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abstract

In this article we address the first part of the programme presented in [START_REF] Teleman | The Local Index Theorem[END_REF], §2; we construct the local K-theory level of the index formula.

Our construction is sufficiently general to encompass the algebra of pseudo-differential operators of order zero on smooth manifolds, elliptic pseudo-differential operators of order zero, their abstract symbol (see Introduction §2. ) and their local K-theory analytical and topological index classes, see [START_REF] Teleman | The Local Index Theorem[END_REF], §5, Definition 5 and 6. Our definitions are sufficiently general to apply to exact sequences of singular integral operators, which are of interest in the case of the index theorem on Lipschitz and quasi-conformal manifolds, see [START_REF] Teleman | The Index of Signature Operators on Lipschitz Manifolds[END_REF], [START_REF] Teleman | The Index Theorem on Topological Manifolds[END_REF], [START_REF] Donaldson | Quasi-conformal 4-Manifolds[END_REF], [START_REF] Connes | Quasiconformal Mappings, Operators on Hilbert Space and Local Formulae for Characteristic Classes[END_REF].

In this article we introduce localised algebras (Definition 3) A and in §6 we define their local algebraic K-theory.

A localised algebra A is an algebra in which a decreasing filtration by vector sub-spaces A µ is introduced. The filtration A µ induces a filtration on the space of matrices M(A µ ).

Although we define solely K loc * (A) for * = 0, 1, we expect our construction could be extended in higher degrees.

We stress that our construction of K loc 0 (A) uses exclusively idempotent matrices and that the use of finite projective modules is totally avoided. (Idempotent matrices, rather than projective modules, contain less arbitrariness in the description of the K 0 classes and allow a better filtration control).

The group K loc 0 (A) is by definition the quotient space of the space of the Grothendieck completion of the space of idempotent matrices through three equivalence relations: -i) stabilisation ∼ s , -2) local conjugation ∼ l , and -3) projective limit with respect to the filtration.

By definition, the K loc 1 (A) is the projective limit of the local K 1 (A µ ) groups. The group K 1 (A µ ) is by definition the quotient of GL(A µ ) modulo the equivalence relation generated by: -1) stabilisation ∼ s , -2) local conjugation ∼ l and -3) ∼ O(Aµ) , where O(A µ ) is the submodule generated by elements of the form u ⊕ u -1 , for any u ∈ GL(A µ ). The class of any invertible element u modulo conjugation (inner auto-morphisms) we call the Jordan canonical form of u. The local conjugation preserves the local Jordan canonical form of invertible elements. The equivalence relation ∼ O(Aµ) insures existence of opposite elements in K 1 (A µ ) and K loc 1 (A).

Our definition of K loc 1 (A) does not use the commutator sub-group [GL(A), GL(A)] nor elementary matrices in its construction.

We define short exact sequences of localised algebras. To get the corresponding (open) six terms exact sequence (Theorem 51) one has to take the tensor product of the expected six terms exact sequence by Z[ 1 2 ]. We expect the factor Z[ 1 2 ] to have important consequences. Our work shows that the basic relations (onto the stably inner-automorhism classes of invertible elements) which define K 1 reside in the additive sub-group generated by elements of the form u ⊕ u -1 , u ∈ GL(A), rather than in the multiplicativ commutator sub-group [GL(A), GL(A)].

Even into the case of trivially filtered algebras, A µ = A, for all µ ∈ N, the introduced group K loc 1 (A) should provide more information than the classical group K 1 (A).

Introduction

To motivate the next considerations, we make reference to algebras of pseudo-differential operators on smooth manifolds, having in mind the index formula. The index formula is a global statement whose ingredients may be computed by local data. Our leading idea is to localise K-theory and periodic cyclic homology along the lines of the Alexander-Spanier co-homology in such a way that the new tools operate naturally with the Alexander-Spanier co-homology, see [START_REF] Teleman | The Local Index Theorem[END_REF].

This article deals with the first part of our programme. In this article we define localised algebras A and we define and study their local K-theory, K loc i (A), i = 0, 1. The main result of this article is the (open) six terms exact sequence Theorem 51 associated with short exact sequences of local algebras.

To facilitate the understanding of this paper, we say from the very beginning that we intend to formalise the algebraic phenomena behind the following short exact sequence of operator algebras [START_REF] Atiyah | The Index of elliptic operators: I[END_REF] 0

-→ Ψ -1 ι -→ Ψ 0 π -→ Ψ 0 /Ψ -1 -→ 0,
where Ψ 0 is the algebra of pseudo-differential operators whose pseudo-differential symbol is homogeneous of order ≤ 0 and Ψ -1 is the bi-lateral ideal of pseudo-differential operators whose symbol is homogeneous order ≤ -1, on the smooth manifold M , see [START_REF] Atiyah | The Index of elliptic operators: I[END_REF], §5. Any such operator A has a Schwartz distributional kernel on M × M . This is a singular integral operator. Cutting its distributional kernel by a smooth function λ, which has small support about the diagonal in M × M and is identically 1 on a small neighbourhood of the diagonal, does not modify its symbol σ(A) and modifies the original operator by a smoothing operator, i.e. by an pseudo-differential operator of order -∞; smoothing operators are contained in the ideal Ψ -1 . In other words, any pseudo-differential operator of order zero has, modulo operators of order -∞, a representative with the same symbol and whose support is arbitrarily small. The image through π of a pseudo-differential operators A into Ψ 0 /Ψ -1 is called the abstract symbol of the operator A and denoted by σ(A); the passage from A to its abstract symbol σ(A) is a ring homomorphism

(2) π : Ψ 0 π -→ Ψ 0 /Ψ -1 .
We may introduce a Riemannian metric on M and measure the size of the supports of pseudo-differential (integral) operators on M . They satisfy the property

(3) Int(r) • Int(s) ⊂ Int(r + s),
where Int(r) denotes integral operators with support in an r-neighbourhood of the diagonal in M × M . These entitle us to speak about the support of pseudo-differential operators. The support consideration leads to the possibility to introduce a filtration on the algebra of pseudodifferential operators. The property (3) justifies Definition 3 of localised algebras.

As said before, in this paper we define local algebraic K-theory. Here, for the index formula sake, we resume ourselves to define K loc i , i = 0, 1, although, we do not exclude the extension of the constructions beyond these degrees.

Next, we discuss our construction of local K groups, K loc i (A), i = 0, 1, for localised algebras A.

With regard to the construction of K 0 -theory groups, we mention that one or more of the following structures are used in the literature (in the pure algebraic context, Banach algebras or C * -algebras), see [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF], [START_REF] Karoubi | An elementary introduction[END_REF], [17] [16], [START_REF] Blackadar | K-Theory for Operator Algebras[END_REF], [START_REF] Weibel | Algebraic K-Theory[END_REF]: finite projective modules, idempotents and various equivalence relations: Murray-von Neumann equivalence, unitary equivalence, continuous homotopy equivalence, elementary matrix operations.

In the literature K 0 (A) is built on finite projective modules P over the algebra A or idempotents p belonging to the matrix algebra M n (A). The two descriptions are equivalent, but it is important to acknowledge the difference between them.

Our construction of K loc 0 uses exclusively idempotent matrices. There are a few reasons why we chose to avoid projective modules: -i) projective modules, in comparison with idempotent matrices, contain more arbitrariness in describing K 0 classes and -ii) matrices are more suitable for controlling the algebra filtration data. Matrices are more prone to make calculations.

No reference to projective modules is used in our constructions. Regarding our construction of K loc 1 we recall that the classical algebraic K-theory group K 1 (A) of the unitary algebra A, see [START_REF] Whitehead | Simple Homotopy Types[END_REF], [START_REF] Bass | K-theory and stable algebra[END_REF], [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF], [START_REF] Karoubi | An elementary introduction[END_REF], is by definition the Whitehead group

K 1 (A) := GL(A)/[GL(A), GL(A)],
where [GL(A), GL(A)] is the commutator normal sub-group of the group of invertible matrices GL(A). Our definition of local K-theory groups needs to keep track of the number of multiplications performed inside the algebra A. In order for our constructions to hold it is necessary to use constructions which use a bounded number of multiplications. Unfortunately, in general, the number of multiplications needed to generate the whole commutator sub-group is not bounded. It is known that the commutator sub-group is also generated by the elementary matrices. This is the reason why our definition of K loc 1 (A) avoids entirely factorising GL(A) through the commutator sub-group or the sub-group generated by elementary matrices.

