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GRAPHS OF QUANTUM GROUPS AND K-AMENABILITY

PIERRE FIMA AND AMAURY FRESLON

Abstract. Building on a construction of J-P. Serre, we associate to any graph of C*-algebras
a maximal and a reduced fundamental C*-algebra and use this theory to construct the fun-
damental quantum group of a graph of discrete quantum groups. This construction naturally
gives rise to a quantum Bass-Serre tree which can be used to study the K-theory of the fun-
damental quantum group. To illustrate the properties of this construction, we prove that if all
the vertex qantum groups are amenable, then the fundamental quantum group is K-amenable.
This generalizes previous results of P. Julg, A. Valette, R. Vergnioux and the first author.

1. Introduction

One of the first striking application of K-theory to the theory of operator algebras was the proof
by M.V. Pimsner and D.V. Voiculescu in [PV82] that the reduced C*-algebras of free groups
with different number of generators are not isomorphic. It relies on an involved computation of
the K-theory of these C*-algebras, which appear not to be equal. From then on, K-theory of
group C*-algebras has been a very active field of research, in particular in relation with algebraic
and geometric problems, culminating in the celebrated Baum-Connes conjecture (see for example
[BCH94]).

Along the way J. Cuntz introduced the notion of K-amenability in [Cun83]. Noticing that the
maximal and reduced C*-algebras of free groups have the same K-theory, he endeavoured to give
a conceptual explanation of this fact based on a phenomenon quite similar to amenability, but
on a K-theoretical level. Combined with a short and elegant computation of the K-theory of
the maximal C*-algebras of free groups, he could therefore recover the result of M.V. Pimsner
and D.V. Voiculescu in more conceptual way. K-amenability implies in particular that the K-
theory of any reduced crossed-product by the group is equal to the K-theory of the corresponding
full crossed-product, thus giving a powerful tool for computing K-theory of C*-algebras. The
original definition of J. Cuntz was restricted to discrete groups but was later generalized to
arbitrary locally compact groups by P. Julg and A. Valette in [JV84]. In this seminal paper,
they also proved that any group acting on a tree with amenable stabilizers is K-amenable. As
particular cases, one gets that free products and HNN extensions of amenable groups are K-
amenable. This result was later extended to groups acting on trees with K-amenable stabilizers
by M.V. Pimsner in [Pim86]. Let us also mention the notion of K-nuclearity developped by G.
Skandalis in [Ska88] and further studied by E. Germain who proved in [Ger96] that a free product
of amenable C*-algebras is K-nuclear. However, we will concentrate in the present paper on the
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Julg-Valette theorem and extend it to the setting of discrete quantum groups. Let us first recall
an algebraic description of groups acting on trees which will be better suited to our purpose.

A graph of groups is the data of a graph G together with groups attached to each vertex and
each edge in a way compatible with the graph structure. One can generalize the topological
construction of the fundamental group π1(G) to include the additional data of the groups and
thus obtain the notion of fundamental group of a graph of groups. The core of Bass-Serre theory,
developped in [Ser77], is a powerful correspondance between this construction and the structure
of groups acting on trees. Two very important particular cases are amalgamated free products
and HNN extensions. In both cases, Bass-Serre theory provides us with a tree on which the
group acts in a canonical way.

In the context of locally compact quantum groups, K-amenability was defined and studied by
R. Vergnioux in [Ver04], building on the work of S. Baaj and G. Skandalis on equivariant KK-
theory for coactions of Hopf-C*-algebras [BS89]. In the discrete case, R. Vergnioux was able to
prove that several classical characterizations still hold in the quantum setting (some of them are
recalled in Theorem 2.8). He also proved the K-amenability of amalgamated free products of
amenable discrete quantum groups. His proof used the first example of a quantum Bass-Serre
tree. This is a pair of Hilbert C*-modules over the C*-algebra of a compact quantum group
endowed with actions which can be used as a "geometric object" for the study of K-theoretical
properties. Similar techniques where used by the first author to prove K-amenability of HNN
extensions of amenable discrete quantum groups in [Fim13]. The use of quantum Bass-Serre trees
also proved crucial in the study of the Baum-Connes conjecture for discrete quantum groups by
R. Vergnioux and C. Voigt in [VV13].

In the present paper, we generalize the construction of the fundamental group to graphs of
discrete quantum groups. As one could expect, this fundamental quantum group comes along
with a quantum Bass-Serre tree which can be used to construct a natural KK-element. Our
construction is in some sense the most general construction of a quantum Bass-Serre tree such
that the "quotient" by the action of the quantum group is a classical graph. We then use
techniques combining the ones of [Ver04] and [Fim13] to prove that if all the vertex groups
are amenable, then the resulting quantum group is K-amenable. In view of the Bass-Serre
equivalence, this generalizes the result of [JV84]. Note that this gives a large class of K-amenable
discrete quantum groups and improves the aforementionned results in the quantum setting. For
example, it is known by [Fim13] that an HNN extension of amenable discrete quantum groups
is K-amenable, but it was not known that if we again take an HNN extension or a free product
with a third amenable discrete quantum group, then the resulting quantum group will still be
K-amenable.

Let us now outline the organization of the paper. In Section 2, we specify some notations and
conventions used all along the paper and we give some basic definitions and results concerning
quantum groups and K-amenability. In section 3, we associate to any graph of C*-algebras a full
and a reduced fundamental C*-algebra and give some structure results. This section is rather long
but contains most of the technical results of this paper. It ends with an "unscrewing" technique
which can be used to prove that some properties of the vertex C*-algebras are inherited by the
fundamental C*-algebras. In Section 4, we use the previous results to define the fundamental
quantum group of a graph of quantum groups and describe its Haar state and representation



GRAPHS OF QUANTUM GROUPS AND K-AMENABILITY 3

theory. Eventually, we prove in Section 5 that the fundamental quantum group of a graph of
amenable discrete quantum groups is K-amenable. Note that one could also define graphs of von
Neumann algebras and work out similar constructions. This is outlined in the Appendix.

2. Preliminaries

2.1. Notations and conventions. In this paper all the Hilbert spaces, Hilbert C*-modules
and C*-algebras are assumed to be separable. Moreover, all the C*-algebras are assumed to be
unital. The scalar products on Hilbert spaces or Hilbert C*-modules are denoted by 〈., .〉 and
are supposed to be linear in the second variable. For two Hilbert spaces H and K, B(H,K) will
denote the set of bounded linear maps from H to K and B(H) := B(H,H). For a C*-algebra A
and Hilbert A-modules Ha nd K, we denote by LA(H,K) the set of bounded adjointable A-linear
operators from H to K and LA(H) = LA(H,H).

We will also use the following terminology : if H is a Hilbert A-module and ϕ ∈ A∗ is a state,
the GNS construction of (H, ϕ) is the triple (H,π, η), where H is the Hilbert space obtained
by separation and completion of H with respect to the scalar product 〈ξ, η〉H = ϕ(〈ξ, η〉H),
η : H → H is the canonical linear map with dense range and π : LA(H) → B(H) is the induced
unital ∗-homomorphism. Note that π and η are faithful as soon as ϕ is. Observe also that if
K is another Hilbert A-module and if (K, ρ, ξ) denotes the GNS construction of (K, ϕ), then we
also have an obvious induced linear map LA(H,K) → B(H,K) which respects the adjoint and
the composition (if we take a third Hilbert A-module).

If G is a graph in the sense of [Ser77, Def 2.1], its vertex set will be denoted V(G) and its edge set
will be denoted E(G). For e ∈ E(G) we denote by s(e) and r(e) respectively the source and range
of e and by e the inverse edge of e. An orientation of G is a partition E(G) = E+(G) ⊔ E−(G)
such that e ∈ E+(G) if and only if e ∈ E−(G).

Finally, we will always denote by ı the identity map.

2.2. Compact quantum groups. We briefly recall the main definitions and results of the
theory of compact quantum groups in order to fix notations. The reader is referred to [Wor98]
or [MVD98] for details and proofs.

Definition 2.1. A compact quantum group is a pair G = (C(G),∆) where C(G) is a unital
C*-algebra and ∆ : C(G) → C(G)⊗ C(G) is a unital ∗-homomorphism such that

(∆ ⊗ ı) ◦∆ = (ı⊗∆) ◦∆

and the linear span of ∆(C(G))(1⊗C(G)) as well as the linear span of ∆(C(G))(C(G)⊗ 1) are
dense in C(G)⊗ C(G).

Theorem 2.2 (Woronowicz). Let G be a compact quantum group. There is a unique state
h ∈ C(G)∗, called the Haar state of G, such that for every x ∈ C(G),

(h⊗ ı) ◦∆(x) = h(x).1 and (ı⊗ h) ◦∆(x) = h(x).1.

The Haar state need not be faithful. Let Cred(G) be the C*-algebra obtained by the GNS
construction of the Haar state. Cred(G) is called the reduced C*-algebra of the compact quantum
group G. By the invariance properties of the Haar state, the coproduct ∆ induces a coproduct
on Cred(G) which turns it into a compact quantum group called the reduced form of G. The
Haar state on the reduced form of G is faithful by construction.
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Definition 2.3. Let G be a compact quantum group. A representation of G of dimension n is
a matrix (uij) ∈Mn(C(G)) =Mn(C)⊗ C(G) such that for all 1 6 i, j 6 n,

∆(uij) =
∑

k

uik ⊗ ukj .

A representation is called unitary if u = (uij) ∈ Mn(C) ⊗ C(G) is a unitary. An intertwiner
between two representations u and v of dimension respectively n and m is a linear map T :
Cn → Cm such that (T ⊗ ı)u = v(T ⊗ ı). If there exists a unitary intertwiner between u and v,
they are said to be unitarily equivalent. A representation is said to be irreducible if its only self-
intertwiners are the scalar multiples of the identity. The tensor product of the two representations
u and v is the representation

u⊗ v = u13v23 ∈Mn(C)⊗Mm(C)⊗ C(G) ≃Mnm(C)⊗C(G).

Theorem 2.4 (Woronowicz). Every unitary representation of a compact quantum group is uni-
tarily equivalent to a direct sum of irreducible unitary representations.

Let Irr(G) be the set of equivalence classes of irreducible unitary representations of G and,
for α ∈ Irr(G), denote by uα a representative of α. The linear span of the elements uαij for

α ∈ Irr(G) forms a Hopf-∗-algebra Pol(G) which is dense in C(G). Its enveloping C*-algebra is
denoted Cmax(G) and it has a natural quantum group structure called the maximal form of G.
By universality, there is a surjective ∗-homomorphism

λG : Cmax(G) → Cred(G)

which intertwines the coproducts.

Remark 2.5. The C*-algebras Cred(G) and Cmax(G) should be thought of as the reduced and

maximal C*-algebras of the dual discrete quantum group Ĝ. This point of view justifies the
terminology "discrete quantum groups" used in the paper.

Cmax(G) admits a one-dimensional representation ε : Cmax(G) → C, called the trivial represen-
tation (or the counit) and defined by ε(uαij) = δij for all α ∈ Irr(G) and every i, j. The counit is

the unique unital ∗-homomorphism ε : Cmax(G) → C such that (ε⊗ ı)∆ = ı = (ı⊗ ε)∆.

2.3. K-amenability.

Definition 2.6. A compact quantum group G is said to be co-amenable if λG is an isomorphism.

We will equivalently say that Ĝ is amenable.

Like in the classical case, co-amenability has several equivalent characterizations, we only give
the one which will be needed in the sequel (see [BMT01, Thm 3.6] for a proof).

Proposition 2.7. A compact quantum group G is co-amenable if and only if the trivial repre-
sentation factors through λG.

K-amenability admits similar characterizations on the level of KK-theory, which were proved by
R. Vergnioux in [Ver04, Thm 1.4]. We refer the reader to [Bla98] for the basic definitions and
results concerning KK-theory.

Theorem 2.8 (Vergnioux). Let G be a compact quantum group. The following are equivalent

• There exists γ ∈ KK(Cred(G),C) such that λ∗G(γ) = [ε] in KK(Cmax(G),C).
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• The element [λG] in invertible in KK(Cmax(G), Cred(G)).

In any of those two equivalent situations, we will say that Ĝ is K-amenable.

3. Graphs of C*-algebras

In this section we give the general construction of a maximal and a reduced fundamental C*-
algebra associated to a graph of C*-algebras.

Definition 3.1. A graph of C*-algebras is a tuple

(G, (Aq)q∈V(G), (Be)e∈E(G), (se)e∈E(G))

where

• G is a connected graph.
• For every q ∈ V(G) and every e ∈ E(G), Aq and Be are unital C*-algebras.
• For every e ∈ E(G), Be = Be.
• For every e ∈ E(G), se : Be → As(e) is a unital faithful ∗-homomorphism.

For every e ∈ E(G), we set re = se : Be → Ar(e), B
s
e = se(Be) and Br

e = re(Be).

The notation will always be simplified in (G, (Aq)q, (Be)e).

3.1. The maximal fundamental C*-algebra. Like in the case of free products, the definition
of the maximal fundamental C*-algebra is quite obvious and simple. However, it requires the
choice of a maximal subtree of the graph G (which is implicit in the case of free products since
the graph is already a tree, see Example 3.4).

Definition 3.2. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras and let T be a maximal subtree of
G. The maximal fundamental C*-algebra with respect to T is the universal C*-algebra generated
by the C*-algebras Aq for q ∈ V(G) and by unitaries ue for e ∈ E(G) such that

• For every e ∈ E(G), ue = u∗e.
• For every e ∈ E(G) and every b ∈ Be, uese(b)ue = re(b).
• For every e ∈ E(T ), ue = 1.

This C*-algebra will be denoted πmax
1 (G, (Aq)q, (Be)e,T ).

Remark 3.3. It is not obvious that this C*-algebra is not 0 (i.e. that the relations admit a non-
trivial representation). With natural additional assumptions, the non-triviality will be proved by
the construction of the reduced fundamental C*-algebra and it will be clear that the inclusions
of Aq in the maximal fundamental C*-algebra are faithful.

Example 3.4. Let A0 and A1 be two C*-algebras and let B be a C*-algebra together with
injective ∗-homomorphisms ik : B → Ak for k = 0, 1. Let G be the graph with two vertices p0
and p1 and two edges e and e, where s(e) = p1 and r(e) = p2. This graph is obviously a tree.
Setting Be = B, se = i0, re = i1 and Api = Ai yields a graph of C*-algebras whose maximal
fundamental C*-algebra with respect to G is the maximal free product A0 ∗

max
B A1 of A0 and A1

amalgamated over B.

Example 3.5. Let A be a C*-algebra, B a C*-subalgebra of A and θ : B → A an injective
∗-homomorphism. Let G be a graph with one vertex p and two edges e and e, where e is a loop
from p to p. Obviously, the only maximal subtree of G is the graph with one vertex p and no
edge. Setting Be = B, se = ı, re = θ and Ap = A yields a graph of C*-algebras whose maximal
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fundamental C*-algebra with respect to {p} is the maximal HNN extension HNNmax(A,B, θ) as
defined in [Ued05, Rmk 7.3].

By construction, the maximal fundamental C*-algebra of (G, (Aq)q, (Be)e) satisfies the following
universal property.

Proposition 3.6. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras, let T be a maximal subtree of
G and let H be a Hilbert space. Assume that for every q ∈ V(G), we have a representation ρq of
Aq on H and that for every e ∈ E(G), we have a unitary Ue ∈ B(H) such that Ue = U∗

e , Ue = 1
for all e ∈ E(T ) and for every b ∈ Be,

U∗
e ρs(e)(se(b))Ue = ρr(e)(re(b)).

