
HAL Id: hal-00846961
https://hal.science/hal-00846961v3

Submitted on 20 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast polynomial evaluation and composition
Guillaume Moroz

To cite this version:
Guillaume Moroz. Fast polynomial evaluation and composition. [Technical Report] RT-0453, Inria
Nancy - Grand Est (Villers-lès-Nancy, France); INRIA. 2013. �hal-00846961v3�

https://hal.science/hal-00846961v3
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-4
53

--
FR

+E
N

G

TECHNICAL
REPORT
N° 453
Juillet 2013

Project-Team Vegas

Fast polynomial
evaluation and
composition
Guillaume Moroz

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Fast polynomial evaluation and composition

Guillaume Moroz

Project-Team Vegas

Technical Report n° 453 — Juillet 2013 — 6 pages

Abstract: The library fast_polynomial for Sage compiles multivariate polynomials for subse-
quent fast evaluation. Several evaluation schemes are handled, such as Hörner, divide and conquer
and new ones can be added easily. Notably, a new scheme is introduced that improves the classical
divide and conquer scheme when the number of terms is not a pure power of two. Natively, the
library handles polynomials over gmp big integers, boost intervals, python numeric types. And
any type that supports addition and multiplication can extend the library thanks to the tem-
plate design. Finally, the code is parallelized for the divide and conquer schemes, and memory
allocation is localized and optimized for the different evaluation schemes. This extended abstract
presents the concepts behind the fast_polynomial library. The sage package can be downloaded
at: http://trac.sagemath.org/sage_trac/ticket/13358. In Section 1, we present the no-
tion of evaluation tree and function scheme that unifies and extends state of the art algorithms
for polynomial evaluation, such as the Hörner scheme [Mul06] or divide and conquer algorithms
[Mul06, Est60, BK75, BZ11]. Section 2 reviews the different optimisations implemented in the
library (multi-threads, template, fast exponentiation), that allows the library to compete with
state-of-the art implementations. Finally, Section 3 shows experimental results.

Key-words: computer algebra, polynomial evaluation, parallel implementation

http://trac.sagemath.org/sage_trac/ticket/13358

Évaluation et composition rapide de polynômes
Résumé : La bibliothèque fast_polynomial permet de compiler des polynômes multivariés sage
pour les évaluer ensuite rapidement en Sage. Plusieurs schémas d’évaluation sont disponibles,
comme Hörner, scindage binaire, ou d’autres qui peuvent être ajoutés facilement. La bibliothèque
peut manipuler des polynômes à coefficients de type entier long gmp, interval boost, objet python.
Par un système de template, elle est facilement extensible à d’autres types qui peuvent être
ajoutés et multipliés entre eux. Enfin l’évaluation peut être parallélisée et l’espace mêmoire
est optimisé pour chaque schéma d’évaluation. Ce rapport présente les concepts sous-jacents à
la bibliothèque fast_polynomial. Le paquet Sage est téléchargeable à l’adresse http://trac.
sagemath.org/sage_trac/ticket/13358.

Mots-clés : calcul formel, évaluation polynomiale, implantation parallèle

http://trac.sagemath.org/sage_trac/ticket/13358
http://trac.sagemath.org/sage_trac/ticket/13358

Fast polynomial evaluation and composition 3

1 Polynomial preprocessing
Given a polynomial with integer, floating points, or even polynomial coefficients, there is several
way to evaluate it. Some are better suited than others for specific data type. An evaluation tree
specifies how the polynomial will be evaluated.

Definition 1.1. An evaluation tree Tp associated to a polynomial p is an acyclic graph with a
root node R. Each node N corresponds to a monomial of p and has 2 labels, denoted by c(N),
the coefficient associated to N , and d(N), the partial degree associated to N . The result of an
evaluation tree on x is defined recursively:

T (x) =
{

c(R)xd(R) if R is the only node of T .
(c(R) +

∑
i Si(x))xd(R) otherwise, where Si are the children tree of R.

Each node of an evaluation tree is naturally associated with a term of the input polynomial.
However, the partial degree of a node N is not the degree of monomial associated to N . The
degree of the monomial associated to N is rather the sum of the partial degrees of its ancestors.

