
HAL Id: hal-00846875
https://hal.science/hal-00846875

Submitted on 22 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressivity of Time-Varying Graphs
Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro,

Masafumi Yamashita

To cite this version:
Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro, Masafumi Yamashita. Expres-
sivity of Time-Varying Graphs. Expressivity of Time-Varying Graphs, Aug 2013, United Kingdom.
pp.95-106. �hal-00846875�

https://hal.science/hal-00846875
https://hal.archives-ouvertes.fr

Expressivity of Time-Varying Graphs

A. Casteigts1, P. Flocchini2, E. Godard3, N. Santoro4, and M. Yamashita5.

1 Université de Bordeaux, France – acasteig@labri.fr
2 University of Ottawa, Canada – flocchin@eecs.uottawa.ca

3 Université Aix-Marseille, France – emmanuel.godard@lif.univ-mrs.fr
4 Carleton University, Ottawa, Canada – santoro@scs.carleton.ca
5 Kyushu University, Fukuoka, Japan – mak@inf.kyushu-u.ac.jp

§

Abstract. Time-varying graphs model in a natural way infrastructure-
less highly dynamic systems, such as wireless ad-hoc mobile networks,
robotic swarms, vehicular networks, etc. In these systems, a path from a
node to another might still exist over time, rendering computing possible,
even though at no time the path exists in its entirety. Some of these
systems allow waiting (i.e., provide the nodes with store-carry-forward-
like mechanisms such as local buffering) while others do not.
In this paper, we focus on the structure of the time-varying graphs mod-
elling these highly dynamical environments. We examine the complexity
of these graphs, with respect to waiting, in terms of their expressivity;
that is in terms of the language generated by the feasible journeys (i.e.,
the “paths over time”).
We prove that the set of languages Lnowait when no waiting is allowed
contains all computable languages. On the other end, using algebraic
properties of quasi-orders, we prove that Lwait is just the family of regular
languages, even if the presence of edges is controlled by some arbitrary
function of the time. In other words, we prove that, when waiting is
allowed, the power of the accepting automaton drops drastically from
being as powerful as a Turing machine, to becoming that of a Finite-State
machine. This large gap provides a measure of the impact of waiting.
We also study bounded waiting; that is when waiting is allowed at a
node for at most d time units. We prove that Lwait[d] = Lnowait; that is,
the complexity of the accepting automaton decreases only if waiting is
unbounded.

1 Introduction

1.1 Highly Dynamic Networks

In the past, the majority of the research on networks and distributed computing
has been on static systems. The study of dynamic networks has focused exten-
sively on systems where the dynamics are due to faults (e.g., node or edge dele-
tions or additions); the faults however are limited in scope, bounded in number.
Even in the field of self-stabilization, where the faults are extensive and pos-
sibly unbounded, the faults in the network structure are considered anomalies

§ This work has been partially supported by NSERC Discovery Grants, by Dr. Floc-
chini’s University Research Chair, and by a PIMS grant.

with respect to the correct behaviour of the system. There are however systems
where the instability never ends, the network is never connected, the changes
are unbounded and occur continuously, where the changes are not anomalies but
integral part of the nature of the system. Such highly dynamic systems are quite
widespread, and becoming more ubiquitous. The most obvious class is that of
wireless mobile ad hoc networks: the topology of the communication network,
formed by having an edge between two entities when they are in communication
range, changes continuously in time as the movement of the entities destroys
old connections and creates new ones. These infrastructure-less highly dynamic
networks, variously called delay-tolerant, disruptive-tolerant, challenged, oppor-
tunistic, have been long and extensively investigated by the engineering commu-
nity and, more recently, by distributed computing researchers, especially with
regards to the problems of broadcast and routing (e.g. [Zha06]). Similar highly
dynamic conditions occur also when the mobility of the entities follows a pre-
dictable pattern, e.g. periodic or cyclic routes (e.g. [LW09]). Interestingly, similar
complex dynamics occur also in environments where there is no mobility at all,
e.g., in social networks (e.g. [KKW08]).

The highly dynamic features of these networks and their temporal nature
is captured in a natural way by the model of time-varying graphs (TVG), or
evolving graphs, where edges between nodes exist only at some times (e.g., see
[BFJ03,CCF09,CFQS12,Fer04]). A crucial aspect of dynamic networks, and ob-
viously of time-varying graphs, is that a path from a node to another might still
exist over time, even though at no time the path exists in its entirety. It is this fact
that renders routing, broadcasting, and thus computing possible in spite of the
otherwise unsurmountable difficulties imposed by the nature of those networks.
Hence, the notion of “path over time”, formally called journey, is a fundamental
concept and plays a central role in the definition of almost all concepts related
to connectivity in time-varying graphs. Examined extensively, under a variety
of names (e.g., temporal path, schedule-conforming path, time-respecting path,
trail), informally a journey is a walk <e1, e2, ..., ek> and a sequence of time in-
stants <t1, t2, ..., tk> where edge ei exists at time ti and its latency ζi at that
time is such that ti+1 ≥ ti + ζi.