Then, there is a unique representation ρ of πmax
1 (G, (Aq)q, (Be)e,T ) on H such that for every

e ∈ E(G) and every q ∈ V(G),
ρ(ue) = Ue and ρ|Aq = ρq.

Remark 3.7. Let p0 ∈ V(G). Define A to be the linear span of Ap0 and elements of the form
a0ue1 . . . uenan where (e1, . . . , en) is a path in G from p0 to p0, a0 ∈ Ap0 and ai ∈ Ar(ei) for
1 6 i 6 n. Observe that A is a dense ∗-subalgebra of πmax

1 (G, (Aq)q, (Be)e,T ). Indeed, it suffices
to show that it contains Aq for every q ∈ V(G) and ue for every e ∈ E(G). Let q ∈ V(G) and
a ∈ Aq. Let w = (e1, . . . , en) be the unique geodesic path in T from p0 to q. Since ei ∈ E(T ), we
have uei = 1 for every 1 6 i 6 n. Hence, a = ue1 . . . uenauen . . . ue1 ∈ A. Now, let e ∈ E(G)\E(T )
and let (e1, . . . , en) (resp. (f1, . . . , fm)) be the geodesic path in T from p0 to s(e) (resp. r(e)).
Then, ue = ue1 . . . uenueufm

. . . uf1
∈ A.

We will need in the sequel the following slightly more general version of the universal property.

Corollary 3.8. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras, let T be a maximal subtree of G
and let p0 ∈ V(G). Assume that for every q ∈ V(G), there is a Hilbert space Hq together with a
representation ρq of Aq and that, for every e ∈ E(G), there is a unitary Ue : Hr(e) → Hs(e) such
that U∗

e = Ue and, for every b ∈ Be,

U∗
e ρs(e)(se(b))Ue = ρr(e)(re(b)).

Then, there exists a unique representation ρ of πmax
1 (G, (Aq)q, (Be)e,T ) on Hp0 such that ρ|Ap0

=

ρ0 and, for every path w = (e1, . . . , en) from p0 to p0 in G and every a0 ∈ As(e1), ai ∈ Ar(ei),

ρ(a0ue1 . . . uenan) = ρs(e1)(a1)Ue1 . . . Uenρr(en)(an).

Proof. The proof amounts to a suitable application of Proposition 3.6. Let p, q ∈ V(G) and
let w = (e1, . . . , en) be the unique geodesic path in T from p to q. Set Upq = Ue1 . . . Uen and
observe that U∗

pq = Uqp. For every q ∈ V(G) and every e ∈ E(G), we can define a representation
πq = U∗

qp0
ρq(.)Uqp0 of Aq on Hp0 and a unitary Ve ∈ B(Hp0) by Ve = Up0s(e)UeUr(e)p0 . It is easily

checked that these satisfy the hyptohesis of Proposition 3.6, yielding the result. �

3.2. The reduced fundamental C*-algebra. We now turn to the construction of the reduced
fundamental C*-algebra, which is more involved. The basic idea is to build a concrete repre-
sentation of the C*-algebras forming the graph together with unitaries satisfying the required
relations. To be able to carry out this construction, we will need an extra assumption. From now
on, we assume that for every e ∈ E(G), there exists a conditional expectation Es

e : As(e) → Bs
e

and we set Er
e = Es

e : Ar(e) → Br
e .
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3.2.1. Path Hilbert modules. For every e ∈ E(G) let (Hs
e, π

s
e , η

s
e) be the GNS construction associ-

ated to the completely positive map s−1
e ◦Es

e. This means that Hs
e is the right Hilbert Be-module

obtained by separation and completion of As(e) with respect to the Be-valued inner product

〈x, y〉 = s−1
e ◦ Es

e(x
∗y) for x, y ∈ As(e).

The right action of an element b ∈ Be is given by right multiplication by se(b) and the represen-
tation

πse : As(e) → LBe(H
s
e)

is induced by the left multiplication. Finally, ηse : As(e) → Hs
e is the standard linear map with

dense range. Let ξse denote the image of 1A in Hs
e. The triple (Hs

e, π
s
e, η

s
e) will be denoted

(Hr
e, π

r
e , η

r
e). Although it is not necessary, we will assume, for convenience and simplicity of

notations, that for every e ∈ E(G), the conditional expectations Es
e are GNS-faithful (i.e. that

the representations πse are faithful). This allows us to identify As(e) with its image in LBe(H
s
e).

We will also use, for every a ∈ As(e), the notation â for ηse(a) ∈ Hs
e. One should however keep

in mind that â may be zero for some non-zero a. Let us also notice that the submodule ξse .Be

of Hs
e is orthogonally complemented. In fact, its orthogonal complement is the closure (Hs

e)
◦ of

{â|a ∈ As(e),E
s
e(a) = 0}. We thus have an orthogonal decomposition

Hs
e = (ξse .Be)⊕ (Hs

e)
◦

with (Hs
e)

◦.Bs
e = (Hs

e)
◦. Similarly, the orthogonal complement of ξre .Be in Hr

e will be denoted
(Hr

e)
◦ .

We now turn to the construction of the Hilbert C*-module which will carry our faithful repre-
sentation of the fundamental C*-algebra. Let n > 1 and let w = (e1, . . . , en) be a path in G. We
define Hilbert C*-modules K0, Kn and Ki for 1 6 i 6 n− 1 by

• K0 = Hs
e1

• If ei+1 6= ei, then Ki = Hs
ei+1

• If ei+1 = ei, then Ki = (Hs
ei+1

)◦

• Kn = Ar(en)

For 0 6 i 6 n − 1, Ki is a right Hilbert Bei+1-module and Kn will be seen as a right Hilbert
Ar(en)-module. We can put compatible left module structures on these Hilbert C*-modules in
order to make tensor products. In fact, for 1 6 i 6 n− 1, the map

ρi = πsei+1
◦ rei : Bei → LBei+1

(Ki)

yields a suitable action of Bei on Ki and left multiplication by ren(b) for b ∈ Ben induces a
representation

ρn : Ben → LAr(en)
(Kn).

We can now define a right Hilbert Ar(en)-module

Hw = K0 ⊗
ρ1
. . . ⊗

ρn
Kn

endowed with a faithful left action of As(e1) which is induced by its action on K0 by left mul-
tiplication. This will be called a path Hilbert module. Let us describe more precisely the inner
product.



8 PIERRE FIMA AND AMAURY FRESLON

Lemma 3.9. Let n > 1 and let w = (e1, . . . , en) be a path in G. Let a = â0 ⊗ · · · ⊗ an and

b = b̂0 ⊗ · · · ⊗ bn be two elements in Hw. Set x0 = a∗0b0 and, for 1 6 k 6 n, set

xk = a∗k(rek ◦ s
−1
ek

◦ Es
ek
(xk−1))bk.

Then, 〈a, b〉Hw = xn ∈ Ar(en).

Proof. The proof is by induction on n. For n = 1, we have w = (e) where e ∈ E(G), a = â0 ⊗
e
a1

and b = b̂0 ⊗
e
b1, where a0, b0 ∈ As(e) and a1, b1 ∈ Ar(e). By definition of Hw we have

〈a, b〉Hw = 〈a1, ρ1(s
−1
e ◦ Es

e(a
∗
0b0))b1〉Ar(e)

= a∗1(re ◦ s
−1
e ◦ Es

e(a
∗
0b0))b1 = x1.

Assume that the formula holds for a given n ≥ 1. Let w = (e1, . . . en+1) be a path and fix

a = â0 ⊗ · · · ⊗ an+1, b = b̂0 ⊗ · · · ⊗ bn+1 ∈ Hw. Write

Hw = K0 ⊗
ρ1
. . . ⊗

ρn+1

Kn+1 = H′
w ⊗

ρn+1

Ar(en+1),

where H′
w is the Hilbert Ben+1-module H′

w = K0 ⊗
ρ1
. . . ⊗

ρn
Kn. We have,

〈a, b〉Hw = a∗n+1ren+1

(
〈â0 ⊗ . . . ⊗ an, b̂0 ⊗ . . . ⊗ b̂n〉H′

w

)
bn+1.

By definition of the inner product, we get, with w′ = (e1, . . . , en),

〈â0 ⊗ . . .⊗ an, b̂0 ⊗ . . .⊗ b̂n〉H′

w
= s−1

en+1
◦ Es

en+1

(
〈â0 ⊗ . . .⊗ an, b̂0 ⊗ . . .⊗ bn〉Hw′

)
.

This concludes the proof using the induction hypothesis. �

For any two vertices p0, q ∈ V(G), we define a right Hilbert Aq-module

Hp0,q =
⊕

w

Hw

where the sum runs over all paths w in G connecting p0 with q. By convention, when q = p0,
the sum also runs over the empty path, where H∅ = Ap0 with its canonical Hilbert (Ap0 , Ap0)-
bimodule structure. We equip this Hilbert C*-module with the faithful left action of Ap0 which
is given by the sum of its left actions on every Hw.

3.2.2. The C*-algebra. For every e ∈ E(G) and p ∈ V(G), we can define an operator

upe : Hr(e),p → Hs(e),p

which "adds the edge e on the left". To construct this operator, let w be a path in G from r(e)
to p and let ξ ∈ Hw.

• If p = r(e) and w is the empty path, then upe(ξ) = ξse ⊗ ξ ∈ H(e).
• If n = 1, w = (e1), ξ = â⊗ ξ′ with a ∈ As(e1) and ξ′ ∈ Ap, then

– If e1 6= e, upe(ξ) = ξse ⊗ ξ ∈ H(e,e1).

– If e1 = e, upe(ξ) =

{
ξse ⊗ ξ ∈ H(e,e1) if â ∈ (Hs

e1
)◦,

re1 ◦ s
−1
e1

(a)ξ′ ∈ Ap if a ∈ Bs
e1
.

• If n > 2, w = (e1, . . . , en), ξ = â⊗ ξ′ with a ∈ As(e1) and ξ′ ∈ K1 ⊗
ρ2
. . . ⊗

ρn
Kn, then

– If e1 6= e, upe(ξ) = ξse ⊗ ξ ∈ H(e,e1,...,en).
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– If e1 = e, upe(ξ) =

{
ξse ⊗ ξ ∈ H(e,e1,...,en) if â ∈ (Hr

e)
◦,

re1 ◦ s
−1
e1

(a)ξ′ ∈ H(e2,...,en) if a ∈ Bs
e1
.

One easily checks that the operators upe commute with the right actions of Ap on Hr(e),p and

Hs(e),p and extend to unitary operators (still denoted upe) in LAp(Hr(e),p,Hs(e),p) such that (upe)∗ =

upe. Moreover, for every e ∈ E(G) and every b ∈ Be, the definition implies that

upese(b)u
p
e = re(b)

as operators in LAp(Hr(e),p). Let w = (e1, . . . , en) be a path in G and let p ∈ V(G), we set

upw = upe1 . . . u
p
en

∈ LAp(Hr(en),p,Hs(e1),p).

We are now ready to define the reduced fundamental C*-algebra.

Definition 3.10. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras and let p, p0 ∈ V(G). The
reduced fundamental C*-algebra rooted in p0 with base p is the C*-algebra

πp1(G, (Aq)q, (Be)e, p0) = 〈(upz)
∗Aqu

p
w|q ∈ V(G), w, z paths from q to p0 〉 ⊂ LAp(Hp0,p).

If the root p0 is equal to the base p, we will simply call it the reduced fundamental C*-algebra in
p0. We will use the shorthand notation Pp(p0) (and P (p0) when p = p0) to denote the reduced
fundamental C*-algebra in the sequel.

Remark 3.11. The above definition may seem unsatisfying because of the two arbitrary vertices
involved. However, this will give many natural representations of the reduced C*-algebra which
will be needed later on. This also gives a more tractable object when it turns to making products
or computing norms.

Remark 3.12. Because the graph G is connected, the previous construction does not really depend
on p0. In fact, let p, p0, q0 be three vertices of G and let T be a maximal subtree in G. If gq0p0
denotes the unique geodesic path in T from q0 to p0, then we have an isomorphism

Φp
T ,p0,q0

: Pp(p0) → Pp(q0)

which is given by
x 7→ upgq0p0x(u

p
gq0p0

)∗.

Note, however, that there is no truly canonical way to identify these C*-algebras.

Example 3.13. Carrying out this construction with the graphs of Examples 3.4 and 3.5, one
recovers respectively the reduced amalgamated free product construction of [Voi85] and the
reduced HNN extension construction of [Ued05, Sec 7.4].

3.2.3. The quotient map. We now investigate the link beteween the reduced fundamental C*-
algebra and the maximal one. From now on, we fix two vertices p0, p ∈ V(G) and consider the
C*-algebra Pp(p0). Let T be a maximal subtree in G. As before, given a vertex q ∈ V(G), we
denote by gqp the unique geodesic path in T from q to p. For every e ∈ E(G), we define a unitary
operator wp

e ∈ Pp(p0) by
wp
e = (upgs(e)p)

∗up(e,gr(e)p)
.

For every q ∈ V(G), we define a unital faithful ∗-homomorphism πpq,p0 : Aq → Pp(p0) by

πpq,p0(a) = (upgqp0
)∗aupgqp0

Observe that the following relations hold:
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• wp
e = (wp

e)∗ for every e ∈ E(G),
• wp

e = 1 for every e ∈ E(T ),
• weπ

p
s(e),p0

(se(b))we = πp
r(e),p0

(re(b)) for every e ∈ E(G), b ∈ Be.

The first and the last relations are clear from the definitions. To check the second one, observe
that if e ∈ E(T ), then the path (gs(e)p, e, gr(e)p) is a cycle in T . This means that either gr(e)p =

(e, gs(e)p) or gs(e)p = (e, gr(e)p). In both cases we get wp
e = 1.

Thus, we can apply the universal property of Proposition 3.6 to get a surjective ∗-homomorphism

λTp,p0 : π
max
1 (G, (Aq)q, (Be)e,T ) → Pp(p0).

3.2.4. Reduced operators. Like in the case of groups, we have a notion of reduced element.

Definition 3.14. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras and let p0, p, q ∈ V(G). Let
a ∈ LAp(Hq,p,Hp0,p) be of the form a = a0u

p
e1 . . . u

p
enan, where w = (e1, . . . , en) is a path in G

from p0 to q, a0 ∈ Ap0 and, for 1 6 i 6 n, ai ∈ Ar(ei). The operator a is said to be reduced (from
p0 to q) if for all 1 6 i 6 n− 1 such that ei+1 = ei, we have Es

ei+1
(ai) = 0.

Remark 3.15. Let w = (e1, . . . , en) be a path from p0 to p0. Observe that any reduced operator
of the form a = a0u

p
e1 . . . u

p
enan is in Pp(p0) and that the linear span Rp(p0) of Ap0 and the

reduced operators from p0 to p0 is a dense ∗-subalgebra of Pp(p0). Indeed, we can write a =
x0x1 . . . xn where x0 = a0u

p
(e1,e1)

∈ Pp(p0), xn = upwan ∈ Pp(p0) and, for 1 ≤ i ≤ n − 1,

xi = up(e1,...,ei)aiu
p
(ei,...,e1)

∈ Pp(p0). This shows that a ∈ Pp(p0). Now, using the relations

upese(b)u
p
e = re(b) for e ∈ E(G) and b ∈ Be, we see that Rp(p0) is a ∗-subalgebra of Pp(p0). To

show that Rp(p0) is dense it suffices to show that it contains all operators of the form (upz)∗au
p
w,

where a ∈ Aq and z, w are paths from q to p0. One can easily check this by induction and using
the relations upese(b)u

p
e = re(b).