K loc 0 (A), resp. K loc 0 (A), is by definition the Grothendieck completion of the semi-group of idempotent matrices in M n (A µ ) modulo three equivalence relations: -i) stabilisation, -ii) local conjugation ∼ l by invertible elements u ∈ GL n (A µ ) and -iii) projective limits with respect to µ ∈ N (Alexander-Spanier type limit).

To understand the relation between our definition of the group K loc 1 and K 1 , recall first the definition of the commutator sub-group [GL(A, GL(A]; it is generated by all multiplicative commutators

[A, B] := ABA -1 B -1 , f or any A, B ∈ GL n (A).
Supposing that A and B are conjugated, i.e. A = U BU -1 , and we write A ∼ B, we have

A = U BU -1 = U BU -1 B -1 B = [U, B]B.
This shows that if A and B are conjugated, they differ, multiplicatively, by a commutator. To complete this remark, we say that A and B are locally conjugated and write A ∼ l B provided A, B and U belong to some GL n (A µ ); here, A µ denote the terms of the filtration of A.

It is important to note that in the particular case A = C the quotient of GL(M(C)) through the commutator sub-group gives much less information than K loc 1 (M(C)), which is obtained as the quotient of the same space through the action of the inner auto-morphism group; in this last case one obtains a quotient of the set of conjugacy classes, i.e. the space of Jordan canonical forms of invertible matrices, modulo permutations of Jordan cells.

The main result of this article is the open the six terms exact sequence associated to short exact sequence, Theorem 51. We note, however, that given the higher amount of information kept by the local algebraic K * groups we are defining here, exactness of the six terms sequence requires tensorising the expected six terms sequence by Z[ 1 2 ]. This phenomenon is related to the difficulty of lifting elements of the form u ⊕ u -1 over the quotient algebra A/A ′ to elements of the same form over the algebra A. The presence of the factor Z[ 1 2 ] should have important consequences.

Generalities and Notation.

Let A be a complex algebra, with or without unit. If the unit will be needed, the unit will be adjoined. Definition 1. Given the algebra A we denote by M n (A) the space of n × n matrices with entries in A. M n (A) is a bi-lateral A-module.

Let Idemp n ⊂ M n (A) be the subset of idempotents p (p 2 = p) of size n with entries in A.

Suppose A has a unit. We denote by GL n (A) the sub-space of matrices M of size n, with entries in A which are invertible, i.e. there exists the matrix

M -1 ∈ M n (A) such that M M -1 = M -1 M = 1. GL n (A) is a non-commutative group under multiplication. Definition 2. The inclusions -i) Idemp n (A) -→ Idemp n+1 (A) (4) p → p 0 0 0 -ii) GL n (A) -→ GL n+1 (A) (5) M → M 0 0 1 are called stabilisations.
Stabilisations define two direct systems with respect to n ∈ N.

Localised Algebras

Definition 3. Localised Algebras. Let A be an unital complex associative algebra with unit 1. The algebra A is called localised algebra provided it is endowed with an additional structure satisfying the axioms (1) -( 4) below.

Axiom 1. The underlying vector space A has a decreasing filtration by vector sub-spaces

{A µ } n∈N ⊂ A. Axiom 2. ∪ µ∈N A µ = A Axiom 3. C.1 ⊂ A µ , f or any µ ∈ N Axiom 4. For any µ, µ ′ ∈ N + , A µ . A µ ′ ⊂ A Min(µ,µ ′ )-1 (A 0 . A 0 ⊂ A 0 ).
Remark 4. An algebra A could have different localisations.

Definition 5. Homomorphisms of localised algebras. Induced homomorphism. -i) A homomorphism from the localised algebra A = {A n } n∈N to the localised algebra B = {B µ } µ∈N is an algebra homomorphism φ : A -→ B such that φ : A n -→ B µ , for any µ ∈ N.

-ii) Let f : A -→ B be a localised algebra homomorphism. Let f * : M n (A µ ) -→ M n (B µ ) be the induced homomorphism which replaces any component a ij of the matrix M with the component f (a ij ) of the matrix f * (M ). Remark 6. The notion of localised algebra differs from the notion of m-algebras defined by Cuntz [START_REF] Cuntz | Cyclic Theory, Bivariant K-theory and the Bivariant Chern-Connes Character[END_REF], in many respects. The sub-spaces A n are not required to be algebras, or even more, topological algebras. In the Cuntz' definition of localised Banach algebras, the projective limit of these sub-algebras might be the zero Banach algebra. However, even in these cases, the corresponding local K-theory could not be trivial.

Remark 7. The immediate application of this theory regards pseudo-differential operators. The pseudo-differential operators of non-positive order on a compact smooth manifold form a localised (Banach) algebra. The filtration is defined in terms of the support of the operators; the bigger the filtration order is, the smaller the supports of the operators are towards the diagonal.

Mayer-Vietoris Diagrams.

In this section we adapt Milnor's [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF] construction of the first two algebraic K-theory groups to the case of localised rings.

Let Λ, Λ 1 , Λ 2 and Λ ′ be rings with unit 1 and let

(6) Λ i 1 ----→ Λ 1   i 2   j 1 Λ 2 j 2
----→ Λ ′ be a commutative diagram of ring homomrphisms. All ring homomorphisms f are assumed to satisfy f (1) = 1. Any module in this paper is a left module.

We assume the diagram satisfies the three conditions below. Hypothesis 1. All rings and ring homomorphisms are localised, see §3. Hypothesis 2. Λ is a localised product of Λ 1 and Λ 2 , i.e. for any pair of elements

λ 1 ∈ Λ 1,µ and λ 2 ∈ Λ 2,µ such that j 1 (λ 1,µ ) = j 2 (λ 2,µ ) = λ ′ ∈ Λ ′ µ , there exists only one element λ n ∈ Λ µ such that i 1 (λ µ ) = λ 1,µ and i 2 (λ µ ) = λ 2,µ .
The ring structure in Λ is defined by

(7) (λ 1 , λ 2 ) + (λ ′ 1 , λ ′ 2 ) := (λ 1 + λ ′ 1 , λ 2 + λ ′ 2 ), (λ 1 , λ 2 ).(λ ′ 1 , λ ′ 2 ) := (λ 1 .λ ′ 1 , λ 2 .λ ′
2 ), i.e. the ring operations in Λ are performed component-wise. In §and §we will need to operate with matrices with entries in Λ.

Hypothesis 3. At least one of the homomorphisms j 1 and j 2 is surjective. Hypothesis 4. (Optional) For applications to the Index Theorem, see [START_REF] Teleman | The Local Index Theorem[END_REF], as the symbol is already local, we are allowed to assume, if needed, that Λ ′ is localised trivially, i.e. that Λ ′ µ = Λ ′ for any µ ∈ N. Hypothesis 4 is not used in this article. [START_REF] Connes | Quasiconformal Mappings, Operators on Hilbert Space and Local Formulae for Characteristic Classes[END_REF] induce onto the space of double matrices, (resp. the space M(Λ 1 ) × M(Λ 2 )) the following relations

Remark 8. -i) Any matrix M ∈ M n (Λ) consists of a pair of matrices (M 1 , M 2 ) ∈ M n (Λ 1 )× M n (Λ 2 ) subject to the condition j 1, * M 1 = j 2, * M 2 . Any matrix M ∈ M n (Λ) is called double matrix. -ii) if (M 1 , M 2 ), (N 1 , N 2 ) are double matrices, (resp. belong to M(Λ 1 ) × M(Λ 2 )) and (λ 1 , λ 2 ) ∈ Λ, (resp. (λ 1 , λ 2 ) ∈ Λ 1 × Λ 2 ) then relations
(λ 1 , λ 2 ) (M 1 , M 2 ) = (λ 1 M 1 , λ 2 M 2 ) (M 1 , M 2 ) + (N 1 , N 2 ) = (M 1 + N 1 , M 2 + N 2 ) (M 1 , M 2 ) . (N 1 , N 2 ) = (M 1 . N 1 , M 2 . N 2 )
Definition 9. A commutative diagram satisfying Hypotheses 1. 2. 3. will be called localised Mayer-Vietoris diagram.

