
HAL Id: hal-00846942
https://hal.science/hal-00846942

Submitted on 22 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph-to-Segment Transformation Technique
minimizing the number of processors for Real-time

Multiprocessor Systems
Manar Qamhieh, Serge Midonnet, Laurent George

To cite this version:
Manar Qamhieh, Serge Midonnet, Laurent George. Graph-to-Segment Transformation Technique
minimizing the number of processors for Real-time Multiprocessor Systems. Workshop on Power,
Energy, and Temperature Aware Real-time Systems (PETARS), Dec 2012, San Juan, Puerto Rico.
�hal-00846942�

https://hal.science/hal-00846942
https://hal.archives-ouvertes.fr

Graph-to-Segment Transformation Technique minimizing the number of processors

for Real-time Multiprocessor Systems

Manar Qamhieh, Serge Midonnet, Laurent George

LIGM, Université Paris-Est, France

{manar.qamhieh,serge.midonnet}@univ-paris-est.fr, lgeorge@ieee.org

Abstract—In energy-aware real-time systems, there are tech-
niques to optimize the energy consumption through turning
off idle processors, Dynamic Power Management (DPM) is an
example of such techniques. In this paper we propose a trans-
formation technique of graph task model into the multi-thread
segment task minimizing the number of processors needed to
schedule the tasks. This reduces the energy consumption of
the system when DPM like technique is used. The Directed
Acyclic Graph task is presented as a directed graph of subtasks
under precedence constraints, while the other task is called the
multi-threaded segment model, in which a task is a sequence of
segments, and each segment has a number of threads and an
intermediate deadline. The graph model is more general than
the segment model, but it is more complicated to schedule
and analyze, because in the segment model, the threads of
each segment are scheduled as independent sequential tasks
on multiprocessor platform. Due to the dependencies between
the subtasks of a graph, it could have a number of possible
segment combinations. In this paper, we propose a graph-to-
segment transformation technique, which generates a multi-
thread segment task with minimum number of processors
required to execute on multiprocessor platform.

I. INTRODUCTION

Chip manufacturers tend to build multi-processors and

multi-core processors as a solution to overcome the physical

constrains of the manufacturing process, such as chip’s size

and heating. As a result, parallel programming has gained

a higher importance and parallel programming APIs have

been used for many years, such as OpenMP[1], pThreads

and others.

For systems having energy constraints, Dynamic Power

Management (DPM) is considered as a powerful technique

to reduce energy consumption [2]. Its principle is to turn off

the idle processors in the system. Minimizing the number

of processors required to run an application is thus a way

to reduce energy consumption when DPM is used. In this

paper, we focus on the problem of scheduling real-time

parallel graphs on identical multiprocessors. We propose to

transform the graphs into multi-thread segments to solve

the real-time scheduling problem. we show that this trans-

formation minimizes the number of processors required to

schedule the taskset. This reduces the energy consumption

when idle processors are turned off with DPM.

The remainder of this paper is organized as the following,

in Section II, we present our task model and the target task

model, with few definitions and notations used in the rest of

the paper in Section III. Section IV describes a related work

used in our transformation technique. Section V explains the

proposed transformation technique followed by the analysis

in Section VI. and we finish with perspective and the

conclusion in Section VII.

II. TASK MODEL

A. Directed Acyclic Graph model

We consider a parallel constrained-deadline real-time task

to be scheduled on heterogeneous multiprocessor platform.

Each task is represented as a Directed Acyclic Graph (DAG),

where the nodes represent the different subtasks in the graph,

and the edges represent the precedence constraints.

Each graph ⌧i consists of a set of ni subtasks and a

deadline Di and a period Ti, where Di ≤ Ti. Each subtask

is denoted by ⌧i,j , 1 ≤ j ≤ ni, with ni is the total number

of subtasks in the graph ⌧i. Each subtask ⌧i,j has a worst

case execution time denoted by ci,j , and all subtasks share

the same deadline and period.