While the concept of journey captures the notion of “path over time” so
crucial in dynamical systems, it does not yet capture additional limitations that
some of these environments can impose on the use of the journeys. More specif-
ically, there are systems that provide the entities with store-carry-forward-like
mechanisms (e.g., local buffering); thus an entity wanting to communicate with a
specific other entity at time t0, can wait until the opportunity of communication
presents itself. There are however environments where such a provision is not
available (e.g., there are no buffering facilities), and thus waiting is not allowed.
In time-varying graphs, this distinction is the one between a direct journey where
∀i, ti+1 = ti + ζi, and an indirect journey where it is possible to have i such that
ti+1 > ti + ζi.

In this paper, we focus on the structure of the time-varying graphs mod-
elling these highly dynamical environments. We examine the complexity of these

2

graphs, with respect to waiting, in terms of their expressivity, that is of the lan-
guage defined by the journeys, and establish results showing the difference that
the possibility of waiting creates.

1.2 Main Contributions

Given a dynamic network modeled as a time-varying graph G, a journey in
G can be viewed as a word on the alphabet of the edge labels; in this light,
the class of feasible journeys defines the language Lf (G) expressed by G, where
f ∈ {wait, nowait} indicates whether or not indirect journeys are considered
feasible by the environment. Note that in the highly dynamic networks context,
we consider journeys where the transitions are guarded by possibly arbitrary
(computable) functions of the time.

We focus on the sets of languages Lnowait = {Lnowait(G) : G ∈ U} and
Lwait = {Lwait(G) : G ∈ U}, where U is the set of all time-varying graphs; that
is, we look at the languages expressed when waiting is, or is not allowed. For
each of these two sets, the complexity of recognizing any language in the set
(that is, the computational power needed by the accepting automaton) defines
the complexity of the environment.

We first study the expressivity of time-varying graphs when waiting is not
allowed, that is the only feasible journeys are direct ones. We prove that the
set Lnowait contains all computable languages. That is, we show that, for any
computable language L, there exists a time-varying graph G with computable
parameters such that L = Lnowait(G).

We next examine the expressivity of time-varying graphs if indirect journey
are allowed. We prove that Lwait is precisely the set of regular languages even if
the presence and latence functions are arbitrary complex functions of the time.
The proof is algebraic and based on order techniques, relying on a theorem by
Harju and Ilie [HI98] that enables to characterize regularity from the closure of
the sets from a well quasi-order. In other words, we prove that, when waiting is
allowed, the power of the accepting automaton drops drastically from being as
powerful as a Turing machine, to becoming that of a Finite-State Machine.

To better understand the impact of waiting on the expressivity of time-
varying graphs, we then turn our attention to bounded waiting; that is when
indirect journeys are considered feasible if the pause between consecutive edges
in the journeys has a duration bounded by d > 0. In other words, at each step
of the journey, waiting is allowed only for at most d time units. We examine the
set Lwait[d] of the languages expressed by time-varying graphs when waiting is
allowed up to d time units. We prove that for any fixed d ≥ 0, Lwait[d] = Lnowait,
which which implies that the expressivity of time-varying graphs is not affected
by allowing waiting for a limited amount of time.

1.3 Related Work

The literature on dynamic networks and dynamic graphs could fill a volume.
Here we briefly mention only some of the work most directly connected to the

3

results of this paper.
The idea of representing dynamic graphs as a sequence of (static) graphs,

called evolving graph, was introduced in [Fer04] to study basic dynamic network
problems from a centralized point of view. The evolving graph views the dynam-
ics of the system as a sequence of global snapshots (taken either in discrete steps
or when events occur). The computationally equivalent model of time-varying
graph (TVG), introduced in [CFQS12] and used here, views the dynamics of the
system from the local point of view of the entities. Both viewpoints have been ex-
tensively employed in the analysis of basic problems such as routing, broadcast-
ing, gossiping and other forms of information spreading (e.g. [AKL08,CFMS13]);
to study problems of exploration in vehicular networks with periodic routes (e.g.,
[FMS13,IW11]); to examine failure detectors and consensus (e.g., [KLO10]); and
in the investigations of emerging properties in social networks (e.g. [KKW08]). A
characterization of classes of TVGs with respect to properties typically assumed
in the research can be found in [CFQS12]. The impact of bounded waiting in
dynamic networks has been investigated for exploration [IW11].