Remark 3.16. The notion of reduced operator also makes sense in the maximal fundamental
C*-algebra (if we assume the existence of conditional expectations) and the linear span of Ap0

and the reduced operators from p0 to p0 is the ∗-algebra A introduced in Remark 3.7, which is
dense in the maximal fundamental C*-algebra.

In order to simplify later computations, we now give an explicit formula for the action of a
reduced operator on the Hilbert C*-module Hp0,p which will be used several times in the sequel.
For every edge e ∈ E(G) and every x ∈ Ar(e), we set Pr

e (x) = x−Er
e(x). For the sake of simplicity,

if w = (f1, . . . , fn) is a path in G, we will use the notation b̂0 ⊗
f1
. . . ⊗

fm
bm to denote a typical

element in Hw.

Lemma 3.17. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras and let p0, p1, p2 ∈ V(G). Let
w = (en, . . . , e1) be a path from p0 to p1 and let µ = (f1, . . . , fm) be path from p1 to p2. Set

n0 = max{1 6 k 6 min(n,m)|ei = f i,∀i 6 k}.

If the above set is empty, set n0 = 0. Let a = anu
p2
en . . . u

p2
e1a0 be a reduced operator and let

b = b̂0 ⊗
f1

. . . ⊗
fm
bm ∈ Hp1,p2. Set x0 = a0b0 and, for 1 6 k 6 n0, set

xk = ak(sek ◦ r
−1
ek

◦ Er
ek
(xk−1))bk and yk = Pr

ek
(xk−1).

Then, the following holds :
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(1) If n0 = 0, then a.b = ân ⊗
en
. . . ⊗

e1
x̂0 ⊗

f1

. . . ⊗
fm
bm.

(2) If n0 = n = m, then a.b =
∑n

k=1 ân ⊗
en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fn
bn + xn.

(3) If n0 = n < m, then a.b =
∑n

k=1 ân ⊗
en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fm
bm + x̂n ⊗

fn+1

. . . ⊗
fm
bm.

(4) If n0 = m < n, then a.b =
∑m

k=1 ân ⊗
en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fm
bm + ân ⊗

en
. . . ⊗

em+1

xm.

(5) If 1 6 n0 < min{n,m}, then

a.b =

n0∑

k=1

ân ⊗
en
. . . ⊗

ek
ŷk ⊗

fk

. . . ⊗
fm
bm + ân ⊗

en
. . . ⊗

en0+1

x̂n0 ⊗
fn0+1

. . . ⊗
fm
bm.

Proof. To simplify the notations during the proof, we omit the superscript p2.

(1). If n0 = 0 then e1 6= f1 and we get, by definition of the ue and because a is reduced,
a.b = anuen . . . ue1 .x̂0 ⊗

f1

. . . ⊗
fm
bm = ân ⊗

en
. . .⊗

e1
x̂0 ⊗

f1

. . . ⊗
fm
bm. This proves (1). Since the proof of

the other cases are all the same we only prove (5).

(5). We need to show the following statement: for every n0 > 1, for every n,m > n0, for
every reduced operator a = anuen . . . ue1a0 from p0 to p1 and for b ∈ Hp1,p2 of the form b =

b̂0 ⊗
e1
. . . ⊗

en0

b̂n0 ⊗
fn0+1

. . . ⊗
fm
bm with fn0+1 6= en0+1 we have

a.b =

n0∑

k=1

ân ⊗
en
. . . ⊗

ek
ŷk ⊗

ek

. . . ⊗
en0

b̂n0 ⊗
fn0+1

. . . ⊗
fm
bm + ân ⊗

en
. . . ⊗

en0+1

x̂n0 ⊗
fn0+1

. . . ⊗
fm
bm.

We prove it by induction on n0. If n0 = 1, let n,m > 1, let a = anuen . . . ue1a0 and let

b = b̂0 ⊗
e1
b̂1 ⊗

f2

. . . ⊗
fm
bm with f2 6= e2. Since a is reduced and f2 6= e2, we have

a.b = anuen . . . a1ue1 .x̂0 ⊗
e1
b̂1 ⊗

f2

. . . ⊗
fm
bm

= anuen . . . a1ue1 .Ê
r
e1
(x0)⊗

e1
b̂1 ⊗

f2

. . . ⊗
fm
bm + anuen . . . a1ue1 .ŷ1 ⊗

e1
b̂1 ⊗

f2

. . . ⊗
fm
bm

= anuen . . . ue2 .x̂1 ⊗
f2

. . . ⊗
fm
bm + ân ⊗

en
. . . ⊗

e1
ŷ1 ⊗

e1
b̂1 ⊗

f2

. . . ⊗
fm
bm

= ân ⊗
en
. . .⊗

e2
x̂1 ⊗

f2

. . . ⊗
fm
bm + ân ⊗

en
. . .⊗

e1
ŷ1 ⊗

e1
b̂1 ⊗

f2

. . . ⊗
fm
bm,

Assume that the statement holds for a given n0 > 1. Let n,m > n0 + 1, let a = anuen . . . ue1a0
and let b = b̂0 ⊗

e1
. . . ⊗

en0+1

b̂n0+1 ⊗
fn0+2

. . . ⊗
fm
bm with fn0+2 6= en0+2. We have

a.b = anuen . . . ue1 .x̂0 ⊗
e1
. . . ⊗

en0+1

b̂n0+1 ⊗
fn0+2

. . . ⊗
fm
bm

= anuen . . . ue2 .x̂1 ⊗
e2
. . . ⊗

en0+1

b̂n0+1 ⊗
fn0+2

. . . ⊗
fm
bm

+ ân ⊗
en
. . .⊗

e1
ŷ1 ⊗

e1
. . . ⊗

en0+1

b̂n0+1 ⊗
fn0+2

. . . ⊗
fm
bm

= a′.b′ + ân ⊗
en
. . .⊗

e1
ŷ1 ⊗

e1
. . . ⊗

en0+1

b̂n0+1 ⊗
fn0+2

. . . ⊗
fm
bm,
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where a′ = anuen . . . ue2 and b′ = x̂1 ⊗
e2
. . . ⊗

en0+1

b̂n0+1 ⊗
fn0+2

. . . ⊗
fm
bm. We can now apply the

induction hypothesis to the pair (a′, b′). This concludes the proof. �

If a maximal subtree T of G is fixed and if p, q ∈ V(G), then gpq will denote the unique geodesic
path in T from p to q. Viewing 1Ap , the unit of Ap as an element of H∅ ⊂ Hp,p, we set

Ωp(p0) = upgp0p(1Ap) ∈ Hgp0p
⊂ Hp0,p.

The vector Ωp(p0) is a cyclic vector for Pp(p0).

Proposition 3.18. With the previous notations, we have

(1) Pp(p0)Ωp(p0) = Hp0,p

(2) For any reduced operator a ∈ Pp(p0), 〈Ωp(p0), a.Ωp(p0)〉Hp0,p
= 0.

Proof. (1). Let w = (e1, . . . , en) be a path from p0 to p and let x = x0u
p
e1 . . . u

p
enxn be a reduced

operator. The operator a = x(upgp0p)
∗ is in Pp(p0) and, since x is reduced,

a.Ωp(p0) = x(upgp0p
)∗upgp0p

.1Ap = x.1Ap = x̂0 ⊗
e1
. . . ⊗

en
xn ∈ Hw.

(2). Let w = (en, . . . , e1) be a path from p0 to p0 and let a = anu
p
en . . . u

p
e1a0 be a reduced operator

in Pp(p0). Write gp0p = (f1, . . . , fm) and b = Ωp(p0) = 1̂ ⊗
f1

. . . ⊗
fm

1. We use the notations of

Lemma 3.17. Note that if n0 = n, then we must have gp0p = (e1, . . . , en, fn+1, . . . , fm), which is
impossible since gp0p is a geodesic path and (e1, . . . , en) is a cycle. Thus n0 < n. If n0 = 0, then

a.Ωp0,p = ân ⊗
en
. . . ⊗

e1
â0 ⊗

f1

1̂ . . . ⊗
fm

1 ∈ H(en,...,e1,f1,...,fm),

hence 〈Ωp(p0), a.Ωp(p0)〉Hp0,p
= 0. Assume now that 1 6 n0 < n and observe that, except if

w = (f1, . . . , fm, fm, . . . , f1), the elements appearing in the formula of Lemma 3.17 all belong
to subspaces which are orthogonal to Hgp0p

and consequently orthogonal to Ωp(p0). Finally, if

w = (f1, . . . , fm, fm, . . . , f1), then

〈Ωp(p0), a.Ωp(p0)〉Hp0,p
=

〈
1̂⊗
f1

1̂ . . . ⊗
fm

1, ân ⊗
f1

. . . ⊗
fm
xm

〉

Hp0,p

= 0.

since xm = amz with z = sem ◦ r−1
em ◦Er

em(xm−1) ∈ Bs
em = Br

fm
(here em = fm) and Er

fm
(am) = 0

because a is reduced. �

Remark 3.19. The first assertion of Proposition 3.18 shows that the triple (Hp0,p, id,Ωp(p0)) is
the GNS construction of the unital completely positive map EAp : Pp(p0) → Ap defined, for
every x ∈ Pp(p0), by

EAp(x) = 〈Ωp(p0), x.Ωp(p0)〉Hp0,p
.

In the particular case p = p0, Ap0 ⊂ P (p0) and EAp0
is a conditional expectation from P (p0) to

Ap0 .
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3.2.5. A universal property for the reduced C*-algebra. We end this section with a universal
property for the reduced fundamental C*-algebra in the spirit of Corollary 3.8. Consider a graph
of C*-algebras (G, (Ap)p, (Be)e) and fix p0 ∈ V(G). The basic data to build a representation is:

• For every p ∈ V(G), a right HilbertAp0-module Kp with a faithful unital ∗-homomorphism
πp : Ap → LAp0

(Kp).

• For every e ∈ E(G) a unitary we ∈ LAp0
(Kr(e),Ks(e)) such that w∗

e = we and, for every
b ∈ Be,

weπs(e)(se(b))we = πr(e)(re(b)).

Let A be the closed linear span of πp0(Ap0) and all elements of the form

πs(e1)(a0)we1 . . . wenπr(en)(an)

in LAp0
(Kp0), where n > 1, (e1, . . . , en) is a path in G from p0 to p0, ak ∈ Ar(ek), 1 6 k 6 n

and a0 ∈ Ap0 . Then, A is a C*-algebra. The universal property requires the following crucial
assumption: we assume that there exists a GNS-faithful conditional expectation

E : A→ πp0(Ap0)

such that, for every reduced operator a0u
p0
e1 . . . u

p0
enan ∈ P (p0),

E(πs(e1)(a0)we1 . . . wenπr(en)(an)) = 0.

Proposition 3.20. With the hypothesis and notations above, there exists a unique ∗-isomorphism
π : P (p0) → A such that π(a) = πp0(a) for every a ∈ Ap0 and

π(a0u
p0
e1
. . . up0enan) = πs(e1)(a0)we1 . . . wenπr(en)(an)

for every reduced operator a0u
p0
e1 . . . u

p0
enan ∈ P (p0).

Proof. The uniqueness being obvious, let us prove the existence. The map π is well defined on
the linear span of πp0(Ap0) and the reduced elements, and the closure of the image of this space
is equal to A. Let (K ′, π′, η′) be the GNS construction of π−1

p0
◦E. Since E is GNS-faithful, π′ is

faithful and we will assume that A ⊂ LAp0
(K ′) and π′ = Id. View 1Ap0

∈ Hp0,p0 and define an

operator V : Hp0,p0 → K ′ by V (a.1Ap0
) = πp0(a).η

′ for a ∈ Ap0 and

V (x.1Ap0
) = πs(e1)(a0)we1 . . . wenπr(en)(an).η

′

for x = a0u
p0
e1 . . . u

p0
enan ∈ P (p0) a reduced operator. It is easy to check that V extends to a

unitary in LAp0
(Hp0,p0 ,K

′) and that x 7→ V xV ∗ is a ∗-isomorphism extending π. �

3.2.6. States. In the sequel, we will consider C*-algebras equiped with distinguished states com-
patible with the graph structure. These enable us to get genuine Hilbert space representations
instead of Hilbert C*-modules.

Definition 3.21. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras with conditional expectations.
An associated graph of states is a family of states ϕe ∈ B∗

e for every e ∈ E(G) and ϕq ∈ A∗
q

for every q ∈ V(G) such that, for every e ∈ E(G), ϕe = ϕe and ϕs(e) = ϕe ◦ s
−1
e ◦ Es

e (hence
ϕs(e) ◦ se = ϕe = ϕr(e) ◦ re). When a graph of C*-algebras is given with a graph of states we
simply call (G, (Aq, ϕq)q, (Be, ϕe)e) a graph of C*-algebras with states.

Lemma 3.22. Let (G, (Aq , ϕq)q, (Be, ϕe)e) be a graph of C*-algebras with states. For every
p0, p ∈ V(G) and every a ∈ Ap0, we have ϕp

(
〈Ωp(p0), a.Ωp(p0)〉Hp0,p

)
= ϕp0(a).
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Proof. Let a ∈ Ap0 and set x0 = a and, for 1 6 k 6 n, xk = rek ◦ s−1
ek

◦ Es
ek
(xk−1), where

gp0,p = (e1, . . . , en). By Lemma 3.9 we have

〈Ωp(p0), a.Ωp(p0)〉Hp0,p
= 〈1̂⊗

e1
. . . ⊗

en
1, â⊗

e1
. . . ⊗

en
1〉Hp0,p

= xn.

Moreover, the assumptions on the states ϕe and ϕs(e) imply that for 1 6 k 6 n, ϕr(ek)(xk) =
ϕs(ek)(xk−1). It then follows, again by induction, that ϕp(xn) = ϕp0(x0) = ϕp0(a), which
concludes the proof. �

Remark 3.23. Proposition 3.18 and Lemma 3.22 imply the existence of a unique state ϕ on Pp(p0)
such that for every a ∈ Ap0 , ϕ(a) = ϕp0(a) and for every reduced operator c, ϕ(c) = 0. We call
this state the fundamental state.

Using states, we can investigate the dependance on p of Pp(p0). To do this, let us denote by
(Hp0,ϕp, πp0,ϕp , ηp0,ϕp) the GNS construction of (Hp0,p, ϕp), i.e. Hp0,ϕp is the completion of Hp0,p

with respect to the inner product 〈x, y〉 = ϕp(〈x, y〉Hp0,p
), πp0,ϕp is the associated representation

of Pp(p0) and ηp0,ϕp is the canonical linear map with dense range, and set ξp0,ϕp = ηp0,ϕp(Ωp(p0)).

Proposition 3.24. Let (G, (Aq , ϕq)q, (Be, ϕe)e) be a graph of C*-algebras with states. For any
two vertices p0, p ∈ V(G), there is a unitary Vp0,p : Hp0,ϕp → Hp0,ϕp0

such that, for every reduced

operator a0u
p
e1 . . . e

p
enan ∈ Pp(p0),

(Vp0,p)πp0,ϕp(a0u
p
e1
. . . upenan)(Vp0,p)

∗ = πp0,ϕp0
(a0u

p0
e1
. . . up0enan).

If moreover the states ϕp0 and ϕp are faithful, then there exists a unique ∗-isomorphism from
P (p0) to Pp(p0) mapping a0u

p0
e1 . . . u

p0
enan to a0u

p
e1 . . . u

p
enan.

Proof. We define Vp0,p : Hp0,ϕp → Hp0,ϕp0
in the following way. For a ∈ Ap0 , we set

Vp0,p(πp0,ϕp(a).ξp0,ϕp) = πp0,ϕp0
(a).ξp0,ϕp0

and for a0u
p
e1 . . . u

p
enan ∈ Pp(p0) reduced, we set

Vp0,p(πp0,ϕp(a0u
p
e1
. . . upenan).ξp0,ϕp) = πp0,ϕp0

(a0u
p0
e1
. . . up0enan).ξp0,ϕp0

.