!1,1 !1,6

!1,2

!1,7

!1,3

!1,4

!1,8

!1,9

!1,10

!1,5

!1,11

Figure 1. A example of a graph task τ1 on which we will apply the
transformation technique.

their

As shown in Figure 1, the precedence constraints of a

graph model mean that each subtask can start its execution

when all of its predecessors have finished theirs. If there is

an edge from subtask ⌧i,u to ⌧i,v , then ⌧i,u is a predecessor

of ⌧i,v , and ⌧i,v has to wait for ⌧i,u to finish its execution

before it can start its own. Each subtask in the graph may

have multiple predecessors, and multiple successors as well,

but each graph should have a single source and a single sink

vertex.

B. The multi-thread segments model

In this model, a real-time implicit deadline task ⌧ 0i is

represented as a set of ni sequential segments Γi =
{σi,1, σi,2, ..., σi,ni

}. Each segment σi,j is a collection of

ni,j threads, each thread ⌧ki,j has a worst case execution time

of Ck
i,j . All the segments share the same period Ti, which is

the global period of the task. However, the global deadline

of the task Di has to be split into intermediate deadlines di,j
for each σi,j , where

P
di,j = Di. As a result, the threads

of each segment can be scheduled as independent real-time

tasks on multiprocessor platform, because the threads of the

same segment can be considered as independent threads,

each with an offset and an intermediatheirte deadline. Seg-

ment σi,j is activated when all its predecssors finish their

execution, so its offset is
X

l<j

di,l.

In the multi-thread segment model, each segment executes

individually on the system without interference from the

other segments of the same task.

C1
i,1

C2
i,1

C1
i,2 C1

i,ni

Cn1
i,1 Cn2

i,2 Cmi
i,ni

!11 !12 !1ni

d1,1 d1,2 d1,ni

Figure 2. parallel real-time task of sequential segment model.

Figure 2 shows the model of multi-thread segment task.

In this work, we consider multi-thread model of paral-

lelism, in which threads can execute in parallel indepen-

dently from each other. This model of parallelism is different

from the gang model, in which all threads have to execute

simultaneously on multiple processors.

III. DEFINITIONS AND NOTATIONS

Graph Model:

• Worst case execution time Ci of graph ⌧i is the maxi-

mum execution time of the graph if all its subtasks are

executed sequentially on one processor.

Ci =
X

1jni

ci,j

• Graph’s critical path is a directed path through the

graph with the maximum execution requirement among

all other paths in the graph.

• The critical paththeir length Pi is the time needed to

execute the critical path of the graph, which is the

minimum execution time of the graph ⌧i.

Pi =
X

⌧i,j2critical

ci,j

• Critical subtask ⌧i,j is subtask ⌧i,j forming the critical

path of the graph. If a critical subtask in a graph

is delayed, the response time of the graph will be

increased as a result.

Multi-thread Segment Model:

• For segment σi,j in ⌧ 0i , the maximum execution time

Ci,k is the total execution time of its threads, Cm
i,j is

its minimum execution time.

Ci,j =
X

1kni,j

Ck
i,j .

Cm
i,j = max

1kni,j

Ck
i,j .

Common definitions:

• The density δi of a real-time task ⌧i is the average

computing capacity needed to execute a job of ⌧i
between its arrival time and its deadline.

δi =
ci

Di

• The average density δ⇤i of a task (either graph or

segments) ⌧i is the total worst case execution time of

the task Ci divided by its deadline Di.

δ⇤i =
Ci

Di

• The upper bound density bδi of a segment σi,j of task

⌧i is the maximum density can be granted to σi,j . It

can be achieved when the segment has an intermediate

deadline di,j equal to the the maximum execution time

of its threads.

bδi =
max

⌧k
i,j

2σi,j

Ck
i,j

di,j

IV. RELATED WORK

A common parallel task model is the fork-join model,

and it has been studied as a real-time task model in [3].

This model is defined as a master thread that forks into a

number of parallel threads, then they all join again after

a period of time into the master thread. According to this

model, a parallel task is a sequence of alternative parallel

and sequential segments.The authors of this paper proposed

a stretching algorithms to schedule the tasks of this model.