The closest concept to TVG-automata, defined in this paper, are the well-
established Timed Automata proposed by [AD94] to model real-time systems.
A timed automaton has real valued clocks and the transitions are guarded with
finite comparisons on the clock values; with only one clock and no reset it is a
TVG-automaton with 0 latency. Note that, even in the simple setting of timed
automata, some key problems, like inclusion, are undecidable for timed languages
in the non-deterministic case, while the deterministic case lacks some expressive
power. Note that we focus here on the properties of the un-timed part of the
journeys, and that, given the guards can be arbitrary functions, the reachability
problem is obviously not decidable for TVG-automaton. We are here mainly
interested in comparing expressivity of waiting and non-waiting in TVGs.

2 Definitions and Terminology

Time-varying graphs:A time-varying graph G is a quintuple G = (V,E, T , ρ, ζ),
where V is a finite set of entities or nodes; E ⊆ V × V ×Σ is a finite set of rela-
tions between these entities (edges), possibly labeled by symbols in an alphabet
Σ. The system is studied over a given time span T ⊆ T called lifetime, where
T is the temporal domain (typically, N or R

+ for discrete and continuous-time
systems, respectively); ρ : E × T → {0, 1} is the presence function, which in-
dicates whether a given edge is available at a given time; ζ : E × T → T, is
the latency function, which indicates the time it takes to cross a given edge if
starting at a given date (the latency of an edge could vary in time). Both pres-
ence and latency are arbitrary computable functions. The directed edge-labeled
graph G = (V,E), called the footprint of G, may contain loops, and it may have
more than one edge between the same nodes, but all with different labels.

A path over time, or journey, is a sequence 〈(e1, t1), (e2, t2), ..., (ek, tk)〉 where
〈e1, e2, . . . , ek〉 is a walk in the footprint G, ρ(ei, ti) = 1 (for 1 ≤ i < k), and
ζ(ei, ti) is such that ti+1 ≥ ti + ζ(ei, ti) (for 1 ≤ i < k). If ∀i, ti+1 = ti + ζ(ei, ti)

4

the journey is said to be direct, indirect otherwise. We denote by J ∗(G) the set
of all journeys in G.

TVG-automata: Given a time-varying graph G = (V,E, T , ρ, ζ) whose
edges are labeled over Σ, we define a TVG-automaton A(G) as the 5-tuple
A(G) = (Σ,S, I, E , F) where Σ is the input alphabet; S = V is the set of
states; I ⊆ S is the set of initial states; F ⊆ S is the set of accepting states;
E ⊆ S × T × Σ × S × T is the set of transitions such that (s, t, a, s′, t′) ∈ E iff
∃e = (s, s′, a) ∈ E : ρ(e, t) = 1, ζ(e, t) = t′ − t. In the following we shall denote

(s, t, a, s′, t′) ∈ E also by s, t
a
→ s′, t′. A TVG-automaton A(G) is deterministic

if for any time t ∈ T , any state s ∈ S, any symbol a ∈ Σ, there is at most one
transition of the form (s, t

a
→ s′, t′); it is non-deterministic otherwise.

Given a TVG-automaton A(G), a journey in A(G) is a finite sequence of

transitions J = (s0, t0
a0→ s1, t1), (s1, t

′
1

a1→ s2, t2) . . . (sp−1, t
′
p−1

ap−1

→ sp, tp)
such that the sequence 〈(e0, t0), (e1, t

′
1), ..., (ep−1, t

′
p−1)〉 is a journey in G and

ti = t′i−1 + ζ(ei−1, t
′
i−1), where ei = (si, si+1, ai) (for 0 ≤ i < p). Consistently

with the above definitions, we say that J is direct if ∀i, t′i = ti (there is no pause
between transitions), and indirect otherwise.We denote by λ(J) the associated
word a0, a1, ...ap−1 and by start(J) and arrival(J) the dates t0 and tp, respec-
tively. To complete the definition, an empty journey J∅ consists of a single state,
involves no transitions, its associated word is the empty word λ(J∅) = ε, and
its arrival date is the starting date. A journey is said accepting iff it starts in an
initial state s0 ∈ I and ends in a accepting state sp ∈ F . A TVG-automaton
A(G) accepts a word w ∈ Σ∗ iff there exists an accepting journey J such that
λ(J) = w.