If we order the terms of p in a decreasing lexicographical ordering, we induce naturally an
ordering on the nodes of Tp. This ordering is also a topological ordering of Tp and will be denoted
subsequently by <t. The first node is the bigger for <t and will have index 0. The last node is
the root of the tree and will have index n. In particular, all the children of a node of index i
have an index lower than i.

1.1 Function scheme
A way to define an evaluation scheme for univariate polynomials is to use a function scheme.

Definition 1.2. Let f : N → N be a function such that 0 < f(k) ≤ k for all k ≥ 1. Let p be a
univariate polynomial of degree n. We define recursively the evaluation tree T f

p associated to the
function scheme f .

If p has one term, then T f
p is reduced to one node of coefficient and degree those of the term

in p. Otherwise, p can be written uniquely p(x) = a(x)xf(n) + b(x). The evaluation tree T f
p is

obtained by adding the tree T f
a as a child of the root of the tree T f

b .

Most classical schemes such as Hörner [Mul06] or Estrin (divide and conquer [Mul06, Est60,
BK75, BZ11]) schemes can be described with simple function schemes:

Direct: D(k) = k Hörner: H(k) = 1 Estrin: E(k) = 2blog kc

Example 1.3. Let p be the polynomial 3x8 − x7 + 2x6 + x5 − 4x4 + 9x3 − 3x2 − 2x+ 1. Then
the following trees are all evaluation trees of p, with different evaluation scheme.

0

d: 8

c: 3

1

d: 7

c: -1

2

d: 6

c: 2

3

d: 5

c: 1

4

d: 4

c: -4

5

d: 3

c: 9

6

d: 2

c: -3

7

d: 1

c: -2

8

d: 0

c: 1

0

d: 1

c: 3

1

d: 1

c: -1

2

d: 1

c: 2

3

d: 1

c: 1

4

d: 1

c: -4

5

d: 1

c: 9

6

d: 1

c: -3

7

d: 1

c: -2

8

d: 0

c: 1

Direct scheme Hörner scheme

RT n° 453

4 Moroz

0

d: 8

c: 3

1

d: 1

c: -1

2

d: 2

c: 2

3

d: 1

c: 1

4

d: 4

c: -4

5

d: 1

c: 9

6

d: 2

c: -3

7

d: 1

c: -2

8

d: 0

c: 1

Estrin scheme

Remark 1.4. For multivariate polynomials, the function scheme can be applied recursively to
each variable.

Remark 1.5. Function schemes can be defined and used in fast_polynomial library, as doc-
umented in the module method. It is thus possible to combine easily different schemes. For
example, let f be the function f(k) = 2blog kc if k > 10 and f(k) = 1 otherwise. The correspond-
ing evaluation tree is a divide and conquer scheme for the upper part and a Hörner scheme for
the sub polynomials of degree less than 10.

1.2 A new balanced divide and conquer scheme

The Estrin scheme is a divide and conquer algorithm well suited to evaluate polynomials on
elements whose size increases linearly with each multiplications ([BK75, BZ11]). These elements
include multiple precision integers or univariate polynomials. However, the computation time of
evaluating T E

p reaches thresholds when the number of terms of p is a pure power of 2 (see Figure
1 in Section 3).

We introduce in this library a new evaluation scheme that avoids the time penalty of the
classical divide and conquer. It is defined by the balanced function scheme.

Balanced: B(k) = bk
2
c

Example 1.6. [continued] The balanced divide and conquer evaluation trees contains lower par-
tial degrees in this example.

0

d: 2

c: 3

1

d: 1

c: -1

2

d: 2

c: 2

3

d: 1

c: 1

4

d: 4

c: -4

5

d: 1

c: 9

6

d: 2

c: -3

7

d: 1

c: -2

8

d: 0

c: 1

Balanced divide and conquer scheme

1.3 Lazy height

We associate to each node of the tree a lazy height, that will determine the number of temporary
variables required during the evaluation. In particular, the lazy height must be kept as low as
possible. Classically, the height of a node is always greater then the height of its children. In
our case, the lazy height of a node is greater than the lazy height of its children only if it has two
or more children. In particular, this ensures us that for any tree, the maximal lazy height is at
most logarithmic in the number of nodes.