As a generalization of the fork-join model, the authors

in [4] proposed the multi-thread segment model (described

above). A task of this model has a global deadline shared

between all the segments of the task, and the challenge

is to split the global deadline of the task into a group of

intermediate deadlines for each segment in the task, and

find so as the threads of each segment can be scheduled as

independent sequential tasks with intermediate deadline.

Based on the previous paper, the authors in [5] proposed

an optimization technique for the intermediate deadline

assignment algorithm. The optimization technique is proved

to be optimal regarding the number of processors. According

to their optimization, their algorithm assigns intermediate

deadline to segments by imposing the average density of

the task to the maximum number of segments. Minimizing

the density of the segments will minimize the number of

processors needed to schedule the task.

The proposed optimization technique is applied to multi-

thread segment tasks, the authors proposed a solution to

apply it on the graph model. However, their solution has an

exponential complexity and suggests to test all the possible

segments of a graph. In this work, we will propose a

simpler solution, to transform the graphs into a segment task,

which maintains the optimality of the deadline assignment

technique, to maximize the number of idle processors in

the system which can be turned off using techniques like

DPM[2].

V. TRANSFORMATION TECHNIQUE

A. Motivation

Due to the special structure of the DAG model, and due

to the inter-subtask parallelism (multiple subtasks in a graph

execute in parallel according to their precedence constraints),

a single DAG task has multiple combinations of sequential

segment model. Figure 3(a) shows a simple graph task ⌧i,

which consists of five subtasks (the number inside the square

denotes the index of the subtask, for example, number 1

refers to ⌧i,1). The critical path of ⌧i is {⌧i,1, ⌧i,2, ⌧i,3, ⌧i,5},

and subtask ⌧i,4 forms another path in the graph which

executes in parallel with the critical path, since both paths

are activated at the same time t and they share the same

starting and ending subtasks. As shown in the example,

subtask ⌧i,4 can be executed in parallel with either subtask

⌧i,2 or ⌧i,3 or both at the same time. This will form three

possible combinations of sequential segments based on the

original graph. Figure 3 shows all possible segment tasks

for the graph in Figure 3(a).

The optimal intermediate deadline assignment algorithm

proposed by [5] is applied on the multi-thread segment

model. The optimality of the algorithm is related to the num-

ber of processors needed to schedule the task. This iterative

algorithm assigns intermediate deadlines for the segments

of the task, to be scheduled with the minimum number of

processors. The authors propose possible generalizations of

the tasks into graphs. In order to maintain the optimality of

their algorithm when applied to graphs, all the structures

of generated segments have to be studied. The proposed

solution has an exponential complexity based on the number

of constraints and subtasks in the graph.

1 2 3 5

4 4

1 2 3 5

4

1 2 3 5

4

(a) (b)

(c)

Figure 3. The three possible combinations of sequential segments of a
graph task.

The process of choosing the best sequential segment

combination depends on the desired criteria. This means

that the sequential segment combination, most suitable for

optimizing the number of processors on which the graph

executes, might not be the most feasible combination for

example, and so on. However, in this work, we aim to

provide a technique to transform a graph into a sequential

segment task with average fair density distribution among

the segments. Applying this rule, we are choosing the

sequential segment combination which is adapted to the op-

timal intermediate deadline assignment algorithm proposed

by [5]. For example, the sequential segments in Figure3(c)

is the combination with the most fair density distribution

among the segments, since subtask ⌧i,4 will be executed in

parallel with both ⌧i,2 and ⌧i,3.

B. Average density bounds

For scheduling real-time tasks on multiprocessor systems,

the following necessary feasibility test should apply:

A task set Γ is feasible on m identical multiprocessor

platform if, at any time t, we have δ(t) ≤ m.

This feasibility test can be applied to a parallel real-

time task model. Since the subtasks of each graph with

precedence constraints or the threads of segments can be

considered as independent subtasks with certain offsets and

deadlines executing on multiprocessor platforms. According

to this, the maximum execution time of the task Ci can be

either less, equal or greater than its deadline Di.

Ci ≤ Di: If the total execution time of a parallel task is

less than its deadline, the whole graph task ⌧i can execute

sequentially on one processor, since its density is less than

one.