6. K loc 0 (A µ ) and K loc 0 (A) . Definition 10. We assume the algebra A is localised, see §4.

We consider the space of matrices with entries in A µ and we denote it by M n (A µ ). Let Idemp n (A µ ) denote the space of idempotent matrices of size n with entries in A µ . Let GL n (A µ ) denote the space of invertible matrices M of size n with the property that the entries of both M and M -1 belong to A µ .

Let

Idemp(A µ ) := inj lim n Idemp n (A µ ). Let GL(A µ ) := inj lim n GL n (A µ ).
Definition 11. -i) Two matrices s, t ∈ M n (A) will be called conjugated and we write s ∼ t provided there exists u ∈ GL n (A) such that s = utu -1 .

-ii) Two matrices s, t ∈ M n (A µ ) will be called locally conjugated and we write s ∼ l t provided there exists u ∈ GL n (A µ ) such that s = utu -1 .

In particular, -ii.1) two idempotents p, q ∈ Idemp n (A µ ) are locally isomorphic and we write p ∼ l q provided there exists u ∈ GL n (A µ ) such that q = u p u -1 and -ii.2) two invertible matrices s, t ∈ GL n (A µ ) are locally conjugated and we write s ∼ l t provided there exists u ∈ GL n (A µ ) such that s = utu -1 .

Proposition 12. Idemp n (A µ ) and GL n (A µ ) are semigroups with respect to the direct sum

A + B := A 0 0 B (8)
The spaces Idemp n (A µ ), GL n (A µ ) are compatible with stabilisations. The direct sum addition of idempotents, resp. invertibles, is compatible with the local conjugation equivalence relation. Indeed, if s 1 , s 2 are conjugated through an inner automorphism defined by the element u 1 (s 1 ∼ l s 2 ) and t 1 , t 2 are conjugated through an inner auto-morphism defined by the element

u 2 (t 1 ∼ l t 2 ), then (s 1 +t 1 ) ∼ l (s 2 +t 2 ) are conjugated through the inner auto-morphism u 1 ⊕ u 2 .
With this observation, the associativity of the addition is now immediate. These show that Idemp(A µ ) / ∼ l , resp. GL(A µ ) / ∼ l , is an associative semi-group.

Proposition 13. The semi-groups

Idemp(A µ ) / ∼ l , GL(A µ ) / ∼ l are commutative.
Proof. The result follows from the following identity valid for any two matrices

A, B ∈ M n (A µ ) (9) A 0 0 B = 0 -1 1 0 B 0 0 A 0 1 -1 0 = 0 -1 1 0 B 0 0 A 0 -1 1 0 -1 , which tells that (A + B) ∼ l (B + A).
For more information about the relationship between the classical algebraic K-theory and the local K-theory, see §9.

6.1. K 0 (A µ ) and K loc 0 (A). Definition 14. Suppose A is a localised unital associative algebra. We define

(10) K 0 (A µ ) = inj lim n∈N Image : G (Idemp n (A µ ) / ∼ l ) -→ G (Idemp n (A µ+2 ) / ∼ l ),
where G means Grothendieck completion, and

K loc 0 (A) = proj lim µ∈N K 0 (A µ ). (11) 
The loss of two filtration orders on the formula [START_REF] Hirzebruch | Neue topologische Methoden in der algebraischen Geometrie[END_REF] are needed to insure that ∼ l behalves transitively in the co-domain.

Any local inner automorphism induces the identity on K loc 0 (A).

6.2. K 1 (A µ ) and K loc 1 (A). In this sub-section [u] ∼ sl denotes the class of the element u ∈ GL(A µ ) with respect to the equivalence relation generated by stabilisation and local conjugation ∼ l .

We call [u] ∼ sl the abstract Jordan canonical form of the invertible element u. The K 1 (A µ ) we are going to define preserves the information provided by the abstract Jordan form. The classical definition of K 1 extracts a minimal part of the abstract Jordan form. As the addition in the semi-group GL(A) is given by direct sum and the Jordan canonical form J(u) (at least in the classical case of the algebra GL n (R)) behaves additively ( J(u ⊕ v) = J(u) ⊕ J(V ) modulo permutations of the Jordan blocks ), given an arbitrary element u ∈ GL(A), it is not reasonable to expect existence of an element ũ such that [u + ũ] ∼ sl = [1 2n ] ∼ sl . Given that we want to define K 1 (A µ ) as a group, we introduce the group structure (opposite elements) forcibly. In the case of the classical K 1 , the class of the element u -1 represents the opposite class, -[u] ∈ K 1 (A). We intend produce a theory in which this

relation is preserved. Note that if u 1 ∼ sl u 2 , then u -1 1 ∼ sl u -1 2 .
As said above, we would like the class of the element u -1 to represent the opposite class, i.e. to think of u + u -1 ∼ sl I 2n as representing the zero class. This need, along with other related facts, see Theorem 40.-i), proof of Theorem 27 and Theorem 35, lead us to concentrate our attention onto the space of matrices of the form u + u -1 and based on it to introduce a new equivalence relation. Definition 15. We define, for any u ∈ GL n (A µ ) [START_REF] Karoubi | An elementary introduction[END_REF] O(u)

:= u 0 0 u -1 ∈ GL 2n (A µ ). Definition 16. Let (13) O 2n (A µ ) := {[O(u)] | u ∈ GL n (A µ )} and (14) O(A µ ) := inj lim µ∈N O 2n (A µ ){[O(u)] | u ∈ GL n (A µ )}
Next we analyse the properties of this space.

Proposition 17. -i) The space O(A µ ) is a commutative semi-group with zero element, given by the identity -ii) the mapping

(15) O : GL(A µ ) -→ O(A µ )
is additive and commutes with local conjugation

(16) O(u 1 + u 2 ) = O(u 1 ) + O(u 2 ) (17) O(λ u λ -1 ) = λ O(u) λ -1 , λ ∈ GL(A µ ), i.e. if u 1 ∼ sl u 2 then O(u 1 ) ∼ sl O(u 2 ) -iii) (18) O(u -1 ) ∼ sl O(u).
-iv)

(19) O(u 1 u 2 ) = O(u 1 )O(u 2 ), Proposition 18. O(A µ )/ ∼ sl is a sub semi-group with zero element in the commutative semi-group GL(A µ )/ ∼ sl .
Proof. According to Proposition 13, GL(A µ )/ ∼ l is a commutative semi-group; the addition in this semi-group is given by the direct sum.

Proposition 18 shows that O(A µ ) is closed under addition and that it has zero element.

Definition 19. Define (20) K 1 (A µ ) := Image : [(GL(A µ )/ ∼ sl )/( O(A µ )/ ∼ sl ) -→ (GL(A µ+2 )/ ∼ sl )/( O(A µ+2 )/ ∼ sl )].
The loss of two filtration orders in the formula [START_REF] Teleman | The Index of Signature Operators on Lipschitz Manifolds[END_REF] are needed to insure that the the relation ∼ sl behalves transitively in the co-domain.