According to Proposition 3.18, Vp0,p has dense domain and range. Moreover, by Lemma 3.22, we
have, for every a ∈ Ap0 ,

‖πp0,ϕp0
(a).ξp0,ϕp0

‖2 = ‖πp0,ϕp(a).ξp0,ϕp‖
2.

To prove that Vp0,p is well defined and extends to a unitary operator, we only have to check that
for every reduced operator a = a0u

p0
e1 . . . u

p0
enan ∈ P (p0) one has,

ϕp0(〈1Ap0
, a∗a.1Ap0

〉) = ϕp(〈Ωp(p0), b
∗b.Ωp(p0)〉) with b = a0u

p
e1
. . . upenan.

Set x0 = a∗0a0 and, for 1 6 k 6 n, xk = a∗k(rek ◦ sek ◦ Es
ek
(xk−1))ak. By Lemma 3.9, we have

ϕp0(〈ξp0 , a
∗a.ξp0〉) = ϕp0(xn). Set yk = Ps

ek
(xk−1). We have, by induction,

b∗b = a∗nu
p
en
. . . upe1a

∗
0a0u

p
e1
. . . upenan =

n∑

k=1

a∗nu
p
en
. . . upekyku

p
ek
. . . upnan + xn.

Since each term in this sum, except xn, is reduced we get, by Proposition 3.18,

〈Ωp(p0), b
∗b.Ωp(p0)〉 = 〈Ωp(p0), xn.Ωp(p0)〉.
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It follows from Lemma 3.22 that

ϕp(〈Ωp(p0), b
∗b.Ωp(p0)〉) = ϕp0(xn) = ϕp0(〈1Ap0

, a∗a.1Ap0
〉).

The end of the proof is routine. �

Remark 3.25. Proposition 3.18 and Lemma 3.22 imply that (Hp0,ϕp, πp0,ϕp , ηp0,ϕp) is the GNS
construction of the fundamental state on Pp(p0) defined in Remark 3.23.

3.3. Unscrewing. We will now give an unscrewing process allowing us to recover any funda-
mental C*-algebra as an inductive limit of iterations of amalgamated free products and HNN
extensions. The case of a finite graph is done by induction and the general case is obtained by
an inductive limit argument. As an application, we prove that several C*-algebraic properties
can be induced, possibly under some extra assumptions, form the vertex algebras to the reduced
fundamental C*-algebra. This should be thought of as a C*-algebraic translation of J-P. Serre’s
dévissage technique as detailed in [Ser77, Sec 5.2].

The basic principle is quite simple. We start with a non-trivial connected graph and remove an
edge. If the graph becomes disconnected, the fundamental C*-algebra is an amalgamated free
product of the fundamental C*-algebras of the two connected components. If the graph is still
connected, the fundamental C*-algebra is an HNN extension of the fundamental C*-algebra of
the remaining graph.

From now on, we fix a graph of C*-algebras with faithful states (G, (Aq, ϕq)q, (Be, ϕe)e). By
Proposition 3.24 the reduced fundamental C*-algebra do not depend on a particular base (and
the isomorphism is canonical). Hence, for the rest of this section, we always omit the superscript
p and we simply denote by ue, e ∈ E(G), the canonical unitaries.

Assume that the graph G has at least two edges e and e. We set p1 = s(e) and p2 = r(e) and let
P (pk) be the reduced fundamental C*-algebra in pk. Let G′ be the graph of C*-algebras obtained
from G by removing the edges e and e.

Case 1: The graph G′ is not connected. Let Gk be the connected component of G′ containing
pk and let Ak be the reduced fundamental C*-algebra of the graph of C*-algebra restricted to
Gk in pk for k = 1, 2. By the universal property of Proposition 3.20 we can view canonically
Ak ⊂ P (pk), for k = 1, 2 and, ueA2ue ⊂ P (p1). Denote by Ek the canonical GNS-faithful
conditional expectation from Ak to Bs

e if k = 1 or Br
e if k = 2. Set B = Be and let A1 ∗

B
A2

be the reduced amalgamated free product with respect to the maps se, re and the conditional
expectations Ek.

Lemma 3.26. There exists a unique ∗-isomorphism ρ : A1 ∗
B
A2 → P (p1) such that

ρ(x) =

{
x if x ∈ A1

uexue if x ∈ A2

Moreover, ρ is state-preserving.

Proof. Define the faithful unital ∗-homomorphisms ρk : Ak → P (p1) by ρ1(x) = x and ρ2(x) =
uexue. Setting ı1 = se and ı2 = re, we have

ρ1 ◦ i1 = ρ2 ◦ i2 = se : B → P (p1).
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Observe that P (p1) is generated as a C*-algebra by ρk(Ak) for k = 1, 2. Let E be the canonical
GNS-faithful conditional expectation from P (p1) to Bs

e i.e. E = Es
e ◦ EAp1

. By the universal
property of the reduced amalgamated free product, it is enough to prove that

(1) E ◦ ρk(x) = ρk ◦ Ek(x) for x ∈ Ak and k = 1, 2.
(2) For any n > 2, a1, . . . , an with al ∈ Alk ⊖ ilk(B) and lk 6= lk+1 for all k, one has

E(ρl1(a1) . . . ρln(an)) = 0.

(1). We prove it for k = 2 (it is obvious for k = 1). Let x ∈ A2. We may suppose that x is in
Ap2 or is a reduced operator in A2. Recall that E2 = Er

e ◦ EAp2
. If x = re(b) ∈ Br

e , then

E(ρ2(x)) = E(uere(b)ue) = E(se(b)) = se(b) and ρ2 ◦ E2(x) = uere(b)ue = se(b).

If x ∈ Ap2 ⊖Br
e , then ρ2(x) = uexue is a reduced operator in P (p1) hence E(ρ2(x)) = 0. Finally,

if x = a0ue1 . . . uenan is a reduced operator in A2 then E2(x) = 0 and, since e1, en /∈ {e, e},
ρ2(x) = uexue is a reduced operator in P (p1) and E(ρ2(x)) = 0.

(2). Let n > 2 and a1, . . . , an with ak ∈ Alk ⊖ ilk(B) and lk 6= lk+1. We may and will assume that
all the ak’s are either in Aplk

⊖ ilk(B) or are reduced operators in Alk . Since the edges appearing

in the elements ak differ from e and e, the operator ρl1(a1) . . . ρln(an) is always reduced in P (p1).
Hence, E(ρl1(a1) . . . ρln(an)) = 0. �

Case 2: The graph G′ is connected. Fix a maximal subtree T ⊂ G′ and let g be the unique geodesic
path in T from p1 to p2. Let A be the reduced fundamental C*-algebra in p1 of the graph of
C*-algebras restricted to G′, set B = Bs

e ⊂ A and define a faithful unital ∗-homomorphism
θ : B → A by θ(x) = ug[re ◦ s

−1
e (x)]u∗g. Let E1 = Es

e be the canonical GNS-faithful conditional
expectation from A onto B and set E−1 = ugE

r
e(u

∗
g.ug)u

∗
g, which is a GNS-faithful conditional

expectation from A onto θ(B). Let HNN(A,B, θ) be the reduced HNN extension with respect
to the conditional expectations Eǫ, ǫ ∈ {−1, 1} and let u ∈ U(C) be the "stable letter" (see
[Fim13]).

Lemma 3.27. There exists a unique ∗-isomorphism ρ : HNN(A,B, θ) → P (p1) such that,

ρ(u) = ugue and ρ(x) = x for all x ∈ A.

Moreover, ρ intertwines the canonical conditional expectations onto B.

Proof. Set v = ugue ∈ P (p1) and view A as a subalgebra of P (p1) in a canonical way, by the
universal property of Proposition 3.20. Let E′ = Es

e ◦ EAp1
and note that E′ is a GNS-faithful

conditional expectation from P (p1) onto B. Observe that vbv∗ = θ(b) for every b ∈ B and that
P (p1) is generated, as a C*-algebra, by A and v. For ǫ ∈ {−1, 1}, we set

Bǫ =

{
B if ǫ = 1
θ(B) if ǫ = −1

By the universal property [Fim13, Proposition 3.2] of the reduced HNN extension, it is enough to
check that for all n > 1, a0, . . . an ∈ A and ǫ1, . . . , ǫn ∈ {−1, 1} such that ak ∈ A⊖Bǫk whenever
ǫk 6= ǫk+1, one has

E′(a0v
ǫ1 . . . vǫnan) = 0.

To prove this, we may assume that ak ∈ A is either a reduced operator or lies in Ap1 . Let
x = a0v

ǫ1 . . . vǫnan be a generic element. By suitably selecting elements a′k for 0 6 k 6 n in the
following sets:
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• a′0 ∈ {a0, a0ug}
• a′n ∈ {an, ugan}
• a′k ∈ {ak, ugakug} if ǫk+1 6= ǫk
• a′k ∈ {akug, ugak} if ǫk+1 = ǫk

we may write x = a′0u
ǫ1
e . . . uǫne a

′
n. Using the relations of the C*-algebra, we can write each a′k as

a sum of reduced operators from pi to pj, i, j ∈ {1, 2} and with edges only in G′ and elements of
Ap1 or Ap2 . Hence, we may assume that all the a′k are reduced such that the edges appearing in
the reduced expression are not equal to e or e or a′k ∈ Ap1 ∪Ap2 . Moreover, we will then have:

• If ǫ1 = −1, a′0 is a reduced operator in A or a0 ∈ Ap1 .
• If ǫ1 = 1, a′0 is reduced operator from p1 to p2 or, if p1 = p2, a0 ∈ Ap1 .
• If ǫn = 1, a′n is a reduced operator in A or a′n ∈ Ap1 .
• If ǫn = −1, a′n is reduced operator from p2 to p1 or, if p1 = p2, a

′
n ∈ Ap1 .

and, for 1 6 k 6 n− 1,

• If ǫk = 1 and ǫk+1 = −1, a′k is reduced in A or ak ∈ Ap1 ⊖Bs
e .

• If ǫk = −1 and ǫk+1 = 1, a′k is a reduced operator from p2 to p2 or ak ∈ Ap2 ⊖Br
e .

• If ǫk = 1 and ǫk+1 = 1, a′k is a reduced operator from p1 to p2 or, if p1 = p2, a
′
k ∈ Ap1 .

• If ǫk = −1 and ǫk+1 = −1, a′k is a reduced operator from p2 to p1 or, if p1 = p2, a
′
k ∈ Ap1 .

Summing up, we see that x is always a reduced operator in P (p1). Hence, E′(x) = Es
e◦EAp1

(x) =
0. This concludes the proof. �

Combining Lemma 3.26 and Lemma 3.27, we get the following proposition by a straightforward
induction.

Proposition 3.28. Let (G, (Aq)q, (Be)e) be a finite graph of C*-algebras. Then, the reduced
fundamental C*-algebra π1(G, (Ap)p, (Be)e) is isomorphic to an iteration of amalgamated free
products and HNN extensions of vertex algebras amalgamated over edge algebras.

Using an inductive limit argument, we can extend the previous result to arbitrary graph.

Theorem 3.29. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras. Then, the reduced fundamental
C*-algebra π1(G, (Aq)q, (Be)e) is isomorphic to an inductive limit of iterations of amalgamated
free products and HNN extensions of vertex algebras amalgamated over edge algebras.

Proof. Fix p0 ∈ V(G) and let A be the fundamental C*-algebra in p0 of the graph of C*-algebras.
Let Cf (G, p0) be the directed set of connected finite subgraphs of G containing p0 ordered by
inclusion. For any K ∈ Cf (G, p0) let AK be the reduced fundamental C*-algebra in p0 of the
graph of C*-algebras restricted to K. By the universal property of Proposition 3.20, we can view
AK as a subalgebra of A in a canonical way. If K1,K2 ∈ Cf (G, p0) are such that K1 ⊂ K2 we
can also identify in a canonical way AK1 with a subalgebra of AK2 . This means that we have an
inductive system of unital C*-algebras (AK)K∈Cf (G,p0). Let

A∞ =
⋃

K∈Cf (G,p0)

AK ⊂ A

be the inductive limit of this system. Our claim is that A∞ is in fact equal to A. To prove it,
it is enough to prove that any reduced operator x = a0ue1 . . . uenan ∈ A lies in A∞. In fact,
such an operator x is in AK where K is a finite connected subgraph of G containing the edges
e1, . . . , en and the vertices p0, r(e1), . . . r(en−1), hence the result. �
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As an application, we can give a permanence property for exactness. Other permanence prop-
erties will be proved later on for quantum groups (Section 4) and for graphs of von Neumann
algebras (Section 6).

Corollary 3.30. Let (G, (Aq)q, (Be)e) be a graph of C*-algebras. Then, the reduced fundamental
C*-algebra π1(G, (Ap)p, (Be)e) is exact if and only if all the C*-algebras Ap are exact.

Proof. The only if part comes from the fact that any subalgebra of an exact C*-algebra is again
exact. For the if part, we can restrict to finite graphs since an inductive limit of exact C*-algebras
is again exact. We know that exactness passes to amalgamated free products (see [Dyk04, Thm
3.2]) and also to HNN extensions by [Ued05, Sec 7.4]. Combining this with Theorem 3.29, we
get the result. �

4. The fundamental quantum group of a graph of discrete quantum groups

We can now use the results of Section 3 to define and study the fundamental quantum group of
a graph of discrete quantum groups.

4.1. Definition of the fundamental quantum group.

Definition 4.1. A graph of discrete quantum groups is a tuple

(G, (Gq)q∈V(G), (Ge)e∈E(G), (se)e∈E(G)) satisfying the following properties:

• G is a connected graph.
• For every q ∈ V(G) and every e ∈ E(G), Gq and Ge are compact quantum groups.
• For every e ∈ E(G), Ge = Ge.
• For every e ∈ E(G), se : Cmax(Ge) → Cmax(Gs(e)) is a unital faithful ∗-homomorphism

intertwining the coproducts (i.e. Ĝe is a discrete quantum subgroup of Ĝs(e)).

Remark 4.2. As mentionned in Remark 2.5, Pontryagin duality allows us to use only compact
quantum groups when dealing with discrete quantum groups. That is the reason why we call the
above object a graph of discrete quantum groups, even though there are only compact quantum
groups in the definition.

For the remainder of this section we fix a maximal subtree T ⊂ G and we denote by Pm the
maximal fundamental C*-algebra of the graph of C*-algebras (G, (Cmax(Gq))q, (Cmax(Ge))e) with
respect to T .