Ci ≤ Di →
Ci

Di

≤
Di

Di

→ δi ≤ 1

According to this, we are interested in the case where

Ci ≥ Di in this work. And since the critical path length

Pi of a parallel task is the minimum execution time of the

task, the deadline of the task Di should be greater or equal

to Pi, this can be considered as a necessary feasibility

condition.

Pi ≤ Di: If the condition is not satisfied then the task ⌧i
is not feasible, because the density of the critical path will

be greater than 1, which means ⌧i is not feasible on single

processor.

Pi ≥ Di →
Pi

Di

≥
Di

Di

→ δi ≥ 1

As the result, we can conclude the following bounds for

the average density of the task:

Pi ≤ Di < Ci

Ci

Pi

≥
Ci

Di

>
Ci

Ci

1 < δ⇤i ≤
Ci

Pi

We will use the upper bound of the average density in

our transformation, so as to give the generated segments the

highest possible average density.

C. Graph-to-Segments transformation technique:

The basic idea of the graph-to-segment transformation is

to transform the graph task into a set of sequential segments,

the subtasks of the graph will be distributed among the

different segments, based on the precedence constraints of

the subtasks and the densities of the segments.

In our technique, we define the critical path of the graph

as the principal path in the graph, since it is the longest path

in the graph with no laxity. All the other paths in the graph

will have laxity values greater or equal to zero. The critical

subtasks will define the initial segments of the set. We call

it an initial number of segments because we might need to

create more segments by the end of the technique. If there

a fork or join event between two subtasks in a segment, this

segment has to be split into two segments at the time of the

event. Figure 1 shows a graph task ⌧1 which consists of 11

subtasks and 3 execution paths. ⌧1,1 is the starting subtask

and ⌧1,11 is the ending subtasks, according to our model,

those subtasks do not execute in parallel with the rest of the

graph, and their upper bound density is always equal to one.

Table I shows the WCETs for each subtask in ⌧1. For task

⌧1, there are three pathsAvgDensity ⇢ executing in parallel:

• %1 = {⌧1,2, ⌧1,3, ⌧1,4, ⌧1,5}
• %2 = {⌧1,6}
• %3 = {⌧1,7, ⌧1,8, ⌧1,9, ⌧1,10}

The path %1 is the critical path of the graph.

Figure 4 shows the time diagram of the graph ⌧1 and

the execution behavior of the subtasks of the graph and

their precedence constraints, as well as the laxity of each

path. The figure shows also the initial segments of the

τi,j ci,j τi,j ci,j

τ1,1 1 τ1,2 2
τ1,3 2 τ1,4 1
τ1,5 2 τ1,6 4
τ1,7 1 τ1,8 2
τ1,9 1 τ1,10 1
τ1,11 1

Table I
WCETS OF THE SUBTASKS IN τ1

"1,1 "1,2 "1,3 "1,4 "1,5

! !

! !

! : Path’s laxity in time unit

Figure 4. The time diagram of τ1 showing the WCET of each subtask.

graph, generated from the subtasks of the critical path. For

each segment σi,j , its length is the maximum WCET of its

subtasks Cm
i,j , and its upper bound density cδi,j is the total

WCETs of its subtasks divided by its length. According to

the example in Figure 4, the upper bound densities for each

segment is represented by the following set: {1, 1, 1.5, 1, 1},

where the first value in the set is the upper bound density

of σ1,1 and so on.

However, there is no parallelism in the starting and the

ending subtasks of a graph, so they are executed sequentially

on one processor only, and the density of these segments is

always one, and there is no need to include them in the

transformation algorithm.

D. Transformation algorithm:

In this section, we will present our graph-to-segment

transformation technique, then we will apply it on the graph

⌧1 in Figure 1. In this transformation we will use the upper

bound value of the average density of the graph described

above, which is δ⇤i = Ci

Pi
.

• Determine the critical path of a given real-time graph

⌧i. Each critical subtask in the graph ⌧i,j will form a

segment σi,j in the new output multi-thread segment

task. The minimum execution time of σi,j is the exe-

cution time of ⌧i,j .

• Calculate the average density of δ⇤
1

of task ⌧1.