Inria

Fast polynomial evaluation and composition 5

Definition 1.7. Let N be a tree node. The lazy height of N , denoted lh(N), is defined recur-
sively. Let C1, ..., Ck be the child nodes of N such that c1 >t · · · >t ck.

lh(n) =

{
0 if N has 0 or 1 child.

max
2≤i≤k

(lh(Ci)) + 1 otherwise.

Example 1.8. Consider again the polynomial p = 3x8−x7+2x6+x5−4x4+9x3−3x2−2x+1.
In the case of Hörner scheme, the maximal lazy height of the associated evaluation tree is 0,
whereas its classical height is 8. The lazy height associated to the Direct scheme is 1. And we
can check that the Estrin scheme and the Balanced scheme have both maximal lazy heights 1.

2 Evaluation

2.1 Coefficients walk
Once the tree data structure has been computed, the evaluation can be done efficiently. If p is a
univariate polynomial of degree n, we can use the following pseudo-code.

for i from 0 <= i < n:
N = nodes[i]
c, d, h = N.coefficient, N.partial_degree, N.lheight
p = (m[h] + c)*x^d
m[h] = 0
if i == n: return p
elif i < n: m[N.parent.lheight] += p

If the values xd have been precomputed (see next Section), each step costs one multiplication
and one addition. The mutable variables are p and m[0], . . . ,m[L], where L is the lazy height of
the root node. Their number is at most O(log n).

2.2 Powers computation
The powers xd appearing in the evaluation loop can be computed several times for the same d.
In order to optimize the evaluation, these powers can be precomputed using fast exponentiation
methods.

Assume that p is a dense univariate polynomial of degree n. Table 1 shows that the balanced
scheme, as well as the Estrin scheme, require at most a logarithmic number of different powers
to compute.

Direct Hörner Estrin Balanced

1, . . . , n 1 2k b n

2k
c, b n

2k
c+ 1

0 ≤ k ≤ logn 0 ≤ k ≤ logn

Table 1: Degrees appearing in the evaluation tree of a dense polyno-
mial of degree n.

2.3 Template system and multi-thread
The code is written with templates, and is specialized for different C/C++ object. This allows
the library to compete with state-of-the art ad hoc implementations, and to be easily extended
with new numeric types (see interfaces/README in the package).

RT n° 453

6 Moroz

Moreover, the evaluation tree can be evaluated with multiple threads in parallel. The paral-
lelization mechanism is implemented with openMP directives.

3 Benchmarks
The Figure 1 shows the performance of the balanced scheme implemented in fast_polynomial
for the evaluation over multi precision integers. We see in particular that the balanced scheme
doesn’t suffer the staircase effect shown by the classical divide and conquer algorithms for pure
powers of 2. The results suggest also that an implementation of the balanced scheme directly in
Flint could improve the polynomial composition and evaluation over big integers in some cases.

0 100 200 300 400 500 600

0.6

0.8

1

1.2

1.4

Flint 2.3 (Estrin)
Estrin
Balanced (2 threads)
Balanced -- reference

Figure 1: Comparison of the Balanced scheme with the Estrin scheme, the Balanced scheme with 2 threads, and the
state of the art Flint library. The abscisse represents the degree of the polynomial p, the bitsize of its coefficients, and the
bitsize of the integer on which it is evaluated. The ordinate represents the computation time for the different methods
divided by the computation time for the Balanced scheme.

References
[BK75] Richard P Brent and HT Kung. 0 ((n log n) 3/2) algorithms for composition and reversion of power

series. Analytic computational complexity, pages 217–225, 1975.

[BZ11] Marco Bodrato and Alberto Zanoni. Long integers and polynomial evaluation with estrin’s scheme.
In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th International
Symposium on, pages 39–46, 2011.

[Est60] Gerald Estrin. Organization of computer systems: the fixed plus variable structure computer. In Papers
presented at the May 3-5, 1960, western joint IRE-AIEE-ACM computer conference, pages 33–40. ACM,
1960.

[Mul06] Jean-Michel Muller. Elementary functions. Computer Science. Birkhäuser Boston, 2006.

Inria

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803

	Polynomial preprocessing
	Function scheme
	A new balanced divide and conquer scheme
	Lazy height

	Evaluation
	Coefficients walk
	Powers computation
	Template system and multi-thread

	Benchmarks