From a graph of discrete quantum groups, we also obtain another graph of C*-algebras, given
by the reduced C*-algebras in the following way. For every e ∈ E(G), the map se induces a
unital faithful ∗-homomorphism se : Cred(Ge) → Cred(Gs(e)) which intertwines the coproduct
(indeed, since se intertwines the coproduct, it maps a unitary representation onto a unitary
representation. Moreover, since se is injective, it maps an irreducible representation onto an
irreducible representation. Hence, se preserves the Haar states). Let ϕs(e) and ϕe denote the
Haar states of Gs(e) and Ge respectively. According to [Ver04, Prop 2.2], ϕs(e) ◦se = ϕe for every
e ∈ E(G) and there exists a unique conditional expectation Es

e : Cred(Gs(e)) → se(Cred(Ge)) such

that ϕs(e) = ϕe ◦ s
−1
e ◦ Es

e. In particular, Es
e is automatically faithful (hence GNS-faithful) since

ϕs(e) is. This conditional expectation is also characterized by the following invariance property:

(ı⊗ Es
e) ◦∆s(e) = (Es

e ⊗ ı) ◦∆s(e) = ∆e ◦ s
−1
e ◦ Es

e = ∆s(e) ◦ E
s
e.
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We obtain a graph of C*-algebras with faithful states (G, (Cred(Gp), hp), ((Cred(Ge), he)), where
hp and he are the Haar states on Cred(Gp) and Cred(Ge) respectively. Until the end of this section,
we fix a vertex p0 ∈ V(G) and we denote by P = P (p0) the reduced fundamental C*-algebra
of (G, (Cred(Gq))q, (Cred(Ge))e) in p0 and by ϕ the fundamental state on P . For q ∈ V(G), let
us denote by λq the canonical surjective ∗-homomorphism Cmax(Gq) → Cred(Gq) which is the
identity on Pol(Gq). By the universal property, we have a unique ∗-homomorphism

λ : Pm → P

such that λ(ue) = up0e for every e ∈ E(G) and λ(a) = πp0q,p0 ◦ λq(a) for every q ∈ V(G) and every
a ∈ Aq. In particular, λ is injective on Pol(Gq) for every q ∈ V(G).

By the universal property of Proposition 3.6, there is a unique unital ∗-homomorphism

∆m : Pm → Pm ⊗ Pm

such that for every e ∈ E(G), and every q ∈ V(G), a ∈ Aq

∆m(ue) = ue ⊗ ue and ∆m(a) = ∆q(a).

Obviously, Pm is generated as a C*-algebra by the group-like unitaries ue for e ∈ E(G) and
the elements uαij for α ∈ Irr(Gq), 1 6 i, j 6 dim(α) and q ∈ V(G). The conditions of [Wan95,

Definition 2.1’] being satisfied by these elements, G = (Pm,∆m) is a compact quantum group
called the fundamental quantum group of the graph of quantum groups.

For p ∈ V(G) and e ∈ E(G), set Mp = L∞(Gp) and Ne = L∞(Ge). Observe that, for any
e ∈ E(G), the map se induces a unital normal faithful ∗-homomorphism, still denoted se, from
Ne to Ms(e) which intertwines the coproducts, the Haar states and the modular groups. Hence,
we get a graph of von Neumann algebras (G, (Mq)q, (Ne)e) and we denote by M the fundamental
von Neumann algebra in p0. The hypothesis of section 6.5 being satisfied, the fundamental state
ϕ on P is faithful and the von Neumann algebra generated by P in the GNS representation of ϕ
is M .

4.2. Representation theory and Haar state. Let us investigate the representation theory
of the fundamental quantum group. For every e ∈ E(G), the map se induces an injective map,
still denoted se, from Irr(Ge) to Irr(Gs(e)) ⊂ Irr(G) and ue ∈ Pm is an irreducible represen-
tation of dimension 1. The following definition will be convenient to describe the irreducible
representations of G.

Definition 4.3. A unitary representation u of G is said to be reduced if

u = uα0 ⊗ ue1 ⊗ · · · ⊗ uen ⊗ uαn

where n > 1 and

• (e1, . . . , en) is a path in G from p0 to p0
• α0 ∈ Irr(Gp) and for 1 6 i 6 n, αi ∈ Irr(Gr(ei))
• For all 1 6 i 6 n− 1, αi /∈ sei+1(Irr(Gei+1)) whenever ei+1 = ei.

Theorem 4.4. We have,

(1) For an irreducible unitary representation u of G one of the following holds:
• u = ue for some e ∈ E(G).
• u is an irreducible representation of Gq for some q ∈ V(G).
• u is unitarily equivalent to a subrepresentation of a reduced representation.
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Hence, the set
⋃

q∈V(G) Irr(Gq)∪ {ue : e ∈ E(G)} generates the representation category of

G.
(2) The Haar state h of G is given by h = ϕ ◦ λ.
(3) We have Cmax(G) = Pm, Cred(G) = P , L∞(G) =M , and λ = λG.

Proof. (1). It is clear that the unitaries ue and the irreducible representations of the compact
quantum groups Gq are irreducible representations of G. Moreover, the closure of the ∗-algebra
A generated by the coefficients of the aforementioned representations and the reduced represen-
tations contains, by definition of the conditional expectations, the linear span of Cmax(Gp0) and
the reduced operators from p0 to p0 in Pm, which is a dense ∗-subalgebra in Pm (see Remark
3.16). Since A is dense in Pm and generated by coefficients of representations, it must contain
the coefficients of all irreducible representations i.e. A = Pol(G). This proves (1).

(2). Let Qm ⊂ Pm be the linear span of the coefficients of all reduced representations. One can
easily check that ∆m(Qm) ⊂ Qm⊙Qm and that λ(Qm) is spanned by reduced operators. Hence,
for any x ∈ Qm, (ϕ ⊗ ı) ◦∆m(x) = (ı ⊗ ϕ) ◦∆m(x) = 0 = ϕ(x).1. Since the linear span of Qm

and Cmax(Gp0) is a dense ∗-subalgebra of Pm, we only have to check the invariance property of
ϕ on Cmax(Gp0), which is obvious.

(3). The map λ is surjective and ϕ is faithful on P , hence P is the reduced C*-algebra of G. The
universal property of Proposition 3.6 implies that Pm is the enveloping C*-algebra of Pol(G),
i.e. Pm is the maximal C*-algebra of G. Moreover, λ = λG since it is the identity on Pol(G).
Eventually, L∞(G) = M because M is the von Neumann algebra generated by P in the GNS
representation of ϕ. �

Remark 4.5. In the case of a free product without amalgamation, the irreducible representations
are exactly the reduced representations (together with the representations coming from the quan-
tum groups). However, this fails as soon as one allows amalgamation, as shown in the example
at the end of Section 2 of [Ver04].

Combining the results of this section with Examples 3.4 and 3.5, we see that we recover both
the amalgamated free product construction of [Wan95] and the HNN construction of [Fim13].

4.3. Permanence properties. We give in this section some permanence results for approxi-
mation properties under the fundamental quantum group construction. Let us say that a uni-

modular discrete quantum group Ĝ is hyperlinear if the von Neumann algebra L∞(G) embeds
into an ultraproduct Rω of the hyperfinite II1 factor R.

Theorem 4.6. Let (G, (Gq)q, (Ge)e) be a graph of discrete quantum groups.

(1) Ĝ is exact if and only if all the vertex quantum groups (hence all the edge quantum groups)
are exact.

(2) Ĝ is unimodular if and only if all the vertex quantum groups (hence all the edge quantum
groups) are unimodular.

(3) If all the vertex quantum groups are unimodular and hyperlinear and if all the edge quan-

tum groups are amenable, then Ĝ is hyperlinear.
(4) If all the vertex quantum groups are unimodular and have the Haagerup property and if

all the edge quantum groups are finite, then Ĝ has the Haagerup property.
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(5) If all the vertex quantum groups are unimodular and weakly amenable with Cowling-

Haagerup constant 1 and if all the edge quantum groups are finite, then Ĝ is weakly
amenable with Cowling-Haagerup constant 1.

Proof. (1) follows from Corollary 3.30 while (2) follows from Propositions 6.6 and 6.11. (3) and
(4) are proved in Corollary 6.10, by using again Proposition 6.11 (see also [DFSS13, Proposition
7.13 and 7.14] for the cases of amalgamated free product and HNN extensions). Finally, (5) is a
straightforward consequence of Theorem 3.29 and the permanence properties proved in [Fre13,
Chap 2]. �

5. K-amenability

In this section we will illustrate the construction of the fundamental quantum group by general-
izing the Julg-Valette theorem [JV84].

Theorem 5.1. The fundamental quantum group of a graph of amenable discrete quantum groups
is K-amenable.

The proof will be done in several steps. The strategy consists in using the natural representations
of the reduced fundamental C*-algebra on a quantum Bass-Serre tree, i.e. an analogue of the
ℓ2-spaces of vertices and edges of the Bass-Serre tree associated to a classical graph of groups.
In that way, we get two representations of the reduced C*-algebra. We then build a KK-element
and prove that it yields the K-amenability of the fundamental quantum group.

From now on, we fix an oriented graph of compact quantum groups (G, (Gq)q, (Ge)e) such that
all the compact quantum groups Gq are co-amenable. We set Aq = Cmax(Gq) = Cred(Gq),
Be = Cmax(Ge) = Cred(Ge) and we use the notations of the preceding sections. For q ∈ V(G)
and e ∈ E(G), denote by εq : Aq → C and εe : Be → C the counit of Gq and Ge respectively.
Since the maps se, re are faithful and intertwine the coproducts we have, by the characterization
of the counit given in Section 2.2, εs(e) ◦ se = εe = εr(e) ◦ re for every e ∈ E(G).

Let G = (P,∆) be the reduced fundamental quantum group of the graph of quantum groups,
where P = P (p0) is the reduced fundamental C*-algebra at a fixed vertex p0 ∈ V(G). Since
the Haar states ϕq, q ∈ V(G), and ϕe, e ∈ E(G) form a graph of faithful states, we can identify
canonically P with any of the C*-algebras Pp(p0) for p ∈ V(G). We will consequently identify
P with its images in all the spaces LAp(Hp0,p) for p ∈ V(G) and omit the superscripts p in the
unitaries upe, i.e. we write a0ue1 . . . uenan for a reduced operator in P .

5.1. The quantum Bass-Serre tree. Let us fix a vertex p ∈ V(G). For every q ∈ V(G), let
(Lp,q, πp,q, ηp,q) be the GNS construction of (Hp,q, εq). Set ξLp,q = ηp,q(Ωq(p)). The "ℓ2-space of
vertices" relative to p is the Hilbert space

Lp =
⊕

q∈V(G)

Lp,q

on which P (p) (≃ Pq(p)) acts by πp = ⊕qπp,q. For p = p0 we write L = Lp0 , π = πp0 and
ξLp0 = ξLp0,p0 .

For every p ∈ V(G) and every f ∈ E(G), let (Kp,f , ρp,f , ηp,f ) be the GNS construction of

(Hp,s(f), εs(f) ◦ Es
f ) and set ξKp,f = ηp,f(Ωs(f)(q)). Let E+(G) be the set of positive vertices
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corresponding to the orientation. Then, the "ℓ2-space of positive edges" relative to p is the
Hilbert space

Kp =
⊕

f∈E+(G)

Kp,f

on which P (p) (≃ Ps(f)(p)) acts by ρp = ⊕f>0ρp,f . For p = p0 we write K = Kp0 and ρ = ρp0 .
Let us give some relations between the norms of these Hilbert spaces.

Lemma 5.2. Let w = (e1, . . . , en) be a path in G from p to q and let a = â0 ⊗
e1
. . . ⊗

en
an ∈ Hw.

Then,

‖ηp,q(a)‖
2
Lp,q

= |εq(an)|
2‖ηp,en(â0 ⊗

e1
. . . ⊗

en−1

an−1)‖
2
Kp,en

= |εq(an)|
2‖ηp,en(â0 ⊗

e1
. . . ⊗

en−1

ân−1 ⊗
en

1)‖2Kp,en
.

Proof. Let x0 = a∗0a0 and, for 1 6 k 6 n, xk = a∗k(rek ◦ s
−1
ek

◦Es
ek
(xk−1))ak. Set a′ = â0 ⊗

e1
. . . ⊗

en−1

ân−1 ⊗
en

1 ∈ Hp,s(en) and a′′ = â0 ⊗
e1
. . . ⊗

en−1

an−1 ∈ Hp,s(en). By Lemma 3.9, we have

〈a, a〉Hp,q = xn, 〈a′, a′〉Hp,s(en)
= x′n and 〈a′′, a′′〉Hp,s(en)

= xn−1,

where x′n = ren ◦ s−1
en

◦ Es
en
(xn−1). Hence, we get

‖ηp,q(a)‖
2
Lp,q

= εq(xn) = εq(a
∗
n(ren ◦ s−1

en
◦Es

en
(xn−1))an) = |εq(an)|

2εr(en) ◦ ren ◦ s−1
en

◦Es
en
(xn−1)

and

‖ηp,en(a
′)‖2Kp,en

= εs(en) ◦ E
s
en(x

′
n) = εr(en) ◦ ren ◦ s−1

en ◦ Es
en(xn−1).

This proves the second equality. Moreover, using the relation εr(en) ◦ ren = εs(en) ◦ sen , we have

εr(en) ◦ ren ◦ s−1
en ◦ Es

en(xn−1) = εs(en) ◦ E
s
en(xn−1) = ‖ηp,en(a

′′)‖2Kp,en
,

proving the first equality. �

Remark 5.3. In Lp,q we have ηp,q(â0 ⊗ · · · ⊗ an) = εq(an)ηp,q(â0 ⊗ · · · ⊗ 1). Indeed, the formula
is obvious for n = 0 and, for n > 1, it follows by Lemma 5.2 that

||ηp,q(â0 ⊗ · · · ⊗ an)− εq(an)ηp,q(â0 ⊗ · · · ⊗ 1)||2 = ||ηp,q(â0 ⊗ · · · ⊗ (an − εq(an)))||
2 = 0.

Remark 5.4. An easy computation shows that in Kp,f we have, for all n ≥ 0,

ηp,f (â0 ⊗ · · · ⊗ anb) = εs(f)(b)ηq,f (â0 ⊗ · · · ⊗ an) for all b ∈ Bs
f .

Actually, the following holds for the spaces Kp,f :

ηp,f(a0 ⊗ · · · ⊗ an) = εs(f) ◦ E
s
f (an)ηp,f (a0 ⊗ · · · ⊗ 1) + ηp,f (a0 ⊗ · · · ⊗ Ps

f (an)).
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5.2. The Julg-Valette operator. We now define an operator F : L → K which will give
our KK-element. In the classical situation, the operator F associates to each vertex p the last
edge in the unique geodesic path from p0 to p. Here, the construction is similar but we use the
orientation we fixed on the graph G instead of the ascending orientation. Set F(ξLp0) = 0 and for
every path w = (e1, . . . , en) from p0 to q and every x = x̂0 ⊗

e1
. . . ⊗

en
xn ∈ Hw, set

F(ηp0,q(x)) =





εr(en)(xn)ηp0,en(x̂0 ⊗
e1
. . . ⊗

en−1

xn−1) ∈ Kp0,en if en ∈ E+(G)

εr(en)(xn)ηp0,en(x̂0 ⊗
e1
. . . ⊗

en−1

x̂n−1 ⊗
en

1) ∈ Kp0,en if en /∈ E+(G)

The operator F is called the Julg-Valette operator associated to the graph of quantum groups.
For every vertex q ∈ V(G), let H+

p0,q
(resp. H−

p0,q
) be the direct sum of all path Hilbert modules

Hw where w is a non-empty path from p0 to q such that the last edge of w is positive (resp.
negative) and let L+

p0,q
(resp. L−

p0,q
) be the closure of ηp0,q(H

+
p0,q

) (resp. ηp0,q(H
−
p0,q

)). We have
a decomposition

Lp0,q =

{
L+
p0,q

⊕ L−
p0,q

⊕ C.ξLp0 if p0 = q,
L+
p0,q

⊕ L−
p0,q

if p0 6= q.

Summing up over all q’s gives a similar decomposition L = L+ ⊕ L− ⊕ C.ξLp0 where,

L+ =
⊕

q∈V(G)

L+
p0,q

and L− =
⊕

q∈V(G)

L−
p0,q

.