The next definition explains the meaning of the two quotients in the formula (20) by introducing a new equivalence relation ∼ Oµ . Definition 20. We say that two elements u 1 , u 2 ∈ GL(A µ ) are equivalent modulo the sub semi-group O(A µ )/ ∼ sl (and write u 1 ∼ Oµ u 2 ) provided there exist two elements

ξ 1 , ξ 2 ∈ O(A µ ) such that u 1 + ξ 1 = u 2 + ξ 2 .
Remark 21. Let us denote by J(u) the equivalent class of the invertible matrix u ∈ GL n (A µ ) with respect to the local conjugation equivalence relation ∼ l . Given that the pair (u, u -1 ) is a direct sum of matrices and that the Jordan canonical form J acts separately onto the two components, the relation ∼ Oµ kills all pairs of abstract Jordan canonical forms (J(u), J(u -1 )), for any u ∈ GL(A µ ).

Note that the two components of the pair (u, u -1 ) determine one each other.

Proposition 22. -i) ∼ Oµ is an equivalence relation. Any local inner auto-morphism induces the identity on

K loc 1 (A). -ii) If ξ ∈ O 2n (A µ ) then ξ ∼ O 1 2n , i.e. ξ represents the zero element in K 1 (A µ ). Proof. -i) ∼ Oµ is reflexive. Indeed, if u ∈ GL n (A µ ) and because 1 n ∈ O n (A µ ), one has u + 1 n = u + 1 n ∈ GL 2n (A µ ). ∼ Oµ is symmetric: if u 1 + ξ 1 = u 2 + ξ 2 , then u 2 + ξ 2 = u 1 + ξ 1 .
The transitivity is clear. If

u 1 + ξ 1 = u 2 + ξ 2 and u 2 + ξ2 = u 3 + ξ 3 then u 1 + (ξ 1 + ξ2 ) = u 2 + ξ 2 + ξ2 = u 3 + (ξ 2 + ξ 3 ).
-ii) For any element ξ ∈ O(A µ ), the element 1 n belongs already to O(A µ ) and then one gets [START_REF] Teleman | The Index Theorem on Topological Manifolds[END_REF] ξ + 1 n = 1 n + ξ, which shows that ξ ∼ Oµ 1 n , i.e. ξ represents the zero element in K 1 (A µ ).

Proposition 23. -i) The equivalence relation ∼ Oµ is compatible with the semi-group structure: for any u 1 , u 2 ∈ GL(A)

(22) [u 1 + u 2 ] = [u 1 ] + [u 2 ] ∈ K 1 (A µ ) -ii) K 1 (A µ ) is a (commutative) group; for any u ∈ GL(A µ ) (23) -[u] = [u -1 ] ∈ K 1 (A µ ).
-iii) K 1 (A µ ) and K loc 1 (A) consist of equivalence classes of invertible elements; the elements of this group are not virtual elements (as in the Grothendieck completion case).

-iv

) Let u 1 , u 2 ∈ GL(A µ ) such that [u 1 ] = [u 2 ] ∈ K 1 (A µ ). Then there exist two elements ξ 1 , ξ 2 ∈ O(A µ ) and u ∈ GL(A µ ) such that (24) u 1 + ξ 1 = u (u 2 + ξ 2 ) u -1 ∈ GL(A µ ) Proof. -i) Suppose u 1 ∼ Oµ u ′ 1 and u 2 ∼ Oµ u ′ 2 .
This means there exist four elements

ξ 1 , ξ ′ 1 , ξ 2 , ξ ′ 2 ∈ O µ such that (25) u 1 + ξ 1 = u ′ 1 + ξ ′ 1 , u 2 + ξ 2 = u ′ 2 + ξ ′ 2
, which give by addition [START_REF] Weibel | Algebraic K-Theory[END_REF] (

u 1 + u 2 ) + (ξ 1 + ξ 2 ) = (u ′ 1 + u ′ 2 ) + (ξ ′ 1 + ξ ′ 2 ), i.e. ( 27 
) (u 1 + u 2 ) ∼ Oµ (u ′ 1 + u ′ 2 )) -ii) Let u ∈ GL(A µ ). Then (u + u -1 ) + 1 2n = 1 2n + (u ⊕ u -1
). In other words, [START_REF] Wegge-Olsen | K-Theory and C * -Algebras[END_REF] [u + u

-1 ] = [u] + [u -1 ] ∼ Oµ 1 2n ∼ Oµ 0 ∈ K 1 (A µ ).
-iii) It is clear.

-iv) Once the factorisation through the semi-group O(A µ ) is used to define K 1 (A µ ), it remains to involve the equivalence relation ∼ l (note ∼ l and ∼ s commute).

Remark 24. The factorisation used in the formula [START_REF] Teleman | The Index of Signature Operators on Lipschitz Manifolds[END_REF] for the definition of K 1 is weaker than the factorisation used in the classical definition of the K 1 -theory group. In fact, the identity ( 23) is equivalent to the factorisation [START_REF] Teleman | The Index of Signature Operators on Lipschitz Manifolds[END_REF]; on the other side, formula [START_REF] Teleman | Local Hochschild Homology of Hilbert-Schmidt Operators on Simplicial Spaces[END_REF] holds in the classical K-theory, see e.g. [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF].

We may be more explicit on this point. In the classical definition

(29) K 1 (A) := GL(A)/[GL(A), GL(A)].
On the other side, the following identity holds

(30) A 0 0 B = AB 0 0 1 B -1 0 0 B ,
which shows that multiplicatively, modulo elements of the form O(B) (which belong to the commutator sub-group O(A)), one has

(31) [A + B] = [AB] ∈ K 1 (A).
Proposition 25.

-i) The relation [START_REF] Teleman | Local Hochschild Homology of Hilbert-Schmidt Operators on Simplicial Spaces[END_REF] holds in K 1 (A µ ) and K loc 1 (A).

-ii) The local algebraic K i (A µ ) and K i (A loc ) groups are Morita invariant.

Proof. The projective limit with respect to µ assures the formula (23) remains valid in K loc 1 (A).

7. Induced homomorphisms.

Definition 26. Let f : A -→ B be a localised algebra homomorphism.

Then the homomorphism f * (see Definition 5) induces homomorphisms

(32) f * : K 0 (A µ ) -→ K 0 (B µ ), f * : K loc 0 (A) -→ K loc 0 (B ) and 
(33) f * : K 0 (A µ ) -→ K 0 (B µ ), f * : K loc 1 (A) -→ K loc 1 (B )
8. Constructing idempotents and invertible matrices over Λ µ .

We come back to the situation presented in §5 -Mayer-Vietoris diagrams.

8.1. Constructing idempotents over Λ µ .

Theorem 27. Definition. Suppose p 1 ∈ Idemp n (Λ 1,µ ), resp. p 2 ∈ Idemp n (Λ 2,µ ), is an idempotent matrix with entries in Λ 1,µ , resp. Λ 2,µ , such that

(34) j 1 * (p 1 ) = u j 2 * (p 2 ) u -1 ,
where u ∈ GL n (Λ ′ µ ) is an invertible matrix. -i) Then there exists an idempotent double matrix p ∈ Idemp 2n (Λ µ ) such that

(35) i 1 * (p) = p 1 ⊕ 0 n and i 2 * (p) = p2
where the idempotent p2

∈ M 2n (Λ 2,µ ) is conjugated to p 2 ⊕ 0 n through an invertible matrix Ũ ∈ GL 2n (Λ 2,µ ), that is p2 = Ũ p 2 Ũ -1 . The corresponding double matrix idempotent p is denoted p = (p 1 , p 2 , u). -ii) (36) j 2, * p2 = (u j 2, * (p 2 ) u -1 ) ⊕ 0 n = j 1, * (p 1 ⊕ 0 n ) -iii) Any idempotent matrix p ∈ M 2n (Λ µ
) is conjugated through a localised inner automorphism defined by a matrix U ∈ GL 2n (Λ µ ) to an idempotent matrix of the form p = (p 1 , p 2 , u) defined by -i).

Condition (34) says that [j 1 * p 1 ] = [j * p 2 ] ∈ K 0 (Λ ′ µ ). Part -i) says that the pair ([p 1 ], [p 2 ]) ∈ K 0 (Λ 1 ) ⊕ K 0 (Λ 2 )
belongs to the image of (i 1 * , i 2 * ). This property is part of the proof of Theorem 51.-i) on exactness.