• Impose the average density δ⇤i on all the initial seg-

ments of the task where δ⇤i = Ci

Pi
, so as the density

of each segment σi,j is equal to δ⇤i . The minimum

execution time Cm
i,j of the segment is fixed, so we can

distribute the execution time of the rest of the task ⌧i
on the segments.

δ⇤i =
Xi,j + Ci,j

Cm
i,j

Xi,j = δ⇤i ∗ Cm
i,j − Ci,j

Xi,j is the needed execution time to be added to

segment σi,j so as to maintain its density equal to δ⇤i .

• For each path %k in the graph other than the critical

path, we will calculate a distribution factor fk. This

factor indicates how much execution capacity each path

has in relation to the total capacity of the other paths

(all the graph without the critical segments).

fk =
Ci,kX

%l2⇢

Ci,l

Using this factor fk, the execution time of each path

%k will be fairly distributed among the segments of the

critical path.

Xi,j =
X

%k2⇢

fk ∗ Ci,k

Algorithm 1 Graph-to-Segment transformation algorithm.

Input: ⌧i is a graph task

%c := critical path(⌧i)
δ⇤i := Ci

Di

Cm
i,j := maxCk

i,j

Ci,j :=
P

Ck
i,j

for ∀ path %l ∈ ⌧i do

fl =
Ci,lX

%h2⇢

Ci,h

end for

for ∀ segment σi,j ∈ %c do

δ⇤i,j ← δ⇤i
Xi,j ← δ⇤i ∗ Cm

i,j − Ci,j

Xi,j =
X

%k2⇢

fk ∗ Ci,k

end for

E. Example:

• Based on the Graph task ⌧1 in Figure 1, the

critical path %1 = {⌧1,1, ⌧1,2, ⌧1,3, ⌧1,5, ⌧1,11}. We

can identify the segments of the output task as Γ1 =
{σ1,s(⌧1,1), σ1,1(⌧1,2), σ1,3(⌧1,2, ⌧1,4), σ1,3(⌧1,5), σ1,e(⌧1,11)},

as shown in Figure 5.

• We are interested in the segments with parallel paths,

which are σ1,1, σ1,2, σ1,3. we calculate the average

density of the graph:

δ⇤
1
= 16

6
= 2.67.

We impose this density to all the segments as shown

in Figure 5.

!1,1 !1,3 !1,11!1,5!1,2

!1,4

!1,6

!1,7 !1,8 !1,10

!1,9

! !

! !

#1,1 #1,2 #1,3

"1,1 = "1,2 = "1,3 = 2,67

d to segment !ij so as it has a density equal

∊ σij.
Figure 5. The first iteration of the transformation technique applied on
graph τ1.

• For each segment σi,j , we calculate the total execution

time Xi,j needed to maintain its density:

X1,1 = (2.67 ∗ 2)− 2 = 3.34
X1,2 = (2.67 ∗ 2)− 3 = 2.34
X1,3 = (2.67 ∗ 2)− 2 = 3.34

• There are two paths in the graph execute

in parallel with the critical path: ⇢ =
{%1(⌧1,6), %2(⌧1,7, ⌧1,8, ⌧1,9, ⌧1,10)}. The distribution

factor for each path is calculated as the following:

f1 = 4

9
= 0.44

f1 = 5

9
= 0.56

• For each segment and according to the capacity load

factor of each path, we will split the subtasks on the

segments as the following:

X1,1 = X1,3 = (0.44 ∗ 3.34) + (0.56 ∗ 3.34)
X1,1 = X1,3 = (1.48) + (1.86)
Where 1.48 is the execution time from path %1 and

1.86 is from %2.