It is easily seen from Lemma 5.2 that F is an isometry on L+ and L− and hence extends to a
bounded operator so that, F(L+) and F(L−) being orthogonal, F is isometric on the orthogonal
complement of ξLp0 . Since F is also surjective on that space, we have FF∗ = IdK . This also
implies that F∗F = IdL−pξLp0

, where pξLp0
is the orthogonal projection onto C.ξpL0

. In short, we

have proven that F is unitary modulo compact operators. In order to get a KK-element, we
now have to prove that F commutes with the representations π and ρ of P up to the compact
operators.

Lemma 5.5. With the notations above, the following hold:

(1) For every a ∈ Ap0 we have F ◦ π(a) = ρ(a) ◦ F .
(2) For every reduced operator a = anuen . . . ue1a0 ∈ P , Im(F ◦π(a)− ρ(a) ◦F) = Xa, where

Xa = Span
16k6n

({
ηp0,ek(ân ⊗

en
. . . ⊗

ek+1

ak) : ek > 0

})

⊕
Span
16k6n

({
ηp0,ek(ân ⊗

en
. . . ⊗

ek+1

âk ⊗
ek

1) : ek 6 0

})
.

(3) For every a ∈ P the operator F ◦ π(a)− ρ(a) ◦ F is compact.

Proof. The proof of (1) is obvious. Let us prove (2). Let a = anuen . . . ue1a0, where n > 1 and
(en, . . . , e1) is a path in G from p0 to p0. Observe that (F ◦ π(a)− ρ(a) ◦ F)ξLp0 is equal to

F ◦ π(a)ξLp0 = εp0(a0)





ηp0,e1(ân ⊗
en
. . . ⊗

e2
a1) ∈ Xa if e1 > 0,

ηp0,e1(ân ⊗
e1
. . .⊗

e2
â1 ⊗

e1
1) ∈ Xa if e1 6 0.
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Take now ξ ∈ L, of the form ηp0,q(b) for some b = b̂0 ⊗
f1
. . . ⊗

fm
1 ∈ Hp0,q, where m > 1 and

(f1, . . . , fm) is a path from p0 to q. Set b′ = b0 if m = 1 and, b′ = b̂0 ⊗
f1

. . . ⊗
fm−1

bm−1 if m > 1.

We have

(1) (F ◦ π(a)− ρ(a) ◦ F)ξ =

{
Fηp0,q(a.b)− ηp0,fm(a.b

′) if fm > 0,
Fηp0,q(a.b)− ηp0,fm

(a.b) if fm 6 0

Using the notations of Lemma 3.17, we have an integer n0 associated to the pair (a, b). Denote
by n′0 the integer associated to the pair (a, b′) (assume m > 2, otherwise it is easy to conclude).
Observe that

n′0 =

{
n0 if n0 < m,
m− 1 if n0 = m.

Case 1: ξ ∈ L−. This means that fm 6 0.

If n < m, Lemma 3.17 implies that a.b ∈ H−
p0,q

and, by definition of F , (F ◦π(a)−ρ(a)◦F)ξ = 0.

Assume n > m. If n0 < m, Lemma 3.17 again implies that a.b ∈ H−
p0,q

and we get, as before,

(F ◦ π(a)− ρ(a) ◦ F)ξ = 0. If n0 = m, em = fm > 0 and, with the notations of Lemma 3.17, we
have

a.b =

m∑

k=1

ân ⊗
en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fm

1 + ân ⊗
en
. . . ⊗

em+1

xm,

where xm = amz and z ∈ Bs
em

= Br
fm

. On the one hand we have, since fm 6 0,

Fηp0,q(a.b) =

m∑

k=1

ηp0,fm
(ân ⊗

en
. . . ⊗

ek
ŷk ⊗

fk

. . . ⊗
fm

1) + εq(xm)Fηp0,q(ân ⊗
en
. . . ⊗

em+1

1)

and Fηp0,q(ân ⊗
en
. . . ⊗

em+1

1) =





ηp0,em+1(ân ⊗
en
. . . ⊗

em+2

am+1) ∈ Xa if em+1 > 0,

ηp0,em+1(ân ⊗
en
. . . ⊗

em+1

1) ∈ Xa if em+1 6 0.

On the other hand, since z ∈ Br
fm

we get

ηp0,fm
(a.b) =

m∑

k=1

ηp0,fm
(ân ⊗

en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fm

1) + εq(z)ηp0,fm
(ân ⊗

en
. . . ⊗

em+1

am)

and ηp0,fm
(ân ⊗

en
. . . ⊗

em+1

am) = ηp0,em(ân ⊗
en
. . . ⊗

em+1

am) ∈ Xa. Hence, by Equation (1), we get

(F ◦ π(a)− ρ(a) ◦ F)ξ = εq(xm)Fηp0,q(ân ⊗
en
. . . ⊗

em+1

1)− εq(z)ηp0,fm
(ân ⊗

en
. . . ⊗

em+1

am) ∈ Xa.

Case 2: ξ ∈ L+. This means that fm > 0.

If n < m, we have n′0 = n0 6 n < m. Lemma 3.17 applied to the pairs (a, b) and (a, b′) and the
definition of F imply that (F ◦ π(a)− ρ(a) ◦ F)ξ = 0.
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Assume n > m. If n0 < m then n′0 = n0 and Lemma 3.17 again implies (F ◦π(a)−ρ(a)F)ξ = 0.
If n0 = m then n′0 = m− 1, with the notations of Lemma 3.17 we have

a.b =
m∑

k=1

ân ⊗
en
. . . ⊗

ek
ŷk ⊗

fk

. . . ⊗
fm

1 + ân ⊗
en
. . . ⊗

em+1

xm

and

a.b′ =

m−1∑

k=1

ân ⊗
en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fm−1

bm−1 + ân ⊗
en
. . . ⊗

em
xm−1.

where xm−1 ∈ Ar(em) and ym = xm−1 − Er
em

(xm−1). On the one hand we have, since fm > 0,

Fηp0,q(a.b) =

m−1∑

k=1

ηp0,fm(ân ⊗
en
. . . ⊗

ek
ŷk ⊗

fk

. . . ⊗
fm−1

bm−1) + ηp0,fm(ân ⊗
en
. . . ⊗

em
ym)

+ εq(xm)Fηp0,q(ân ⊗
en
. . . ⊗

em+1

1).

As before, we see easily that Fηp0,q(ân ⊗
en
. . . ⊗

em+1

1) ∈ Xa. On the other hand,

ηp0,fm(a.b
′) =

m−1∑

k=1

ηp0,fm(ân ⊗
en
. . .⊗

ek
ŷk ⊗

fk

. . . ⊗
fm−1

bm−1) + ηp0,fm(ân ⊗
en
. . . ⊗

em
xm−1).

Hence, by Equation (1), we have

(F ◦ π(a)− ρ(a) ◦ F)ξ = εq(xm)Fηp0,q(ân ⊗
en
. . . ⊗

em+1

1) + ηp0,fm(ân ⊗
en
. . . ⊗

em
(ym − xm−1)).

Since ym − xm−1 = −Er
em

(xm−1) = −Es
fm

(xm−1),

ηp0,fm(ân ⊗
en
. . . ⊗

em
(ym − xm−1)) = −εs(fm) ◦ E

s
fm

(xm−1)ηp0,em(ân ⊗
en
. . . ⊗

em
1) ∈ Xa.

Hence, (F ◦ π(a)− ρ(a) ◦ F)ξ ∈ Xa.

(3) now follows easily from (1) and (2) since (F ◦ π(a)− ρ(a) ◦ F) has finite rank for every a in
the linear span of Ap0 and the reduced operators, which is dense in P . �

We thus have constructed a KK-element γ = [(L,K,F)] ∈ KK(Cred(G),C). Let us describe a
triple which is equal to λ∗G(γ)− [ε]. Set

K̃ = K ⊕ C.Ω

for some norm-one vector Ω and endow it with ρ̃, which is the direct sum of the representation

ρ ◦ λG and the trivial representation. Let F : L → K̃ be the operator defined by F = F on the

orthogonal complement of C.ξLp0 and F (ξLp0) = Ω, which is unitary. Then, the triple (L, K̃, F )
(where L is endowed with the representation π ◦ λG, that we still denote by π) defines a class
γ̃ ∈ KK(Cmax(G),C) which is equal to λ∗G(γ)− [ε].

Remark 5.6. Note that we have F ◦ π(a) ◦ F ∗ = ρ̃(a) for every a ∈ Ap0 .
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5.3. The homotopy. We now want to construct an homotopy in KK(Cmax(G),C) from γ̃ to
0. This will be done using deformations of both representations π and ρ̃, conjugating them by
some path of unitaries. We thus first have to define these unitaries. Recall that if e ∈ E(G) and
q ∈ V(G), the unitary

uqe ∈ LAq

(
Hr(e),q,Hs(e),q

)

induces in a canonical way an operator in B
(
Lr(e),q, Ls(e),q

)
still denoted uqe. This procedure

respects composition and adjoints, hence uqe is unitary for every e ∈ E(G) and q ∈ V(G). We also

define, for e, f ∈ E(G), the unitaries ufe ∈ B
(
Kr(e),f ,Ks(e),f

)
which are induced by the unitaries

us(f)e ∈ LAs(f)

(
Hr(e),s(f),Hs(e),s(f)

)
.

5.3.1. Deformation of ρ̃. For q ∈ V(G), set K̃q = Kq ⊕C.Ω endowed with the sum ρ̃q of ρq ◦ λG
and the trivial representation. For e ∈ E+(G), set

uKe = IdC.Ω⊕
⊕

f∈E(G)+

ufe : K̃r(e) → K̃s(e) and uKe = (uKe )∗.

Remark 5.7. For every e ∈ E+(G), b ∈ Be we have ρ̃s(e)(se(b)) = uKe ρ̃r(e)(re(b))(u
K
e )∗. Indeed,

since the relation holds on Kr(e), it suffices to check it on Ω:

uKe ρ̃r(e)(re(b))(u
K
e )∗.Ω = uKe ρ̃r(e)(re(b)).Ω = εr(e)(re(b))u

K
e .Ω = εs(e)(se(b))Ω

= ρ̃s(e)(se(b)).Ω.

For e ∈ E+(G), we define a unitary ve : K̃r(e) → K̃s(e) in the following way:

Case 1: e is not a loop. This means that s(e) 6= r(e). In that case we set ve = uKe .

Case 2: e is a loop. Let p = r(e) = s(e). If f ∈ E(G)+ and f 6= e, ve acts on Kp,f by ufe as before.

Let Le be the closure of the linear span of elements ηp,e(b) ∈ Kp,e for b = 1̂⊗
e
b1 ⊗

e2
. . . ⊗

en
bn with

n > 1, i.e. the span of "words starting with e" and denote by Re the orthogonal complement of

Le in Kp,e. In the same way, we define spaces Le and Re. Obviously, u
r(e)
e sends Re (resp. Le)

bijectively onto Le (resp. Re). Moreover,

ur(e)e

(
Le ⊖ C.ηp,e(1̂⊗

e
1)

)
= Re ⊖ C.ξKp,e.

Let ve be equal to u
r(e)
e on these spaces and extend it by setting

• ve(Ω) = ξKp,e

• ve

(
ηp,e(1̂⊗

e
1)

)
= Ω

Summing up, we have again defined a unitary operator

ve : K̃r(e) = K̃p → K̃p = K̃s(e).

Lemma 5.8. For every e ∈ E+(G), b ∈ Be we have ρ̃s(e)(se(b)) = veρ̃r(e)(re(b))v
∗
e .

Proof. Since ve = uKe whenever e is not a loop and since the equation is known to hold for uKe , we
may and will assume that e is a loop. Let p = s(e) = r(e). Since the equation is already known
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to hold for the ufe ’s and since ve only differs from the ufe ’s on a finite-dimensional subspace, we
can restrict our attention to finitely many vectors.

We have to check the equality on Ω and ξKp,e:

veρ̃r(e)(re(b))v
∗
e .Ω = veρ̃r(e)(re(b)).ηp,e(1̂⊗

e
1) = εs(e)(se(b))ve.ηp,e(1̂⊗

e
1)

= εs(e)(se(b))Ω = ρ̃s(e)(se(b)).Ω

using r̂e(b)⊗
e
1 = 1̂⊗

e
se(b). Similarly,

veρ̃r(e)(re(b))v
∗
e .ξ

K
p,e = veρ̃r(e)(re(b)).Ω = εr(e)(re(b))ve.Ω = εs(e)(se(b))ξ

K
p,e

= ρ̃s(e)(se(b)).ξ
K
p,e.

�

Up to now, ve is only defined for positive edges e. If e is a negative edge, we set ve = (ve)
∗.

Let us deform these operators. Because the unitaries uKe satisfy the same relations as the ve’s,

we have (uKe )∗ve ∈ B
(
K̃r(e)

)
∩ ρ̃r(e)(B

r
e)

′ for every e ∈ E(G). Let he be a positive element in

B
(
K̃r(e)

)
∩ ρ̃r(e)(B

r
e)

′ such that (uKe )∗ve = exp(ihe). For any t ∈ R, set

vte = uKe exp(ithe).

Applying Corollary 3.8 with our given fixed maximal subtree T , the vertex p0, the representations
ρ̃q and the unitaries vte we get, for all t ∈ R, a representation

ρ̃t : Cmax(G) → B(K̃)

such that, for any path w = (e1, . . . , en) in G from p0 to p0 and any a0 ∈ As(e1), ai ∈ Ar(ei), we
have

ρ̃t(a0ue1 . . . uenan) = ρ̃s(e1)(a0)v
t
e1
. . . vten ρ̃r(en)(an),

where ue denotes the canonical unitary in Cmax(G) for every e ∈ E(G).

5.3.2. Deformation of π. The deformation of π uses unitaries we = Lr(e) → Ls(e) which are quite

similar to the ve’s. For every e ∈ E(G), the sum of the operators uqe is denoted uLe . It is unitary
and satisfies, for every e ∈ E(G), (uLe )

∗ = uLe and, for every e ∈ E(G) and b ∈ Be,

uLe πr(e)(re(b))(u
L
e )

∗ = πs(e)(se(b)).

Let e ∈ E(G). We define the unitary we in the following way:

Case 1: If e is not a loop. We set we = uqe on Lr(e),q for every q /∈ {s(e), r(e)}. Observe that

ur(e)e

(
ξLr(e),r(e)

)
= ηs(e),r(e)(1̂⊗

e
1) and ur(e)e

(
ηr(e),s(e)(1̂⊗

e
1)

)
= ξLs(e),s(e).

Thus, we can define a unitary we : Lr(e),r(e) ⊕ Lr(e),s(e) → Ls(e),r(e) ⊕ Ls(e),s(e) by setting




we

(
ξL
r(e),r(e)

)
= ξL

s(e),s(e)

we

(
ηr(e),s(e)(1̂⊗

e
1)

)
= ηs(e),r(e)(1̂⊗

e
1)
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and we = u
r(e)
e ⊕ u

s(e)
e on the orthogonal complement of the above vectors.

Case 2: If e is a loop. We set we = uLe .

In both cases, we get a unitary we = Lr(e) → Ls(e) satisfying w∗
e = we.

Lemma 5.9. For every e ∈ E+(G), b ∈ Be, we have πs(e)(se(b)) = weπr(e)(re(b))w
∗
e .

Proof. We may and will assume that e is not a loop and we only have to check the equality on
ξL
s(e),s(e) and ηs(e),r(e)(1̂⊗

e
1). We have

weπr(e)(re(b))w
∗
e .ξ

L
s(e),s(e) = weπr(e)(re(b)).ξ

L
r(e),r(e) = εr(e)(re(b))we.ξ

L
r(e),r(e)

= εs(e)(se(b))ξ
L
s(e),s(e) = πs(e)(se(b)).ξ

L
s(e),s(e)

and,

weπr(e)(re(b))w
∗
e .ηs(e),r(e)(1̂⊗

e
1) = weπr(e)(re(b)).ηr(e),s(e)(1̂⊗

e
1) = we.ηr(e),s(e)(r̂e(b)⊗

e
1)

= εs(e)(se(b))we.ηr(e),s(e)(1̂⊗
e
1) = εs(e)(se(b))ηs(e),r(e)(1̂⊗

e
1)

= πs(e)(se(b)).ηs(e),r(e)(1̂⊗
e
1).