Proof. All considerations made to prove this theorem will be performed onto objects related to Λ 2,µ .

Lemma 28. Let p 1 = (a ij ) ∈ Idemp n (Λ 1,µ ) and p 2 = (b ij ) ∈ Idemp n (Λ 2,µ ) be idempotents.
Suppose the idempotents j 1 * (p 1 ), j 2 * (p 2 ) are conjugate through an inner automorphism defined by u ∈ GL n (Λ ′ µ ), i.e. (37)

j 1 * (p 1 ) = u j 2 * (p 2 ) u -1 .
Assume, additionally, that the invertible element u lifts to an invertible element ũ ∈ GL n (Λ 2,µ ) (i.e. j 2 * ũ = u).

Then p = (p 1 , p ′ 2 , u) ∈ Idemp n (Λµ)
is an idempotent given by the double matrix

(38) p = ((a ij , c ij )), where (39) 
(a ij ) = p 1 ∈ Idemp n (Λ 1,µ ) and p ′ 2 = (c ij ) := ũ p 2 ũ-1 ∈ Idemp n (Λ 2,µ ).
Remark that in this lemma the size of the double matrix p does not change.

Proof of Lemma 28. We use Remark 8.-ii). It is clear that the matrix p given by (38), (39) is an idempotent. In fact, to evaluate p 2 amounts to compute separately the square of the first and second component matrices of the matrix p, i.e. the squares of (a ij ) and (c ij ). These are

(40) (a ij ) 2 = (a ij ) and (c ij ) 2 = ( ũ p 2 ũ-1 ) 2 = ũ p 2 2 ũ-1 = ũ p 2 ũ-1 = (c ij ).
It remains to verify that p ∈ M n (Λ µ ), i.e. j 1 * (a ij ) = j 2 * (c ij ). This follows from (40) combined with (37) (41)

j 1 * (p 1 ) = u j 2 * (p 2 ) u -1 = j 2 * (ũ p 2 ũ-1 ) = j 2 * (p 2 ).
This ends the proof of Lemma 28.

Lemma 29. Let p 1 = (a ij ) ∈ Idemp n (Λ 1,µ ) and p 2 = (b ij ) ∈ Idemp n (Λ 2,µ ) be idempotents.
Suppose the idempotents j 1 * (p 1 ), j 2 * (p 2 ) are conjugate through an inner automorphism defined by u ∈ GL n (Λ ′ µ ), i.e. (42)

j 1 * (p 1 ) = u j 2 * (p 2 ) u -1 . Then -i) j 1 * (p 1 ⊕ 0 n ) and j 2 * (p 2 ⊕ 0 n ) are conjugated by U := u ⊕ u -1 ∈ GL 2n (Λ ′ µ ), i.e. (43) j 1 * (p 1 ) ⊕ 0 n = j 1 * (p 1 ⊕ 0 n ) = U j 2 * (p 2 ⊕ 0 n ) U -1 = ( u j 2 * (p 2 ) u -1 ) ⊕ 0 n .
-ii) Supposing that j 2 is surjective, the invertible matrix U lifts to an invertible matrix

Ũ ∈ M 2n,µ (Λ 2 ). Let (44) p2 := Ũ p 2 Ũ -1 .
Then

j 1, * (p 1 ⊕ 0 n ) = (u j 2, * (p 2 ) u -1 ) ⊕ 0 n = j 2, * (p 2 ); (45) 
i.e. the matrices p 1 ⊕ 0 n , p2 form a double matrix idempotent in Idemp 2n (Λ µ ), denoted p := (p 1 , p 2 , u) ∈ Idemp 2n (Λ µ ) and

(46) (i 1 * , i 2 * )p = (p 1 , p2 ) -iii) The pair of idempotents p 1 ∈ Idemp n (Λ 1,µ ), p 2 ∈ Idemp n (Λ 2,µ
) is stably equivalent to the pair of idempotents p 1 ⊕ 0 n , p 2 ⊕ 0 n and p 2 ⊕ 0 n ∼ l p2 . In other words

(47) ([p 1 ], [p 2 ]) = ([p 1 ], [p 2 ]) ∈ K 0 (Λ 1,µ ) ⊕ K 0 (Λ 2 , µ).
Note that in this lemma, in comparison with the preceding Lemma 28, the size of the desired idempotent doubles; otherwise, the important modifications still occur onto matrices associated with Λ 2,µ .

Proof of Lemma 29 . Part -i) is clear. The proof of -ii) uses O 2n (u), where u ∈ GL n (A µ ), Definition 15. The next formula provides a decomposition of O 2n (u) in a product of elementary matrices and a scalar matrix

(48) U := O 2n (u) = u 0 0 u -1 = 1 u 0 1 1 0 -u -1 1 1 u 0 1 0 -1 1 0 ∈ M 2n (Λ 2,µ ).
To complete the proof we need to show that the invertible matrix U has an invertible lifting Ũ ∈ Λ 2,µ . This follows from the properties of elementary matrices, discussed next.

Definition 30. Elementary Matrices.

A matrix E ij (a) ∈ GL n (A µ ) having all entries equal to zero, except for the diagonal entries equal to 1 and just one (i, j)-entry a ∈ A µ , 0 ≤ i = j ≤ n is called elementary matrix with entry in A µ .

The space of elementary matrices with entries in A µ is by definition

(49) E n (A µ ) := {E ij (a) | 1 ≤ i = j ≤ n, a ∈ A µ }.
Let E n (A) the sub-group generated by all elementary matrices and (50)

E(A) := inj lim n∈N E n (A).
Lemma 31. The elementary matrices satisfy

(51) E i,j (a).E i,j (b) = E i,j (a + b) (52) E i,j (a) -1 = E i,j (-a),
therefore E i,j (a) ∈ GL(A µ ), Any elementary matrix is a commutator

(53) E ij (A) = [E ik (A), E kj (1) 
], f or any i, j, k distinct indices.

We come back to the proof of Lemma 29. -ii). As j 2 is surjective, each of the entries of factors of the RHS of (48) has a lifting in M 2n (Λ 2µ ) so as each of the elementary matrix factor lifts as an invertible elementary matrix. The last factor lifts as it is. Therefore, U has an invertible lifting Ũ ∈ GL 2n (Λ 2,µ ). Lemma 28 completes the proof of Lemma 29. -ii).

Lemma 29. -iii) follows from the definition of K loc 0 (Λ). This completes the proof of Lemma 29.

Theorem 27 follows from Lemma 28 combined with Lemma 29.

Theorem 27 refers to the construction and description of idempotents over Λ µ . We need to extend Theorem 27 to elements of K loc 0 (A), i.e. to formal differences of local idempotents. A new difficulty occurs. This has to do with the ambiguity involved in the Grothendieck construction; without special precautions, we would have to lift idempotents over Λ ′ µ to idempotents over Λ 2,µ which, in general, could not be done. Now we proceed.

Lemma 32. (compare [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF] Lemma 1.1)

Let p 1 , p 2 q 1 , q 2 ∈ Idemp n (A µ ) be idempotents and let [ ] denote their K 0 (A µ ) class. Suppose

(54) [p 1 ] -[p 2 ] = [q 1 ] -[q 2 ] ∈ K 0 (A µ ).
Then p 1 + q 2 and p 2 + q 1 are local stably isomorphic, p 1 + q 2 ∼ ls p 2 + q 1 .