X1,2 = (0.44 ∗ 2.34) + (0.56 ∗ 2.34)
X1,2 = (1, 04) + (1, 3)

• Figure 6 shows the final result of the algorithm, which

transformed the graph ⌧1 into a sequence of segments,

the upper bound density of each segment is as the

following:

dδ1,s = dδ1,e = 1
dδ1,1 = dδ1,2 = dδ1,3 = δ⇤

1
= 2.67

VI. ANALYSIS OF THE TRANSFORMATION TECHNIQUE

The graph-to-segment transformation technique we pro-

posed above, is adapted to the optimal intermediate deadline

assignment algorithm provided in [5], which maintains the

optimality of the deadline assignment algorithm, when it is

!1,7 !1,8 !1,10

!1,6 !1,6 !1,6

!1,8

!1,9

!1,1 !1,3 !1,11!1,5!1,2

!1,4

#1,1 = #1,2 = #1,3 = 2,67

h (!1, !2)

34)

Figure 6. The second iteration of the transformation technique applied on
graph τ1.

applied on the generated multi-thread task generated by our

transformation technique.

Theorem 1. the graph-to-segment transformation algorithm

will transoform a graph real-time task into a multi-thread

segment real-time task. The output task has the optimal

number of processors when compared with the rest of the

possible segment tasks of the same graph.

Proof: The optimality of the output multi-thread seg-

ment means that the task will the minimum possible number

of processors when executed on multi-processor platform,

while the other possible segment tasks of the same input

graph will need more porcessors to execute.

In order to prove the optimality of our transformation,

we will start by explaining the intermerdiate-deadline-

assignment optimization technique proposed by [5]. The

authors of this paper proposed an iterative algorithm that

imposes the average denisty of the task to the maximum

number of segments in the task. This is justified by the

following property [5]:

Property 1. The maximum instantaneous density of any

solution cannot be smaller than the average density of the

task.

Based on this, imposing the average density on a set of

segments guarantees minimizing the number of processors

needed to schedule those segments. on another hand, the

optimization technique is iterative algorithm. At each itera-

tion, the algorithm compares the least upper bound density
cδi,j of the segment set with the average density of the set

δ⇤i , if cδi,j < δ⇤i , then di,k = Cm
i,k, and σi,k will be omitted

from the segment set in the next iteration. If cδi,j ≥ δ⇤i , then

δ⇤i will be the density of the rest segments in the set, and

the deadline of each segment will be di,j =
Ci,j

δ∗
i

(for more

details, check Algorithm 1 in [5]).

It is proven as well in [5] that the average density of

segments will increase by the increase of the number of

iterations.

According to our transformation, the generated multi-

thread segment task consists of a set of segments, each

segment σi,j (except the starting and the ending segment)

has an upper bound density cδi,j = Ci

Pi
. This density value

is proven in Section V-B to be the upper bound density

of the task. According to this, and when applying the

transformation technique on this segment set, the second

case of the algorithm will be applied always, since cδi,j ≥ δ⇤i
is always true, and the optimization technique will succeed

in finding an intermediate-deadline assignment from the first

iteration, which will guarantee the minimum possible denisty

for all the segments of the set, and the minimum possible

number of processors for the task to execute on as a result.

The generated segment structure of the graph will domi-

nate the other possibilities regarding the number of proces-

sors, and it is well adapted to the optimization technique of

[5]. In other words, the other segment structures will need

more processors to be scheduled on if they use the same

deadline algorithm to assign their intermediate deadlines.

VII. CONCLUSION

In this paper, we provided a transformation technique

to transform real-time parallel graphs into a sequential

multi-thread segment task. The segments of the generated

task have average density segments, hence, we are sure to

maintain the optimality of the optimization technique of [5],

which minimizes the number of processors and thus reduces

the energy consumption of the processors in the system with

DPM.

In the future we aim to better study the scheduling of

a task set on multiprocessor platforms, and provide more

energy-aware analysis for the scheduling, and perform as

well some simulation analysis to study the transformation

effects and advantages.

REFERENCES

[1] “OpenMP.” [Online]. Available: http://www.openmp.org

[2] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power
savings,” ACM Trans. Algorithms, vol. 3, no. 4, 2007.

[3] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar, “Scheduling
Parallel Real-Time Tasks on Multi-core Processors,” in RTSS,
2010.

[4] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core
Real-time Scheduling for Generalized Parallel Task Models,”
in RTSS, 2011.

[5] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Tech-
niques Optimizing the Number of Processors to Schedule
Multi-threaded Tasks,” in ECRTS, 2012.