Let Lnowait(G) denote the set of words (i.e., the language) accepted by TVG-
automaton A(G) using only direct journeys, and let Lwait(G) be the language
recognized if journeys are allowed to be indirect. Given the set U of all possible
TVGs, let us denote Lnowait = {Lnowait(G) : G ∈ U} and Lwait = {Lwait(G) :
G ∈ U} the sets of all languages being possibly accepted by a TVG-automaton
if journeys are constrained to be direct (i.e., no waiting is allowed) and if they
are unconstrained (i.e., waiting is allowed), respectively.

In the following, when no ambiguity arises, we will use interchangeably the
terms node and state, and the terms edge and transition; the term journey will
be used both in reference to the sequence of edges in the TVG and to the cor-
responding sequence of transitions in the associated TVG-automaton.

Example of TVG-automaton: Figure 1a shows an example of a determin-
istic TVG-automaton that recognizes the context-free language {anbn, n ≥ 1}
(using only direct journeys). Consider the graph G1 = (V,E, T , ρ, ζ), composed
of three nodes: V = {v0, v1, v2}, and five edges: E = {(v0, v0, a), (v0, v1, b),
(v1, v1, b), (v0, v2, b), (v1, v2, b))}. The presence and latency functions are as
shown in Table 1b, where p and q are two distinct prime numbers greater than 1.
Consider now the corresponding automaton A(G1) where v0 is the initial state
and v2 is the accepting state. For clarity, let us assume that A(G1) starts at
time 1 (the same behavior could be obtained by modifying slightly the formulas
involving t in Table 1b). It is clear that the an portion of the word anbn is read

5

v0start v1

v2

e0

a

e1

b
e2

b

e4
b

e3
b

(a) Structure of G1

e ρ(e, t) = 1 iff ζ(e, t) =

e0 always true (p− 1)t

e1 t > p (q − 1)t

e2 t 6= piqi−1,i > 1 (q − 1)t

e3 t = p any

e4 t = piqi−1, i > 1 any

(b) Presence and Latency functions for G1

Fig. 1: A TVG-automaton G1 such that Lnowait(G1) = {anbn : n ≥ 1}.

entirely at v0 within t = pn time. If n = 1, at this time the only available edge
is e3 (labeled b) which allows to correctly accept ab. Otherwise (n > 1) at time
t = pn, the only available edge is e1 which allows to start reading the bn portion
of the word. By construction of ρ and ζ, edge e2 is always present except for
the very last b, which has to be read at time t = pnqn−1. At that time, only
e4 is present and the word is correctly recognized. It is easy to verify that only
these words are recognized, and the automaton is deterministic. The reader may
have noticed the basic principle employed here (and later in the paper) of using
latencies as a means to encode words into time, and presences as a means to
select through opening the appropriate edges at the appropriate time.

3 No Waiting Allowed

This section focuses on the expressivity of time-varying graphs when only direct
journeys are allowed. We prove that Lnowait includes all computable languages.

Let L be an arbitrary computable language defined over a finite alphabet Σ.
Let ε denote the empty word; note that L might or might not contain ε. The
notation α.β indicates the concatenation of α ∈ Σ∗ with β ∈ Σ∗.

Let q = |Σ| be the size of the alphabet, and w.l.o.g assume that Σ =
{0, . . . , q − 1}. We define an injective encoding ϕ : Σ∗→N associating to each

word w = a0.a1 . . . ak ∈ Σ∗ the sum qk+1+
∑k

j=0 ajq
k−j . It is exactly the integer

corresponding to 1.w interpreted in base q. By convention, ϕ(ε) = 0.
Consider now the TVG G2 where V = {v0, v1}, E = {{(v0, v0, i), i ∈ Σ} ∪

{(v0, v1, i), i ∈ Σ} ∪ {(v1, v0, i), i ∈ Σ} ∪ {(v1, v1, i), i ∈ Σ}}. The presence and
latency functions are defined relative to which node is the end-point of an edge.
For all u ∈ {v0, v1}, i ∈ Σ, and t ≥ 0, we define

– ρ((u, v0, i), t) = 1 iff t ∈ ϕ(Σ∗) and ϕ−1(t).i ∈ L,
– ζ((u, v0, i), t) = ϕ(ϕ−1(t).i)− t
– ρ((u, v1, i), t) = 1 iff t ∈ ϕ(Σ∗) and ϕ−1(t).i /∈ L,
– ζ((u, v1, i), t) = ϕ(ϕ−1(t).i)− t

Consider the corresponding TVG-automaton A(G2) where the unique accept-
ing state is v0 and the initial state is either v0 (if ε ∈ L, see Figure 2a), or v1 (if
ε /∈ L see Figure 2b).

6

v0start v1

q-1

0

q-1

0

q-1

0

q-1

0

. . .

. . .

.