Proof. As said above, the description of K 0 (A µ ) classes in terms of generators (idempotents) contains an ambiguity due to the Grothendieck completion construction and stabilisation. The Grothendieck completion implies that there exists an idempotent s ∈ Idemp m (A µ ) such that the idempotents p 1 + q 2 + s, p 2 + q 1 + s are local stably isomorphic. We assume that the idempotent s is already sufficiently stabilised. This means there exists an invertible matrix u ∈ GL 2n+m (A µ ) such that

p 1 + q 2 + s, = u (p 2 + q 1 + s) u -1 .
We add to both sides of this equality the idempotent 1 m -s and we extend u to be the identity on the last summand. We get

p 1 + q 2 + s + (1 -s), = u (p 2 + q 1 + s + (1 -s)) u -1 .
From this we get further

p 1 + q 2 + 1 2m , = u (p 2 + q 1 + 1 2m ) u -1 ,
that is, the idempotents p 1 + q 2 , p 2 + q 1 are local stably isomorphic

p 1 + q 2 ∼ sl p 2 + q 1 .
Lemma 33. Let p, q ∈ Idemp n (A µ ) be idempotents. Suppose

(55) [p] -[1 n ] = [q] -[1 n ] ∈ K 0 (A µ ).
Then -i) p and q are local stably isomorphic, p ∼ ls q, -ii) exists an N ∈ N and an u ∈ GL n+N (A µ ) such that

(56) p + 1 N = u q u -1 + 1 N = u (q + 1 N ) u -1 .
Proof. -i) Lemma 32 says that the idempotents p + 1 n , q + 1 n are local stably isomorphic. This means that the idempotents p and q are local stably isomorphic. Part -ii) describes this.

Theorem 34. Let p ij be idempotents

[p 1 ] = [p 11 ] -[p 12 ] ∈ K 0 (Λ 1,µ ) [p 2 ] = [p 21 ] -[p 22 ] ∈ K 0 (Λ 2,µ ) with the property that j 1 * [p 1 ] = j 2 * [p 2 ] ∈ K 0 (Λ ′ µ ). Then there exists [p] = [p 01 ] -[p 02 ] ∈ K 0 (Λ µ ) with the property that i 1 * [p] = [p 1 ] and i 2 * [p] = [p 2 ].
Proof. We may describe the two K-theory classes differently

[p 1 ] = [p 11 ] -[p 12 ] = [p 11 + (1 -p 12 )] -[p 12 + (1 -p 12 )] = [p ′ 12 ] -[1 n ] ∈ K 0 (Λ 1,µ ) and [p 2 ] = [p 21 ] -[p 22 ] = [p 21 + (1 -p 22 )] -[p 22 + (1 -p 22 )] = [p ′ 22 ] -[1 n ] ∈ K 0 (Λ 2,µ ). Then j 1 * [p 1 ] = j 1 * ([p ′ 12 ] -[1 n ]) = (j 1 * [p ′ 12 ]) -[1 n ] and j 2 * [p 2 ] = j 2 * ([p ′ 22 ] -[1 n ]) = (j 2 * [p ′ 22 ]) -[1 n ]. The hypothesis says that (j 1 * [p ′ 12 ]) -[1 n ] = (j 2 * [p ′ 22 ]) -[1 n ].
Lemma 33 says that the idempotents j 1 * [p Theorem 35. Definition. Suppose s 1 ∈ GL n (Λ 1,µ ), resp. s 2 ∈ GL n (Λ 2,µ ), are invertible matrices with entries in Λ 1,µ , resp. Λ 2,µ , such that

(58) j 1 * (u 1 ) = u j 2 * (u 2 ) u -1 ,
where u ∈ GL n (Λ ′ µ ) is an invertible matrix. -i) Then there exists an invertible matrix s ∈ GL 2n (Λ µ ) such that

(59) i 1 * (s) = s 1 ⊕ 1 n and i 2 * (s) = s2
where the invertible matrix s2 ∈ GL 2n (Λ 2,µ ) is conjugated to s 2 ⊕ 1 n through an inner auto-morphism defined by the invertible matrix

Ũ ∈ GL 2n (Λ 2,µ ), that is p2 = Ũ p 2 Ũ -1 . The corresponding invertible double matrix s is denoted s = (s 1 , s 2 , u). -ii) (60) j 2, * s2 = (u j 2, * (s 2 ) u -1 ) ⊕ 1 n = j 1, * (s 1 ⊕ 1 n ) -iii) Any invertible double matrix s ∈ GL 2n (Λ µ
) is conjugated through a localised inner automorphism defined by a matrix U ∈ GL 2n (Λ µ ) to an idempotent matrix of the form s = (s 1 , s 2 , u) defined by -i).

Proof. The proof of this theorem goes along the same manner as the proof of Theorem 27.

In retrospect, the proof of Theorem 27 is based on the following facts: -a) operations with double matrices respect Remark 8, -b) lifting of the invertible element U = O 2n (u) := u ⊕ u -1 ∈ GL 2n (Λ 2,µ ) associated to the invertible element u ∈ GL n (Λ 2,µ ) by means of the factorisation of U by elementary matrices (identity (48)), -c) the fact that the inner auto-morphisms keep the mapping O n unchanged.

To prove Theorem 35 we use the same arguments -a), -b), -c) with the following changes: idempotents are replaced by invertible elements while for -c) we use the fact that the inner auto-morphisms transform the mapping 1 n into itself.

The next theorem is the analogue of Theorem 34 in the K 1 (A µ ) case.

Theorem 36. Suppose j 1 and j 2 are epi-morphisms.

Let

u 1 ∈ GL(Λ 1,µ ) and u 2 ∈ GL(Λ 2,µ ) be such that (61) j 1 * [u 1 ] = j 2 * [u 2 ] ∈ K 1 (Λ ′ µ ) ⊗ Z[ 1 2 ] 
.

Then there exists s ∈ Idemp(Λ µ ) such that

(62) i 1 * [s] = [u 1 ] ∈ K 1 (Λ 1,µ ) ⊗ Z[ 1 2 ] and i 2 * [s] = [u 2 ] ∈ K 1 (Λ 2,µ ) ⊗ Z[ 1 2 
].

Remark 37. Tensor multiplication by Z[ 1 2 ] reflects the difficulty to lift elements belonging to O(Λ ). Equality (61) tells then that there exist two elements

ξ 1 , ξ 2 ∈ O 2n (Λ ′ µ ) such that the invertible matrices j 1 * (u 1 ) + ξ 1 , j 2 * (u 2 ) + ξ 2 are local conjugated by means of a matrix u ∈ GL 2n (Λ ′ ) (63) j 1 * (u 1 ) + ξ 1 = u (j 2 * (u 2 ) + ξ 2 ) u -1 .
At this point a new difficulty occurs. We would like to use the analogue of Lemma 29 and use the invertible matrix

U = u ⊕ u -1 ∈ O 2n (Λ ′ µ
) to lift and twist invertible elements belonging to GL(Λ ′ µ ). With the exception of u, in order to apply Lemma 29, we have to start with invertible elements which are already defined over Λ 1,µ and Λ 2,µ . Unfortunately, ξ 1 and ξ 2 do not belong to these spaces. To proceed, however, along this way we need to show: -1) that the elements ξ 1 , ξ 2 have invertible lifts in Λ 1,µ resp. Λ 2,µ and that -2) such lifts belong to O 2n (Λ i,µ ), i = 1, 2.

Here we address these two problems. We illustrate the solution in the case of the element ξ 1 .

We intend to lift the invertible matrix (64)

ξ 1 = α 1 0 0 α -1 1 ∈ O 2n (Λ ′ µ ) to an invertible matrix ξ1 ∈ O 2n (Λ 1,µ ).
To produce the lift we use the decomposition (48) (65)

ξ 1 = α 1 0 0 α -1 1 = 1 α 1 0 1 1 0 -α -1 1 1 1 α 1 0 1 0 -1 1 0 .
We suppose the homo-morphism j 1 to be an epi-morphism. To produce the lift one replaces in this formula the elements α 1 , resp. α -1 1 , by some elements α1 , resp. β1 ∈ Λ 1,µ such that

j 1 (α 1 ) = α 1 , resp. j 1 ( β1 ) = α -1 1 . The obtained element is (66) ξ1 = 1 α1 0 1 1 0 -β1 1 1 α1 0 1 0 -1 1 0 .
We use formula (66) and property (52) of elementary matrices to find the inverse of ξ1

(67) ξ-1 1 = 0 1 -1 0 1 -α1 0 1 1 0 β1 1 1 -α1 0 1 .
Formulas (66) and (67) show that the invertible elements ξ1 and ξ-1 1 belong to Λ 1,µ . In addition, both elements satisfy j 1 ( ξ1 ) = ξ 1 and j 1 ( ξ-1

1 ) = (j 1 ( ξ1 )) -1 = ξ -1 1 . At this point,
with these two lifted elements we are entitled to produce the element (68) Ũ1 = ξ1 0 0 ξ-1

1 ∈ O 4n (Λ 1,µ ).
From this relation we obtain

(69) j 1 ( Ũ1 ) = ξ 1 0 0 ξ -1 1 ∼ l 2ξ 1 .
We have proved the following result.

