost gradually decreases while both access latency and storage ca-
pacity increase. The first cache level is private, while lower levels could be private or shared
between several cores. Unlike a wholly private hierarchy, shared low-level cache reduces
on-chip data replication, which remarkably increases the effective per-core memory size.
However, concurrent accesses lead to contention and data consistency problems.

The cooperative caching policy [CS07] has been proposed to get advantages from both
private and shared caching, while relying on systems that do not offer physical shared mem-
ory. The strategy consists in taking benefits of some unused memory blocks in the neighbor-
hood’s private caches. In main energy aware areas, such as wireless networking [TC07] and
storage file systems [SLX12], cooperative caching demonstrated to be a relevant approach.
In such a context, one of our contributions focuses on important workloads conditions, by
proposing new policies for cache entries replacement and cache partitioning.

Many static and dynamic strategies have been proposed to manage the cache limits be-
tween private and shared zones in order to avoid unused space. The Elastic Cooperative
Caching [HGC10] has been presented as an adaptive memory hierarchy, dynamically ad-
justing local and shared areas. It is based on the data reuse amount information available in
each side. Another adaptive cache management strategy is the Adaptive Set-Granular Co-
operative caching [RFD12]]. It proposes techniques that measure the stress level of each set
in a set-associative cache, thereafter used by the system to decide which set to be replaced.

3 Data Cooperative Sliding Mechanism

In a context of short global space storage, where all neighbors are saturated, none of the
described strategies allows to efficiently balance cache stress over the chip, while reducing
data off-chip eviction rate. In a such highly stressed neighborhood, the Data Sliding strategy
allows the migration of private blocks between neighbors, even if there is no free space.
When a core sends a storage request to his neighbor, the latter pushes a local block to his
closer neighborhood in order to release cache space for the received data. Each block is only
1-chance forwarded, which allows each core to keep its local blocks 1-hop close. This process
is repeated until the propagation reaches a non saturated area.

The data-sliding mechanism relies on two policies: the priority-based replacement pol-
icy and the best-neighbor selector policy. Both are based on stress measurement of local

accesses to private data and remote accesses to hosted data. The implementation consists of
a single Local Hit Counter (for private data), and 4 Neighbor Hit Counters, each one related to
a direct neighbor (for hosted data, in the case of a 4-neighbor mesh network). This imple-
mentation does not require a global view of the system, which is relevant for scaling up. The
replacement policy chooses the least recently used block from the least accessed set of data,
either it is private or shared. The best neighbor policy basically chooses the least stressed
one, which corresponds to the lowest Neighbor Hit Counter.

First performance evaluations show that thanks to data sliding policies, we reduce by
half the global on-chip protocol-related traffic rate compared to the Elastic Cooperative
strategy. This is mainly due to neighbor cache cooperation, which promotes neighbor-to-
neighbor communications and spread fairly cache workloads across the chip (figure [T). Us-
ing the Data Sliding mechanism allows each node to keep their most frequently accessed
blocks 1-hop close, instead of evicting them off-chip.

=]
o
=
o

O N WO 0w

ORFRPMNWRUO~NO©OO

[y

3.
Data Sliding strategy

Elastic Cooperative Caching strategy

Figure 1: Traffic evaluation, using the Elastic protocol (left) and the Data Sliding protocol (right)

4 Extending the Data Sliding Strategy

From the original proposition, we can investigate several directions, either it is a direct ex-
tension of the protocol, or a global positioning within a complete system. Such a complete
system include low level data management over the chip, but also a higher view, up to the
programming language and its compilation toolchain.

In the data sliding mechanism, we allow each block to migrate once to the direct neigh-
bor. As the number of cores grows up, off-chip memory accesses become costly. As a coun-
terpart, a larger cooperative area can be exploited. One current direction is to study the
extension of the data migration radius from the closest neighborhood (1-Chance Forward-
ing) to a larger sliding area (N-Chance Forwarding). Extended data migration is expected to
promote on-chip storage, and lead to a balanced spread of data across the chip. We expect
to go further by enhancing the global on-chip miss rate and therefore reducing the data ac-
cess cost. In order to handle efficiently block migrations, we are currently studying a new
approach based on the physical model that describes a mass connected to a spring. This ap-
proach constrains data migration according to local difference of potential on the chip and
the spring constant.

Another work in progress is based on the fact that cooperative nodes are not allowed to
access hosted data. They still have to contact the node in charge of managing these data to

get the proper rights. Allowing such accesses would bypass the cache protocol and break
the consistency model. However, we think that given some particular conditions, these kind
of access would benefit to the application performances. We are currently studying these
conditions, as well as the mechanisms needed to detect friendly cases.

From these examples we can argue that there wont probably be one data consistency
model and one protocol that fit to every combination of application and many-cores archi-
tectures. We think that some decisions regarding data consistency can be made at compile
time or even later, either based on code implicit indications, or on the applications behavior
analysis. This should enhance the application performance, mainly when the choice of an
appropriate protocol is dynamically adapted to the deployed workloads and the targeted
architecture.

References

[AIm11] Ghassan Almaless. Almos : un systeme d’exploitation pour manycores en mémoire
partagée cohérente. In 8éme Conférence Frangaise sur les Systémes d’Exploitation (CFSE'11),
Chapitre frangais de ’ACM-SIGOPS, GDR ARP, 2011.

[CCD*10] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin
Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier,
and Etienne Riviere. Evaluation of amd’s advanced synchronization facility within a com-
plete transactional memory stack. In Proceedings of the 5th European conference on Computer
systems, 2010.

[CS07] J. Chang and G.S. Sohi. Cooperative cache partitioning for chip multiprocessors. In
Proceedings of the 21st annual international conference on Supercomputing, pages 242-252.
ACM, 2007.

[DCG13] Safae Dahmani, Loic Cudennec, and Guy Gogniat. Introducing a data sliding mechanism
for cooperative caching in manycore architecture. In 18TH International Workshop on High-
Level Parallel Programming Models and Supportvie Eenvironments (HIPS 2013), 2013.

[HGC10] E. Herrero, J. Gonzélez, and R. Canal. Elastic cooperative caching: an autonomous dy-
namically adaptive memory hierarchy for chip multiprocessors. ACM SIGARCH Com-
puter Architecture News, 2010.

[MLC*12] Jussara Marandola, Stéphane Louise, Loic Cudennec, Jean-Thomas Acquaviva, and
David Bader. Enhancing cache coherent architectures with access patterns for embed-
ded manycore systems. In In International Symposium on System-on-Chip 2012 (SoC 2012),
2012.

[RFD12] D. Rolan, B.B. Fraguela, and R. Doallo. Adaptive set-granular cooperative caching. In
High Performance Computer Architecture (HPCA), 2012 IEEE 18th International Symposium
on, pages 1-12. IEEE, 2012.

[SLX12] L.Shi, Z. Liu, and L. Xu. Bwcc: A fs-cache based cooperative caching system for network
storage system. In Cluster Computing (CLUSTER), 2012 IEEE International Conference on,
pages 546-550. IEEE, 2012.

[TCO07] Y.W. Ting and Y.K. Chang. A novel cooperative caching scheme for wireless ad hoc net-
works: Groupcaching. In Networking, Architecture, and Storage, 2007. NAS 2007. Interna-
tional Conference on, pages 62-68. IEEE, 2007.

	Introduction
	Hierarchical cache structure
	Data Cooperative Sliding Mechanism
	Extending the Data Sliding Strategy