(a) Case with ε ∈ L

v0 v1 start

q-1

0

q-1

0

q-1

0

q-1

0

. . .

. . .

.

(b) Case with ε /∈ L

Fig. 2: A TVG G2 that recognizes an arbitrary computable language L.

Theorem 1. Lnowait(G2) = L.

Proof. First note that, since L is computable, testing for the appartenance to L
in the definition of ρ and ζ is computable. Therefore the presence and latency
function are computable.

Now, we want to show there is a unique accepting journey J with λ(J) = w
iff w ∈ L. We first show that for all words w ∈ Σ∗, there is exactly one direct
journey J in A(G2) such that λ(J) = w, and in this case arrival(J) = ϕ(w).
This is proven by induction on k ∈ N, the length of the words. It clearly holds
for k = 0 since the only word of that length is ε and ϕ(ε) = 0 (by convention,
see above). Let k ∈ N. Suppose now that for all w ∈ Σ∗, |w| = k we have exactly
one associated direct journey, and arrival(J) = ϕ(w).
Consider w1 ∈ Σ∗ with |w1| = k + 1. Without loss of generality, let w1 = w.i
where w ∈ Σ∗ and i ∈ Σ. By induction there is exactly one direct journey J
with λ(J) = w. Let u = arrival(J) be the node of arrival and t the arrival
time. By induction, t ∈ ϕ(Σ∗); furthermore since the presence function depends
only on the node of arrival and not on the node of origin, there exists exactly
one transition, labeled i from u. So there exists only one direct journey labeled
by w1. By definition of the latency function, its arrival time is ϕ(ϕ−1(t).i) =
ϕ(w.i) = ϕ(w1). This ends the induction.
We now show that such a unique journey is accepting iff w ∈ L. In fact, by
construction of the presence function, every journey that corresponds to w ∈
L,w 6= ε, ends in v0, which is an accepting state. By construction, the empty
journey corresponding to ε ends in the accepting state v0 if and only if ε ∈ L.

4 Waiting Allowed

We now turn the attention to the case of time-varying graphs where indirect
journeys are possible. In striking contrast with the non-waiting case, we show
that the languages Lwait recognized by TVG-automata consists only of regular
languages. Let R denote the set of regular languages.

Lemma 1. R ⊆ Lwait.

Proof. It follows easily from observing that any finite-state machine (FSM) is
a particular TVG-automaton whose edges are always present and have a nil

7

latency. The fact that we allow waiting here does not modify the behavior of the
automata as long as we consider deterministic FSMs only (which is sufficient),
since at most one choice exists at each state for each symbol read. By considering
exactly the same initial and final states, for any regular language L, we get a
corresponding TVG G such that Lwait(G) = L.

The reverse inclusion is more involved. Consider a non-deterministic automaton
G = (V,E, T , ρ, ζ) with labels in Σ, we have to show that Lwait(G) ∈ R.

The proof is algebraic, and based on order techniques, relying on a theorem
of Harju and Ilie (Theorem 6.3 in [HI98]) that enables to characterize regularity
from the closure of the sets from a well quasi-order. We will use here an inclusion
order on journeys (to be defined formally below). Informally, a journey J is
included in another journey J ′ if its sequence of transitions is included (in the
same order) in the sequence of transitions of J ′. It should be noted that sets
of indirect journeys from one node to another are obviously closed under this
inclusion order (on the journey J it is possible to wait on a node as if the missing
transitions from J ′ were taking place), which is not the case for direct journeys
as it is not possible to wait. In order to apply the theorem, we have to show
that this inclusion order is a well quasi-order, i.e. that it is not possible to find
an infinite set of journeys such that none of them could be included in another
from the same set.

Let us first introduce some definitions and results about quasi-orders. We
denote by ≤ a quasi-order over a given set Q. A set X ⊂ Q is an antichain if
all elements of X are pairwise incomparable. The quasi-order ≤ is well founded
if in Q, there is no infinite descending sequence x1 ≥ x2 ≥ x3 ≥ . . . (where
≥ is the inverse of ≤) such that for no i, xi ≤ xi+1. If ≤ is well founded and
all antichains are finite then ≤ is a well quasi-order on Q. When Q = Σ∗ for
alphabet Σ, a quasi-order is monotone if for all x, y, w1, w2 ∈ Σ∗, we have
x ≤ y ⇒ w1xw2 ≤ w1yw2.

A word x ∈ Σ∗ is a subword of y ∈ Σ∗ if x can be obtained by deleting some
letters on y. This defines a relation that is obviously transitive and we denote
⊆ the subword order on Σ∗. Given two walks γ and γ′, γ is a subwalk of γ′, if γ
can be obtained from γ′ by deleting some edges. We can extend the ⊆ order to
labeled walks as follows: given two walks γ, γ′ on the footprint G of G, we note
γ ⊆ γ′ if γ and γ′ begin on the same node and end on the same node, and γ is
a subwalk of γ′.