Lemma 38. Suppose the homo-morphism j 1 is epimorphic.

-1) Then there exists a recepe which for any element

ξ 1 ∈ O 2n (Λ ′ µ ) produces an invertible element Ũ1 ∈ O 4n (Λ 1,µ ) such that (70) j 1 ( Ũ1 ) = ξ 1 0 0 ξ -1 1 ∼ l 2ξ 1 .
-2) Then j 1 * (u 1 + ξ 1 ), from formula (63), lifts in

K 1 (Λ 1,µ ) ⊗ Z[ 1 2 ] to u 1 + 1 2 Ũ and (71) 
[u 1 + 1 2 Ũ ] = [u 1 ] ∈ K 1 (Λ 1,µ ) ⊗ Z[ 1 2 ] 
The properties -1) and -2) above being satisfied, the proof of the Theorem 36 proceeds as in the case of Lemma 29. 9. K loc 1 (A) vrs. K 1 (A). The following identities are well known and used as building blocks of K-theory, see [START_REF] Whitehead | Simple Homotopy Types[END_REF], [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF], [START_REF] Karoubi | An elementary introduction[END_REF], [START_REF] Blackadar | K-Theory for Operator Algebras[END_REF], [START_REF] Rosenberg | Algebraic K-Theory and its Applications[END_REF], [START_REF] Rordam | An Introduction to K-Theory for C * -Algebras[END_REF], [START_REF] Weibel | Algebraic K-Theory[END_REF].

To facilitate the reading of this article we summarise some basic facts from the classical algebraic K-theory and put them in prospective with some considerations discussed here.

Definition 39. Whitehead Group K 1 (A).

By definition

(72) K 1 (A) := inj lim n∈N GL n /[GL n , GL n ]
The group structure in K 1 (A) is given by matrix multiplication

(73) [A] + [B] := [ A.B ].
Theorem 40. -i) Any commutator is stably isomorphic to a product of elements of the form O 2n (A). More specifically, for any

A, B ∈ GL(A µ ) (74) ABA -1 B -1 0 0 1 = A 0 0 A -1 B 0 0 B -1 (BA) -1 0 0 BA .
-ii) If A ∈ GL n (A µ ), then (this repeats Definition 15 formula ( 12) )

(75) O 2n (A) := A 0 0 A -1 = 1 A 0 1 1 0 -A -1 1 1 A 0 1 0 -1 1 0
-iii) Any elementary matrix is a commutator (this repeats formula ( 53) )

(76) E ij (A) = [E ik (A), E kj (1) 
], f or any i, j, k distinct indices.

-iv) For any A, B ∈ GL n (A µ ), A + B is stably equivalent to AB and BA modulo (multiplicatively) elements of the form O 2n (A) (77)

A 0 0 B = AB 0 0 1 B -1 0 0 B = B -1 0 0 B BA 0 0 1 .
-v) For any A, B ∈ GL n (A µ ) one has the identity (78)

ABA -1 0 0 1 = A 0 0 A -1 B 0 0 1 A -1 0 0 A = A 0 0 A -1 B 0 0 1 A 0 0 A -1 -1 .
Proof. The proof is obtained by direct verification.

Theorem 41. ( [START_REF] Whitehead | Simple Homotopy Types[END_REF], [START_REF] Bass | K-theory and stable algebra[END_REF], [START_REF] Swan | Algebraic K-Theory[END_REF], [START_REF] Milnor | Introduction to Algebraic K-Theory[END_REF], [START_REF] Karoubi | An elementary introduction[END_REF], [START_REF] Rosenberg | Algebraic K-Theory and its Applications[END_REF] 

) -i) [GL(A), GL n (A)] = E n (A) -ii) [ABA -1 B -1 ] = [E ij (A)] = 0 ∈ K 1 (A) -iii) [A] + [B] = [ AB ] = [ BA ] = [B] + [A] ∈ K 1 (A). Therefore, GL(A) is an Abelian group. -iv) [O 2n (A)] = [1 n ] = 1 ∈ K 1 (A). -[A] = [A -1 ] for any A ∈ GL(A). -v) [ABA -1 ] = [B] ∈ K 1 (A).
Proof. Relation (74) says that any commutator is a product of matrices of type O n (A). Formula (75) says that any matrix of type O n (A) is a product of elementary matrices. Viceversa, (76) says that any elementary matrix is a commutator. This proves -i).

-ii) follows from the definition of K 1 (A).

-iii) Formula (77) implies the first part of -iii). Formula (75) combined with Theorem 41. -i) and the definition of K 1 (A) imply that [O(A)] = 0 ∈ K 1 (A), which proves -iv). Formula (77) shows that [A ⊕ B] = [A].[B], which completes the proof of -iii).

-v) This follows from formula (77) together with -iii) and -ii).

Remark 42. -i) The construction of the classical K 1 (A) does not require to use the Grothendieck completion. This is because the factorisation of GL(A) through the commutator sub-group insures property -iv), which provides the group structure. The group structure in K 1 (A) is essentially due to the fact that the both the direct sum and product of invertible matrices define the addition/multiplication in K 1 (A). These properties imply that O n (A) represents the zero class in K 1 (A), which insures existence of opposite elements.

The next remark refers to the specific parts of the construction of K loc 1 which make our construction different from the classical one.

Remark 43. -i) In our construction the commutator sub-group and the group generated by elementary matrices are avoided because the number of multiplications needed to generate these sub-groups might be un-bounded. Any multiplication increases the size of the support (in the definition of localised algebras this means that the support of the elements could not be controlled).

For this reason, in the whole article we don't use more than three multiplication of elements in the algebra. The multiplication of elements is replaced by sums and direct sums. The increase of the of the size of matrices replaces in our construction the need to perform multiple multiplications. In our definition of K loc 1 (A), where multiplications could not be avoided, the corresponding increase in the size of the supports is absorbed by the projective limit.

-ii) Our construction uses the elements O(A) additively and not multiplicatively. In the classical construction of K 1 (A), the elements of O(A) are used multiplicatively. Indeed, formula (74) shows that the commutator sub-group is generated by these elements. Unfortunately, to generate the commutator sub-group it is necessary to perform an un-bounded number of multiplications; in our construction an un-bounded number of multiplications is not allowed.

-iii) The construction of K loc 1 (A) uses the factorisation of GL(A) through the smaller sub-group of inner auto-morphisms. The class of an invertible element u modulo inner automorphisms, which we called abstract Jordan form, denoted J(u), contains more information than the class of the invertible element modulo the commutator sub-group. In the classical K 1 (A) the elements of O n (A) represent the null element.

If A were the algebra of complex matrices M(C) and u belonged to this algebra, then J(u) could be identified with the Jordan canonical form of the matrix u. The Jordan canonical form of the matrix u ⊕ u -1 is precisely J(u) ∪ J(u -1 ) modulo permutations of the Jordan blocks. It is clear that J(u⊕u -1 ) could never be conjugate to the the identity element unless u = 1 n . In general, the abstract Jordan canonical form of u ⊕ u -1 could not be conjugate to the identity unless u itself is the identity.