�

As for ve, we can find ke ∈ B(Lr(e)) ∩ πr(e)(B
r
e)

′ such that (uLe )
∗we = exp(ike) and set

wt
e = uLe exp(itke).

Again, using the universal property of Corollary 3.8 yields a representation πt of the maximal
fundamental C*-algebra for all t ∈ R satisfying

πt(a0ue1 . . . uenan) = πs(e1)(a0)w
t
e1
. . . wt

enπr(en)(an).

5.3.3. Deformation of the triple. We will now prove that the representations above yield a de-
generate triple at t = 1.

Lemma 5.10. For every x ∈ Cmax(G) we have Fπ1(x)F
∗ = ρ̃1(x).

Proof. By Remark 3.16, it suffices to prove the Lemma for x ∈ Ap0 and x = anuen . . . ue1a0 a
reduced operator in Cmax(G), where w = (en, . . . , e1) is a path from p0 to p0. When x ∈ Ap0 ,
the relation follows from Remark 5.6, since π1(x) = π(x) and ρ̃1(x) = ρ̃(x).

Claim. Let x = anuen . . . ue1a0 ∈ Cmax(G) be a reduced operator from p0 to p0. One has

(1) [Fπ1(x)F
∗]Ω = ρ̃1(x)Ω.

(2) [Fπ1(x)F
∗]ξKp0,f = ρ̃1(x)ξ

K
p0,f

for every f ∈ E(G)+.

Proof of the claim.(1). We have

[Fπ1(x)F
∗]Ω = εp0(a0)Fπs(en)(an)wen . . . we1ξ

L
p0
, ρ̃1(x)Ω = εp0(a0)ρ̃s(en)(an)ven . . . ve1Ω.

Case 1: e1 is a loop. In that case we have, since x is reduced,

[Fπ1(x)F
∗]Ω = εp0(a0)F (ηp0,p0(ân ⊗

en
. . . ⊗

e1
1)) = εp0(a0)





ηp0,e1(ân ⊗
en
. . .⊗

e2
a1) if e1 > 0,

ηp0,e1(ân ⊗
en
. . .⊗

e1
1) if e1 6 0.
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If e1 is positive, then ve1 .Ω = ξK
s(e1),e1

and if e1 is negative, then ve1 .Ω = ηr(e1),e1(1̂⊗
e1
1). Because

x is reduced, we get

ρ̃1(x).Ω = εp0(a0)





ηp0,e1(ân ⊗
en
. . . ⊗

e2
a1) if e1 > 0,

ηp0,e1(ân ⊗
en
. . . ⊗

e1
1) if e1 6 0.

Case 2: e1 is not a loop. Define k = min{l : s(el) = r(el)} if this set is non-empty and k = 0
otherwise. Since veΩ = Ω when e is not a loop and since el is not a loop for l 6 k− 1 we get, for
k > 1,

ρ̃1(x).Ω = εp0(a0)

(
k−1∏

l=1

εs(el)(al)

)
ρ̃s(en)(an)ven . . . ρ̃s(ek)(ak)vek .Ω,

and, since we.ξ
L
r(e),r(e) = ξL

s(e),s(e) whenever e is not a loop,

[Fπ1(x)F
∗]Ω = εp0(a0)

(
k−1∏

l=1

εs(el)(al)

)
Fπs(en)(an)wen . . . πs(ek)(ak)wek .ξ

L
r(ek),r(ek)

.

For k = 0 the proof is easy since ρ̃1(x).Ω = εp0(a0)
(∏n

l=1 εs(el)(al)
)
Ω = [Fπ1(x)F

∗]Ω. When
k > 1, ek is a loop and the end of the computation is the same as in case 1.

(2). Let f ∈ E(G)+. When s(f) 6= p0, let (f1, . . . , fm) be the unique geodesic path in T from p0
to s(f). Recall that if s(f) 6= p0, then we have ξKp0,f = ηp0,f (1̂⊗

f1

. . . ⊗
fm

1). Hence,

F ∗ξKp0,f =





ηp0,r(f)(1̂⊗
f1

. . . ⊗
fm

1̂⊗
f
1) if s(f) 6= p0 and fm 6= f,

ηp0,r(fm)(1̂⊗
f1

. . . ⊗
fm

1) if s(f) 6= p0 and fm = f,

ηp0,r(f)(1̂⊗
f
1) if s(f) = p0.

Assume that s(f) 6= p0 and set n0 = max{k, ek = fk} (set n0 = 0 if this set is empty). Observe
that if n0 < m, then

ρ̃1(x)ξ
K
p0,f

= ρ̃s(en)(an)u
K
en . . . u

K
e1
ρ̃r(e1)(a0)ξ

K
p0,f

[Fπ1(x)F
∗]ξKp0,f = [Fπs(en)(an)u

L
en
. . . uLe1πr(e1)(a0)F

∗]ξKp0,f

Hence, with a = anuen . . . ue1a0, b = 1̂⊗
f1
. . . ⊗

fm
1 and b′ = 1̂⊗

f1
. . . ⊗

fm
1̂⊗

f
1 we have

ρ̃1(x)ξ
K
p0,f

= ηp0,f (a.b) and [Fπ1(x)F
∗]ξKp0,f =

{
Fηp0,r(f)(a.b

′) if fm 6= f,

Fηp0,r(fm)(a.b) if fm = f.

Now, using Lemma 3.17 to decompose a.b and a.b′ as a sum of reduced tensors and since n0 < m,
it is easy to see that [Fπ1(x)F

∗]ξKp0,f = ρ̃1(x)ξ
K
p0,f

in both cases. Hence we may and will assume
for the rest of the proof that n0 = m.

Set a′ = am−1uem−1 . . . a1ue1a0. We have

ρ̃1(x).ξ
K
p0,f

= ρ̃s(en)(an)ven . . . vem .ηr(em),f (a
′.b)
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and

[Fπ1(x)F
∗]ξKp0,f = Fπs(en)(an)wen . . . wem.

{
ηr(em),r(f)(a

′.b′) if fm 6= f,

ηr(em),r(fm)(a
′.b) if fm = f.

Since em = fm, we have

wem .ηs(fm),r(f)(1̂ ⊗
fm

1̂⊗
f
1) = ηs(f),r(f)(1̂⊗

f
1) if fm 6= f,

wem .ηs(fm),r(f)(1̂ ⊗
fm

1) = ηs(f),r(f)(1̂⊗
f
1) if fm = f.

Hence, using this computation and Lemma 3.17 to decompose a′.b and a′.b′ as sums of reduced
tensors, we see that the difference [Fπ1(x)F

∗]ξKp0,f − ρ̃1(x).ξ
K
p0,f

is equal to

Fπs(en)(an)wen . . . wem+1πs(f)(am).ηs(f),r(f)(1̂⊗
f
1)− ρ̃s(en)(an)ven . . . vem+1 ρ̃s(f)(am).ξKs(f),f .

Note that if s(f) = p0, this formula is still valid with m = 0 and the rest of the proof also applies.

If em+1 6= f or if Ef
s (am) = 0, it is easy to see, because a is reduced, that the difference is 0.

Otherwise, we can replace am by 1 since it acts trivially on both sides via the counit. Hence, we
assume that am = 1 and em+1 = f .

If f is a loop, we have, using em+1 = f (in particular em+1 is a negative loop)

ρ̃s(en)(an)ven . . . vem+1 .ξ
K
s(f),f = εsr(f)(am+1)ρ̃s(en)(an)ven . . . vem+2 .Ω

Fπs(en)(an)wen . . . wem+1 .ηs(f),r(f)(1̂⊗
f
1) = εsr(f)(am+1)Fπs(en)(an)wen . . . wem+2ξ

L
r(f),r(f).

It is easy to check, by induction and since a is reduced, that these two expressions are equal. If
now f is not a loop, we have, since em+1 = f (in particular em+1 is not a loop)

ρ̃s(en)(an)ven . . . vem+1 .ξ
K
s(f),f = ρ̃s(en)(an)ven . . . ρ̃s(em+1)(am+1).ηs(em+1),f (1̂ ⊗

em+1

1)

Fπs(en)(an)wen . . . wem+1 .ηs(f),r(f)(1̂⊗
f
1)

= Fπs(en)(an)wen . . . πs(em+1)(am+1).ηs(em+1),r(em+1)(1̂ ⊗
em+1

1).

Again, it is easy to check by induction (using the fact that a is reduced and em+1 6 0) that these
two expressions are equal. �

End of the proof of Lemma 5.10. It follows from the first assertion of the claim and from Remark
5.6 that, for a, b ∈ Cmax(G) either reduced (from p0 to p0) or in Ap0 ,

[Fπ1(a)F
∗] (ρ̃1(b).Ω) = [Fπ1(a)F

∗]([Fπ1(b)F
∗]Ω) = [Fπ1(ab)F

∗].Ω = ρ̃1(ab).Ω

= ρ̃1(a)(ρ̃1(b).Ω).

A similar computation, using the second assertion of the claim, shows that we also have

[Fπ1(a)F
∗](ρ̃1(b).ξ

K
p0,f

) = ρ̃1(a)(ρ̃1(b).ξ
K
p0,f

)

for every f ∈ E(G)+. Hence, for every x ∈ Cmax(G) we have [Fπ1(x)F
∗]ξ = ρ̃1(x)ξ for every

ξ ∈ V, where V ⊂ K̃ is the linear span of ρ̃1(Cmax(G)).Ω and ρ̃1(Cmax(G)).ξKp0,f for f ∈ E(G)+.

Thus, it suffices to show that V is dense in K̃.
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Let f ∈ E+(G), let w = (en, . . . , e1) be a path from p0 to s(f), set x = x̂n ⊗
en
. . . ⊗

e1
x0 and

x♯ = xnuen . . . ue1x0 ∈ Cmax(G). Let g = (f1, . . . , fl) be the unique geodesic path in T from
p0 to s(f). Set ug = uf1 . . . ufl , vg = vf1 . . . vfl and observe that, by definition of ρ̃1, we have,

ρ̃1(x
♯u∗g) = ρ̃s(en)(xn)ven . . . ve1 ρ̃r(e1)(x0)v

∗
g . Moreover, since fi ∈ E(T ) for all i, none of the fi’s

are loops, hence v∗g(Ω) = Ω and v∗g(ξ
K
p0,f

) = ξK
s(f),f .

Assume that e1 6= f or e1 = f and Er
e1
(x0) = 0 then,

ve1 ρ̃r(e1)(x0)ξ
K
s(f),f = uKe1 ρ̃r(e1)(x0)ξ

K
s(f),f .

Since x♯ is reduced, we deduce that

ρ̃1(x
♯u∗g).ξ

K
p0,f

= ρ̃s(en)(xn)ven . . . ve1 ρ̃r(e1)(x0).ξ
K
s(f),f = ηp0,f (x) ∈ V.

Observe that the previous computation also works for e1 = f and any x0 whenever e1 is not a
loop since in this case we have ve1 = uKe1 .

Assume now that e1 = f , x0 ∈ Br
e1

and e1 is a loop. Then ve1(Ω) = v∗f (Ω) = ηs(e1),f (1̂ ⊗
f
1).

Since x♯ is reduced, we get

ρ̃1(x
♯u∗g).Ω = ρ̃s(en)(xn)ven . . . ve1 ρ̃r(e1)(x0).Ω

= εr(e1)(x0)ρ̃s(en)(xn)ven . . . ve2 ρ̃s(e1)(x1).ηs(e1),f (1̂⊗
f
1)

= εr(e1)(x0)ηp0,f (x̂n ⊗
en
. . .⊗

e1
1) = ηp0,f (x) ∈ V,

where the last equality follows from Remark 5.4 and the fact that x0 ∈ Br
e1

. �

5.3.4. End of the proof. We are now ready to prove that Ĝ is K-amenable.

Proof of Theorem 5.1. Let Lt and K̃t be the Hilbert spaces L and K̃ endowed with the repre-
sentations πt and ρ̃t respectively. Note that since the unitaries vte and wt

e are finite-dimensional
perturbations of ue, the maps πt(a) − π(a) and ρ̃t(a) − ρ(a) have finite rank for every reduced
operator a and every t ∈ R. This implies that F ◦ πt(x) − ρ̃t(x) ◦ F is a compact operator for

every x ∈ P , hence (Lt, K̃t, F ) is a KK-element, denoted γ̃t.

The maps t 7→ vte and t 7→ wt
e are norm continuous for every e ∈ E(G) by construction, implying

that the representation πt and ρ̃t are pointwise norm continuous. Thus, (γ̃t)t is an homotopy in
KK-theory. Setting t = 0 gives γ̃ by definition, and it was proven in Lemma 5.10 that setting
t = 1 gives a degenerate triple. The proof is therefore complete. �

6. Appendix: graphs of von Neumann algebras

All the results of Section 3 can also be worked out in the von Neumann algebraic setting. Since
the techniques are the same, we only give a concise exposition of the main points.

Definition 6.1. A graph of von Neumann algebras is a tuple

(G, (Mq , ϕq)q, (Ne, ϕe)e, (se)e),

where G is a connected graph and
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• For every q ∈ V(G) and every e ∈ E(G), Mq and Ne are von Neumann algebras with
distinguished normal faithful states ϕq and ϕe respectively.

• For every e ∈ E(G), Ne = Ne and ϕe = ϕe.
• For every e ∈ E(G), se : Ne → Ms(e) is a unital faithful normal state-preserving ∗-

homomorphism such that σ
s(e)
t ◦ se = se ◦ σ

e
t for all t ∈ R, where σet and σ

s(e)
t are the

modular automorphism groups of the states ϕe and ϕs(e) respectively.

For every e ∈ E(G) we set re = se : Ne →Mr(e), N
s
e = se(Ne) and N r

e = re(Ne).

We will always use the shorthand notation (G, (Mq)q, (Ne)e) for a graph of von Neumann algebras.

6.1. Path bimodules. As in the C*-algebra case, we will use paths in G to build a represen-
tation of the fundamental von Neumann algebra. The main difference is that we will work with
bimodules over von Neumann algebras instead of Hilbert modules, which is in some sense more
tractable.

Let Es
e be the unique state-preserving (for the state ϕe ◦ s

−1
e on N s

e ) normal faithful conditional
expectation from Ms(e) onto N s

e and denote its kernel by Ms(e) ⊖ N s
e . We canonically identify

L2(N s
e ) with a closed subspace of L2(Ms(e)).

For n > 1 and w = (e1, . . . , en) a path in G, we define a Ms(e1)-Mr(en)-bimodule

Hw = K0 ⊗
Ne1

. . . ⊗
Nen

Kn,

where K0 = L2(Ms(e1)), Kn = L2(Mr(en)) and, for 1 ≤ i ≤ n− 1,

Ki =

{
L2(Ms(ei+1)) if ei+1 6= ei,
L2(Ms(ei+1))⊖ L2(N s

ei+1
) if ei+1 = ei.

We view K0 = L2(Ms(e1)) as a Ms(e1)-Ne1-bimodule, where the left Ms(e1)-action is the obvious

one and the right Ne1-action is given by ξ · x = ξse1(x). Similarly, we view Kn = L2(Mr(en)) as
a Nen-Mr(en)-bimodule, where the right Mr(en)-action is the obvious one and the left Nen-action
is given by x · ξ = ren(x)ξ. Finally, for 1 ≤ i ≤ n − 1, we view Ki as a Nei-Nei+1-bimodule by
setting x · ξ · y = rei(x)ξsei+1(y).