Given a date t ∈ T and a word x in Σ∗, we denote by J ∗(t, x) the set
{J ∈ J ∗(G) : start(J) = t, λ(J) = x}. J ∗(x) denotes the set

⋃
t∈T J ∗(t, x).

Given a journey J , J̄ is the corresponding labeled walk (in the footprint G).
We denote by Γ (x) the set {J̄ : λ(J) = x}.

In the following, we consider only ”complete” TVG so we have J ∗(y) not
empty for all word y; complete TVG can be obtained from any TVG (without
changing the recognized language) by adding a sink node where any (missing)
transition is sent. In this way, all words have at least one corresponding journey
in the TVG.

8

Let x and y be two words in Σ∗. We define the quasi-order ≺, as follows:
x ≺ y if

∀J ∈ J ∗(y), ∃γ ∈ Γ (x), γ ⊆ J̄ .

The relation ≺ is obviously reflexive. We now establish the link between com-
parable words and their associated journeys and walks, and state some useful
properties of relation ≺.

Lemma 2. Let x, y ∈ Σ∗ be such that x ≺ y. Then for any Jy ∈ J ∗(y), there
exists Jx ∈ J ∗(x) such that J̄x ⊆ J̄y, start(Jx) = start(Jy), arrival(Jx) =
arrival(Jy).

Proof. By definition, there exists a labeled walk γ ∈ Γ (x) such that γ ⊆ J̄y. It is
then possible to find a journey Jx ∈ J ∗(x) with J̄x = γ , start(Jx) = start(Jy)
and arrival(Jx) = arrival(Jy) by using for every edge of Jx the schedule of the
same edge in Jy.

Proposition 1. The relation ≺ is transitive.

Proof. Suppose we have x ≺ y and y ≺ z. Consider J ∈ J ∗(z). By Lemma 2,
we get a journey Jy ∈ J ∗(y), such that J̄y ⊆ J̄ . By definition, there exists
γ ∈ Γ (x) such that γ ⊆ J̄y. Therefore γ ⊆ J̄ , and finally x ≺ z.

Let L ⊂ Σ∗. For any quasi-order ≤, we denote Down≤(L) = {x | ∃y ∈
L, x ≤ y}.

The following is a corollary of Lemma 2:

Corollary 1. Consider the language L of words induced by labels of journeys
from u to v starting at time t. Then Down≺(L) = L.

The following theorem is due to Harju and Ilie, this is a generalization of the
well known theorem from Ehrenfeucht et al [EHR83], which needs closure in the
other (upper) direction.

Theorem 2 (Th. 6.3 [HI98]). For any monotone well quasi order ≤ of Σ∗,
for any L ⊂ Σ∗, the language Down≤(L) is regular.

The main proposition to be proved now is that (Σ∗,≺) is a well quasi-order
(Proposition 4 below). We have first to prove the following.

Proposition 2. The quasi-order ≺ is monotone.

Proof. Let x, y be such that x ≺ y. Let z ∈ Σ∗. Let J ∈ J ∗(yz). Then there
exists Jy ∈ J ∗(y) and Jz ∈ J ∗(arrival(Jy), z) such that the end node of Jy is
the start node of Jz. By Lemma 2, there exists Jx that ends in the same node
as Jy and with the same arrival time. We can consider J ′ the concatenation of
Jx and Jz. By construction J̄ ′ ∈ Γ (xz), and J̄ ′ ⊆ J̄ . Therefore xz ≺ yz. The
property zx ≺ zy is proved similarly using the start property of Lemma 2.

Proposition 3. The quasi-order ≺ is well founded.

9

Proof. Consider a descending chain x1 ≻ x2 ≻ x3 ≻ . . . such that for no i
xi ≺ xi+1. We show that this chain is finite. Suppose the contrary. By definition
of ≺, we can find γ1, γ2, . . . such that for all i, γi ∈ ¯J ∗(xi), and such that
γi+1 ⊆ γi. This chain of walks is necessarily stationary and there exits i0 such
that γi0 = γi0+1. Therefore, xi0 = xi0+1, a contradiction.

To prove that ≺ is a well quasi-order, we now have to prove that all antichains
are finite. Let (Q,≤) be a quasi-order. For all A,B ⊂ Q, we denote A≤PB if
there exists an injective mapping ϕ : A −→ B, such that for all a ∈ A, a ≤ ϕ(a).
The relation≤P is transitive and defines a quasi-order on P(Q), the set of subsets
of Q.