For any two vertices p, q ∈ V(G), we now set

Hp,q =
⊕

w

Hw,

where the sum runs over all paths w in G from p to q. By convention, the bimodule Hp,p also
contains the "empty path" Mp-Mp-bimodule H∅ = L2(Mp).

6.2. The fundamental von Neumann algebra. We first have to define unitaries realizing
the relations of the fundamental algebra. Let us fix a vertex p0 ∈ V(G).

We define, for every e ∈ E(G), an operator ue : Hr(e),p0 → Hs(e),p0 in the following way. Let w
be a path from r(e) to p0.

• If w is the empty path or does not begin with ē and ξ ∈ Hw, we set

ueξ = 1̂⊗ ξ ∈ H(ew) ⊂ Hs(e),p0 .
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• If w begins with ē and ξ ∈ Hw, ξ = x̂0 ⊗ ξ
′

with x0 ∈Mr(e), we set

ueξ =

{
1̂⊗ ξ if x0 ∈Mr(e) ⊖N r

e

se ◦ r
−1
e (x0)ξ

′ if x0 ∈ N r
e

It is easy to check that ue extends to a unitary operator and u∗e = uē. Moreover we have,

uēse(b)ue = re(b) for all b ∈ Ne

Note that ue : Hr(e),p0 → Hs(e),p0 commutes with the right actions of Mp0 .

The right version ve : Hp0,s(e) → Hp0,r(e) is defined in a similar way. Let w be a path from p0 to
s(e),

• If w is the empty path or does not end with ē and ξ ∈ Hw, we set

veξ = ξ ⊗ 1̂.

• If w ends with ē and ξ ∈ Hw, ξ = ξ
′

⊗ x̂n with xn ∈Ms(e), we set

veξ =

{
ξ ⊗ 1̂ if xn ∈Ms(e) ⊖N s

e

ξ
′

re ◦ s
−1
e (xn) if xn ∈ N s

e

Again, ve extends to a unitary operator, v∗e = vē, ve : Hp0,s(e) → Hp0,r(e) commutes with the
left action of Mp0 and we have, for every b ∈ Ne,

vēρ(re(b))ve = ρ(se(b)),

where ρ denotes the right action of Mq on Hp0,q for any vertex q.

For a path w = (e1, . . . , en) we define unitaries

uw = ue1 . . . uen : Hr(en),p0 → Hs(e1),p0 and vw = ven . . . ve1 : Hp0,s(e1) → Hp0,r(en).

Remark 6.2. We may also define, as in the C*-algebra case, the operators ue and ve relative to
another base p ∈ V(G) instead of the fixed base p0. We get unitaries upe : Hr(e),p → Hs(e),p and

vpe : Hp,s(e) → Hp,r(e), satisfying the same relations as before and such that upe commutes with

the right Mp-actions and vpe commutes with the left Mp-actions. Moreover, one can easily check
that for every e, f ∈ E(G),

v
s(e)
f us(f)e = ur(f)e v

r(e)
f .

When w = (e1, . . . , en) is a path, if we set upw = upe1 . . . u
p
en and vpw = vpen . . . v

p
e1 then, for all

paths w, z, we have v
s(w)
z u

s(z)
w = u

r(z)
w v

r(w)
z .

Definition 6.3. Let (G, (Mq), (Ne)) be a graph of von Neumann algebras and let p0 ∈ V(G).

• The (left) fundamental von Neumann algebra of (G, (Mq), (Ne)) in p0 is

π1(G, (Mq), (Ne)) = 〈(uz)
∗Mquw|q ∈ V(G), w, z paths from q to p0 〉 ⊂ B(Hp0,p0).

• The right fundamental von Neumann algebra of (G, (Mq), (Ne)) in p0 is

π′1(G, (Mq), (Ne)) = 〈(vz)
∗ρ(Mq)vw|q ∈ V(G), w, z paths from p0 to q 〉 ⊂ B(Hp0,p0).

By Remark 6.2 it is easy to check that the left and right fundamental von Neumann algebras
commute with each other. From now on we denote by M the fundamental von Neumann algebra
of (G, (Mq), (Ne)) in p0 and by MR its right version.
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Remark 6.4. The fundamental von Neumann algebras do not really depend on the choice of p0.
This follows from the same argument as in Remark 3.12 for the C*-algebra case, using a maximal
subtree T of G.

Example 6.5. Using the graphs of Examples 3.4 and 3.5, one recovers the amalgamated free
product and HNN extension constructions for von Neumann algebras.

In order to have a convenient way of defining both left and right reduced operators, we introduce
the following notation inspired from [Ser77, Sec 5.2]: let w = (e1, . . . , en) be a path in G from p to
q and let µ = (x0, . . . , xn), where x0 ∈Mp and xi ∈Mr(ei) for 1 6 i 6 n. We say that (w,µ) is a
reduced pair (from p to q) if, for 1 6 i 6 n−1, ei+1 = ei implies that xi ∈Mr(ei)⊖N

r
ei

. Whenever
(w,µ) is a reduced pair, we define a left reduced operator (from p to q) |w,µ| : Hq,p0 → Hp,p0 by

|w,µ| = x0ue1 . . . uenxn

and a right reduced operator (from p to q) |w,µ|′ : Hp0,p → Hp0,q by

|w,µ|′ = ρ(xn)ven . . . ve1ρ(x0).

It is easy to check that, as in the C*-algebra case, the left reduced operators from p0 to p0 are in
M . Moreover, the linear span of Mp0 and the left reduced operators from p0 to p0 is a σ-weakly
dense ∗-subalgebra of M . Similarly, the right reduced operators from p0 to p0 are in MR and
the linear span of ρ(Mp0) and the right reduced operators from p0 to p0 is a σ-weakly dense
∗-subalgebra of MR.

6.3. Modular theory. Let H = Hp0,p0 and Ω = 1̂p0 ∈ L2(Mp0) ⊂ H. We now build the
fundamental state on M and describe its modular theory. First note that, whenever (w,µ) is a
reduced pair with w = (e1, . . . , en) and µ = (x0, . . . , xn), we have

|w,µ|.Ω = x̂0 ⊗ · · · ⊗ x̂n = |w,µ|′.Ω.

Hence, Ω is a cyclic vector for both M and MR. Since MR ⊂ M ′, Ω is also a separating vector
for M . Hence, the normal state defined by

ϕ(x) = 〈Ω, x.Ω〉

is faithful and (H,Ω) is its GNS construction. Note also that ϕ(x) = 0 for any reduced operator
x ∈M . From the GNS construction, one can easily compute the modular operators. To simplify
notations, set

Σw :

{
Hw → Hw

ξ0 ⊗ · · · ⊗ ξn 7→ ξn ⊗ · · · ⊗ ξ0

for any path w = (e1, . . . , en) in G, where w = (en, . . . , e1). The following is easy to check.

Proposition 6.6. Let J and ∇ be respectively the modular conjugation and the modular operator
of ϕ. We have

J =
⊕

w=(e1,...,en)

(Jr(en) ⊗ · · · ⊗ Js(e1))Σw and ∇ =
⊕

w=(e1,...,en)

∇s(e1) ⊗∇r(e1) ⊗ · · · ⊗ ∇r(en),

where Jq and ∇q denote respectively the modular conjugation and modular operator of ϕq. In
particular, ϕ is a trace if and only if ϕq is a trace for any q ∈ V(G).
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Remark 6.7. Let (w,µ) be a reduced pair with w a path in G from p0 to p0 and observe that

J |w,µ|∗J = |w,µ|′.

This implies that MR is exactly the commutant M ′ of M .

Let us fix a maximal subtree T of G. The embeddings πTq : Mq → M given by T (defined as
in Section 3.2.3) are state-preserving and commute with the modular automorphism groups by
Proposition 6.6. Hence, for every q ∈ V(G) and e ∈ E(G), there are conditional expectations
Eq :M → πq(Mq) and Es

e :M → πs(e)(N
s
e ) such that

{
ϕq ◦ π

−1
q ◦ Eq = ϕ

ϕe ◦ π
−1
s(e) ◦ E

s
e = ϕe

6.4. Universal property and unscrewing process. We can now give a universal property
for the fundamental von Neumann algebra. With this in hand, we will easily get an unscrewing
process. Assume that we have

• For every p ∈ V(G), a Hilbert space Kp and a faithful normal unital ∗-homomorphism
πp : Mp → B(Kp).

• For every e ∈ E(G), a unitary we ∈ B(Kr(e),Ks(e)) such that w∗
e = we and for every

e ∈ E(G) and b ∈ Ne,

weπs(e)(se(b))we = πr(e)(re(b)).

Let L be the σ-weakly closed linear span of πp0(Mp0) and all elements of the form

πs(e1)(a0)we1 . . . wenπr(en)(an)

in B(Kp0), where n > 1, (e1, . . . , en) is a path in G from p0 to p0, ak ∈ Mr(ek), 1 6 k 6 n, and
a0 ∈ Mp0 . Using the relations, we see that L is a von Neumann algebra. We assume moreover
the existence of a faithful normal state ψ ∈ L∗ such that ψ ◦ πp0 = ϕp0 and, for every reduced
pair (w,µ) from p0 to p0 we have,

ψ(πs(e1)(x0)we1 . . . wenπr(en)(xn)) = 0,

where w = (e1, . . . , en) and µ = (x0, . . . , xn).

Proposition 6.8. With the hypothesis and notations above, there exists a unique normal ∗-
isomorphism

π : π1(G, (Mq), (Ne), p0) → L

such that π = πp0 on Mp0 and

π(a0ue1 . . . uenan) = πs(e1)(a0)we1 . . . wenπr(en)(an)

for every reduced operator a0ue1 . . . uenan ∈ π1(G, (Mq), (Ne), p0). Moreover, ϕ = ψ ◦ π.

The proof is the same as the one of Proposition 3.20. Using this and the universal properties
of von Neumann amalgamated free product and von Neumann HNN extensions, we get the
following straightforward von Neumann version of the unscrewing process.

Proposition 6.9. Let (G, (Mq)q, (Ne)e) be a graph of von Neumann algebras. Then, the funda-
mental von Neumann algebra π1(G, (Mq)q, (Ne)e) is isomorphic to an inductive limit of iterations
of amalgamated free products and HNN extensions of vertex algebras amalgamated over edge al-
gebras.
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As an application of the unscrewing process, we prove a permanence property. In the next
statement, R denotes the hyperfinite II1 factor and Rω is an ultraproduct of R.

Corollary 6.10. Let (G, (Mq)q, (Ne)e) be a graph of finite von Neumann algebras.

(1) If all the algebras Ne are amenable, then the reduced fundamental von Neumann algebra
embeds into Rω if and only if all the algebras Mp embed into Rω.

(2) If all the algebras Ne are finite-dimensional, then the fundamental von Neumann algebra
has the Haagerup property if and only if all the algebras Mp have the Haagerup property.

Proof. (1). One implication is obvious. For the other one, observe that since the property of
embeddability in Rω is stable under inductive limits, we may assume that the graph G is finite.
Hence, by induction, it suffices to prove the corollary for amalgamated free products and HNN
extensions. The case of an amalgamated free product was done in [BDJ08]. Moreover, by a result
of Ueda [Ued08], an HNN extension of von Neumann algebras is a corner in an amalgamated
free product of von Neumann algebras. More precisely (see [FV12]), we have

HNN(M,N, θ) ≃ e11 ((M2(C)⊗M) ∗N⊕N (M2(C)⊗N)) e11.

By the result of [BDJ08], (M2(C)⊗M) ∗N⊕N (M2(C)⊗N) is embeddable in Rω whenever N is
amenable and M is embeddable in Rω. This proves (1).

(2). Again, one implication is obvious. For the other implication we see, using the same argu-
ments (inductive limit, induction and reduction of the case of an HNN extension to an amal-
gamated free product), that it is suffices to treat the case of an amalgamated free product of
von Neumanna algebras with the Haagerup property amalgamated over a finite-dimensional von
Neumann algebra. This was done in [Boc93]. �

6.5. Relation with the C*-algebraic construction. Let (G, (Aq, ϕq)q, (Be, ϕe)e) be a graph
of C*-algebras with faithful states and let P (p0) be the reduced fundamental C*-algebra in
p0 ∈ V(G). For e ∈ E(G) (resp. q ∈ V(G)), let Ne (resp. Mq) be the von Neuman algebra
generated by Be (resp. Aq) in the GNS representation of ϕe (resp. ϕq). Since the states are
faithful, we may view Be and Aq as subalgebras of Ne and Mq respectively. We still denote by
ϕe and ϕq the unique normal extension of ϕe and ϕq to states on Ne and Mq respectively.

In the sequel, we do assume that the states ϕe and ϕq are still faithful on Ne and Mq. Since
se : Be → As(e) is state-preserving, it extends uniquely to a normal faithful and unital ∗-
homomorphism, still denoted se, from Ne to Ms(e) which is again state-preserving. Also, because

Es
e : As(e) → Bs

e preserves the state ϕe ◦ s
−1
e on Bs

e (and is faithful because ϕs(e) is), it extends
uniquely to a normal linear map, again denoted Es

e, from Ms(e) to N s
e = se(Ne) which is a

state-preserving conditional expectation, i.e. satisfies

ϕe ◦ s
−1
e ◦ Es

e = ϕs(e).

By Takesaki’s Theorem on conditional expectations [Tak72], it follows that σ
s(e)
t ◦se = se ◦σ

e
t for

all t ∈ R. Hence, we have produced a graph of von Neumann algebras and we denote by M(p0)
its fundamental von Neumann algebra in p0.

Proposition 6.11. Under the above assumptions, the fundamental state on P (p0) is faithful and
M(p0) is isomorphic to the von Neumann algebra generated by P (p0) in the GNS representation
of the fundamental state.
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Proof. Recall that ϕ denote the fundamental state on M(p0) and denote by ψ the one on A(p0).
We use the notations of Proposition 3.24 in which the GNS construction (Hp0,ϕp0

, πp0,ϕp0
, ξp0,ϕp0

)
of the state ψ on P (p0) is studied (see Remark 3.25). Define V : Hp0,ϕp0

→ Hp0,p0 in the following

way: for a ∈ Ap0 we set V (πp0,ϕp0
(a)ξp0,ϕp0

) = aΩ and, for a0u
p0
e1 . . . u

p0
enan ∈ P (p0) a reduced

operator, we set

V (πp0,ϕp0
(a0u

p0
e1
. . . up0enan)ξp0,ϕp0

) = a0ue1 . . . uenanΩ.

It is easy to check, as in the proof of Proposition 3.24, that V is a unitary. Moreover one has
V πp0,ϕp0

(a)V ∗ = a for every a ∈ Ap0 and V (πp0,ϕp0
(a0u

p0
e1 . . . u

p0
enan))V

∗ = a0ue1 . . . uenan for

any reduced operator a0u
p0
e1 . . . u

p0
enan ∈ P (p0). It follows that V

(
πp0,ϕp0

(P (p0))
)′′
V ∗ = M(p0).

Hence, π(x) = V xV ∗ is a ∗-isomorphism between the von Neumann algebra
(
πp0,ϕp0

(A(p0))
)′′

and M(p0) and, by construction, we have ϕ ◦ π ◦ πp0,ϕp0
= ψ. Since we proved that ϕ is faithful

and since the GNS map πp0,ϕp0
is faithful whenever the state ϕp0 on Ap0 is faithful, this proves

that the fundamental state on P (p0) is faithful. �
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