About the finiteness of antichains, we recall the following result

Lemma 3 ([Hig52]). Let (Q,≤) be a well quasi-order. Then (P(Q),≤P) is a
well quasi-order.

and the fundamental result of Higman:

Theorem 3 ([Hig52]). Let Σ be a finite alphabet. Then (Σ∗,⊆) is a well quasi-
order.

This implies that our set of journey-induced walks is also a well quasi-order for ⊆
as it can be seen as a special instance of Higman’s Theorem about the subword
order. We are now ready to prove that all antichains are finite. We prove this
result by using a technique similar to the variation by [Nas63] of the proof of
[Hig52].

Lemma 4. Let X be an antichain of Σ∗. If ≺ is a well quasi-order on Down≺(X)\X
then X is finite or Down≺(X)\X = ∅.

Proof. We denote Q = Down≺(X)\X, and suppose Q 6= ∅, and that Q is a
well quasi-order for ≺. Therefore the product and the associated product order
(Σ×Q,≺×) define also a well quasi-order. We consider A = {(a, x) | a ∈ Σ, x ∈
Q, ax ∈ X}. Because ≺ is monotone, for all (a, x), (a′, x′) ∈ A, (a, x) ≺× (b, y) ⇒
ax ≺ by. Indeed, in this case a = b and x ≺ y ⇒ ax ≺ ay. So A has to be an
antichain of the well quasi-order Σ ×Q. Therefore A is finite. By construction,
this implies that X is also finite.

Theorem 4. Let L ⊂ Σ∗ be an antichain for ≺. Then L is finite.

Proof. Suppose we have an infinite antichain X0. We apply recursively the pre-
vious lemma infinitely many times, that is there exists for all i ∈ N, a set Xi

that is also an infinite antichain of Σ∗, such that Xi+1 ⊂ Down≺(Xi)\Xi.
We remark that if we cannot apply the lemma infinitely many times that

would mean that Xk = ∅ for some k. The length of words in X0 would be
bounded by k, hence in this case, finiteness of X0 is also granted.

Finally, by definition of Down≺, for all x ∈ Xi+1, there exists y ∈ Xi such
that x ≺ y, ie x ⊆ y. It is also possible to choose the elements x such that no
pair is sharing a common y. So Xi+1 ⊆P Xi, and we have a infinite descending
chain of (P(Σ∗),⊆P). This would contradict Lemma 3.

10

From Propositions 1, 2, 3 and Theorem 4 we have the last missing ingredient:

Proposition 4. (Σ∗,≺) is a well quasi-order.

Indeed, from Proposition 4, Proposition 2, Corollary 1, and Theorem 2, it
immediately follows that Lwait(G) is a regular language for any TVG G; that is,

Theorem 5. Lwait = R.

5 Bounded Waiting Allowed

To better understand the power of waiting, we now turn our attention to bounded
waiting; that is when indirect journeys are considered feasible if the pause be-
tween consecutive edges has a bounded duration d > 0. We examine the set
Lwait[d] of all languages expressed by time-varying graphs when waiting is al-
lowed up to d time units, and prove the negative result that for any fixed d ≥ 0,
Lwait[d] = Lnowait. That is, the complexity of the environment is not affected by
allowing waiting for a limited amount of time.

The basic idea is to reuse the same technique as in Section 3, but with a
dilatation of time, i.e., given the bound d, the edge schedule is time-expanded
by a factor d (and thus no new choice of transition is created compared to the
no-waiting case).

Theorem 6. For any duration d, Lwait[d] = Lwait[0] (i.e., Lnowait)

Proof. Let L be an arbitrary computable language defined over a finite alphabet
Σ. Let d ∈ N be the maximal waiting duration. We consider a TVG G2,d struc-
turally equivalent to G2 (see Figure 2 in Section 3), i.e.,, G2,d = (V,E, T , ρ, ζ)
such that V = {v0, v1, v2}, E = {{(v0, v1, i), i ∈ Σ}∪{{(v0, v2, i), i ∈ Σ},∪{(v1, v1, i), i ∈
Σ} ∪ {(v1, v2, i), i ∈ Σ} ∪ {(v2, v1, i), i ∈ Σ} ∪ {(v2, v2, i), i ∈ Σ}}. The initial
state is v0, and the accepting state is v1. If ε ∈ L then v0 is also accepting.

Based on the mapping ϕ defined for G2 in Section 3, we define another map-
ping ϕd that associates to any word w the value (d + 1)ϕ(w). We also define
ψd(t) to be equal to ϕ−1(⌊ t

d+1⌋) when it is defined. For instance, ϕ5(0110)
in base 2 gives (101 + 1) × 10110 (i.e., 132 in base 10). Reversely, we have
ψ5(132) = ... = ψ5(137) = 0110, and ψ5(138) = ... = ψ5(143) = 0111.

The presence and latency functions are now defined along the lines as those
of G2, the only difference being that we are using ϕd (resp. ψd) instead of ϕ
(resp. ϕ−1). Thus, for all u ∈ {v0, v1, v2}, i ∈ Σ, and t ≥ 0, we define

– ρ((u, v1, i), t) = 1 iff ⌊ t
d+1⌋ ∈ ϕd(Σ

∗) and ψd(t).i ∈ L,
– ζ((u, v1, i), t) = ϕd(ψd(t).i)− t
– ρ((u, v2, i), t) = 1 iff ⌊ t

d+1⌋ ∈ ϕd(Σ
∗) and ψd(t).i /∈ L,

– ζ((u, v2, i), t) = ϕd(ψ
−1
d (t).i)− t

By the same induction technique as in Section 3, we have that L ⊆ L(G2,d).
Similarly, we have that any journey labeled by w ends at time exactly ϕd(w), even
if some d−waiting occurred. Finally, we remark that for all words w,w′ ∈ Σ+

such that w 6= w′, we have |ϕd(w) − ϕd(w
′)| > d. Indeed, if w 6= w′ then they

11

differ by at least one letter. The minimal time difference is when this is the last
letter and these last letters are i, i+1 w.l.o.g. In this case, |ϕd(w)−ϕd(w

′)| ≥ d+1
by definition of ϕd. Therefore waiting for a duration of d does not enable more
transitions in terms of labeling.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Comp.

Sci., 126(2):183 – 235, 1994.
[AKL08] C. Avin, M. Koucky, and Z. Lotker. How to explore a fast-changing world.

In Proc. 35th Int. Coll, Automata Lang. Programming, 121–132, 2008.
[BCF09] H. Baumann, P. Crescenzi, and P. Fraigniaud. Parsimonious flooding in

dynamic graphs. In Proc. 28th Symp. Princ. Distr. Comput., 260–269, 2009.
[BFJ03] B. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and

foremost journeys in dynamic networks. Intl. J. Found. Comp. Science,
14(2):267–285, 2003.

[CCF09] A. Casteigts, S. Chaumette, and A. Ferreira. Characterizing topological
assumptions of distributed algorithms in dynamic networks. In Proc. 16th

Intl. Coll. Structural Information Comm. Complexity, 126–140, 2009.
[CFMS13] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Measuring temporal

lags in delay-tolerant networks. IEEE Transactions on Computers, 2013.
[CFQS12] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying

graphs and dynamic networks. International Journal of Parallel, Emergent

and Distributed Systems, 27(5):387–408, 2012.
[CMPS11] A. Clementi, A. Monti, F. Pasquale and R. Silvestri. Information spreading

in stationary markovian evolving graphs. IEEE Transactions on Parallel

and Distributed Systems, 22(9):1425–1432, 2011.
[EHR83] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-

free languages. Theoretical Computer Science, 27(3):311–332, 1983.
[Fer04] A. Ferreira. Building a reference combinatorial model for MANETs. IEEE

Network, 18(5):24–29, 2004.
[FMS13] P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying

networks. Theoretical Computer Science, 469:53–68, 2013.
[HI98] T. Harju and L. Ilie. On quasi orders of words and the confluence property.

Theoretical Computer Science, 200(1-2):205 – 224, 1998.
[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the

London Mathematical Society, s3-2:326–336, 1952.
[IW11] D. Ilcinkas and A. Wade. On the power of waiting when exploring public

transportation systems. In 15th Int. Conf. Princ. Distr. Sys., 451–464, 2011.
[KKW08] G. Kossinets, J. Kleinberg, and D. Watts. The structure of information

pathways in a social communication network. In Proc. 14th Intl. Conf.

Knowledge Discovery Data Mining, 435–443, 2008.
[KLO10] F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic

networks. In Proc. 42nd Symp. Theory Comp., 513–522, 2010.
[LW09] C. Liu and J. Wu. Scalable routing in cyclic mobile networks. IEEE Trans.

Parallel Distrib. Syst., 20(9):1325–1338, 2009.
[Nas63] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Mathematical

Proceedings of the Cambridge Philosophical Society, 59(04):833–835, 1963.
[Zha06] Z. Zhang. Routing in intermittently connected mobile ad hoc networks and

delay tolerant networks: Overview and challenges. IEEE Communications

Surveys & Tutorials, 8(1):24–37, 2006.

12