Given that the elements O(A) represent the null element and play multiple roles in the K-theory (see above discussion), we find it natural, for the definition of K loc 1 (A), to quotient GL(A)/ ∼ sl through the additive sub-group generated by direct sums of elements in O(A). In other words, by this factorisation we decree that the Jordan canonical forms of the elements u and u -1 are opposite one to each other. The additive group generated by elements O(A) is contained in the commutator sub-group; this property insures the fact that there exists a natural epi-morphism from K loc 1 (A) to K 1 (A). -iv) Additionally, the projective limit (Alexander-Spanier type construction, made possible by the filtration A µ of the algebra A) makes the algebraic K loc i -theory reacher than the classical K i -theory, i = 0, 1.

Theorem 44. -i) There is a canonical epi-morphism

Π : K loc 1 (A) -→ K 1 (A) (79) Ker Π = [ GL(A), GL(A) ] / Inner(A). (80) 10. Connecting homo-morphism ∂ : K loc 1 (Λ ′ ) -→ K loc 0 (Λ).
In this section we assume that the diagram (6) satisfies Hypotheses 1, 2. 3. 

= p(1 n , 1 n , U ). By definition, ∂[U ] = [p(1 n , 1 n , U )]. ∂[U ] may be produced explicitely in a different manner. So, let [U ] ∈ K loc 1 (Λ ′ ) be such that U ∈ GL n (Λ ′ µ ) for some n and µ. Let A, B ∈ GL n (Λ 1,µ ) be liftings of U , resp. U -1 , in M n (Λ 1,µ ).
Such liftings exist because we assume j 1 is surjective (note the change of the index). Here we do not assume that A and B are invertible.

With A and B one associates S 0 = 1 -BA and S 1 = 1 -AB; these elements belong to M n (Λ 1,µ-1 ). The matrices S 0 , S 1 satisfy (81) j 2, * (S 0 ) = j 1, * (S 1 ) = 0.

With these matrices one associates the invertible matrix (ref. [START_REF] Connes | Cyclic Cohomology, the Novikov Conjecture[END_REF])

L = S 0 -(1 + S 0 )B A S 1 ∈ GL 2n (Λ 1,µ-2 ); (82) the inverse of the matrix L is L -1 = S 0 (1 + S 0 )B -A S 1 ∈ GL 2n (Λ 1,µ-2 ). (83) 
Let e 1 , e 2 be the idempotents

e 1 = 1 0 0 0 , e 2 = 0 0 0 1 ∈ Idemp 2n (Λ 1,µ ). ( 84 
)
The invertible matrix L is used to produce the idempotent

P := Le 1 L -1 = S 2 0 S 0 (1 + S 0 )B S 1 A 1 -S 2 1 ∈ Idemp 2n (Λ 1,µ-2 ). (85) 
A matrix whose entries belong to the double ring Λ will be called double-matrix. The idempotent P is used to construct the double-matrix idempotent

P U := (S 2 0 , 0) (S 0 (1 + S 0 )B, 0) (S 1 A, 0) (1 -S 2 1 , 1) ∈ Idemp 2n (Λ 1,µ-2 ⊕ Λ 2,µ-2 ). ( 86 
)
The matrix P U is an idempotent in M 2n (Λ µ-2 ). Indeed, using (84) one gets (j 1, * -j 2, * )P U = 0 and therefore P U ∈ M 2n (Λ µ-2 ). The fact that the matrix P U is an idempotent in M 2n,µ-2 (Λ) follows from the fact that P and e 2 are idempotents along with Remark 8, §5.

Definition 46. Connecting homomorphism-second form. (compare [START_REF] Connes | Cyclic Cohomology, the Novikov Conjecture[END_REF] for non-localised K-theory).

For any

[U ] ∈ K loc 1 (Λ ′ ) one defines the connecting homomorphism ∂ : K loc 1 (Λ ′ ) -→ K loc 0 (Λ) by (87) ∂[U ] := [P U ] -[(e 2 , e 2 
)] ∈ K loc 0 (Λ). 10.2. Extension of the Connecting Homomorphism ∂. In this paper we will need an extension of the formula for the definition of ∂. In the proof of the exactness, Theorem 51.-iii), we will need to know how the connecting homomorphism, formula (86), behaves with respect to stabilisations. For this purpose we consider a more general situation than that considered in the §10.1.

Let U ∈ GL m+n (Λ ′ ) and

(88) e (0,n) = 0 0 0 1 n ∈ M m+n (Λ ′ ) be such that the diagram (89) 
Λ ′ m+n U ----→ Λ ′ m+n   e (0,n)   e (0,n) Λ ′ m+n U ----→ Λ ′ m+n
is commutative. This condition is used at the end of the construction of ∂[U ]; it is needed to show that P U ∈ Idemp m+n (Λ), formula (97). The case discussed in §10.1 corresponds in this subsection to m = 0 . We proceed as before. Let A, B ∈ GL m+n (Λ 1,µ ) be liftings of U , resp. U -1 , in M m+n,µ (Λ 1 ). Such liftings exist because we assume j 1 is surjective.

With A and B one associates S 0 = 1 -BA ∈ GL m+n (Λ 1,µ ) and S 1 = 1 -AB ∈ GL m+n (Λ 1,µ ). The matrices S 0 , S 1 satisfy (90) j 1, * (S 0 ) = j 1, * (S 1 ) = 0.

With these matrices one associates the invertible matrix (ref. [START_REF] Connes | Cyclic Cohomology, the Novikov Conjecture[END_REF])

L = S 0 -(1 + S 0 )B A S 1
∈ GL 2(m+n) (Λ 1,µ-2 ); (91) the inverse of the matrix L is

L -1 = S 0 (1 + S 0 )B -A S 1 ∈ GL 2(m+n) (Λ 1,µ-2 ). ( 92 
)
Let e 1 be the idempotent and hence the corresponding idempotents P U := Le 1 L -1 , P ′ U := L ′ e 1 L ′-1 are conjugate. To better organise the computation, we change the liftings one at the time. We begin with A. Let à = A + K with j 1 (K) = 0. Let S0 = 1 -B Ã, S1 = 1 -ÃB, L, P and PU be the corresponding elements. A direct computation gives

LL -1 = 1 -BK -BKB K 1 + KB (101) or L = 1 -BK -BKB K 1 + KB L. ( 102 
)
We know that L and L are invertible matrices; therefore the RHS of ( 101) is an invertible matrix.

The corresponding idempotent P is By adding all sides a trivial idempotent of sufficiently large size, we may assume that r = s is large. This relation may be re-written 0 = j 1, * ([p 1 + p2 ] -j 2, * ([q 1 + q2 ]). This means that there exists an idempotent ξ ∈ Idemp N (Λ ′ µ ) such that the idempotents (j 1, * ([p 1 + p2 ] + ξ) -(j 2, * ([q 1 + q2 ] + ξ) are isomorphic. We add further the idempotent ξ := 1 N -ξ to get isomorphic idempotents (j 1, * ([p 1 + p2 ] + ξ + ξ), (j 2, * ([q 1 + q2 ] + ξ + ξ) ∈ Idemp N (Λ ′ µ ) ( N being the size of these idempotents) or (j 1, * ([p 1 + p2 ] + 1 N ), (j 2, * ([q 1 + q2 ] + 1 N ). This means there exists u ∈ GL N (Λ ′ ) which conjugates these two idempotents. Theorem 34 says that there exits the idempotent p ∈ Idemp 2 N such that

P = L.e 1 . L-1 = 1 -BK -BKB K 1 + KB L.e 1 .L -1 1 -BK -BKB K 1 + KB -1 = (103) = 1 -BK -BKB K 1 + KB P 1 -BK -BKB K 1 + KB -1 (104) 
i 1 * p = (p 1 + p2 + 1 N ) ⊕ 1 N and i 2 * p = U ((q 1 + q2 + 1 N ) ⊕ 1 N ) U 1 where U ∈ GL 2 N (Λ ′ µ
). This means the image of the K-theory class of p -1 N through the pair of homomorphisms (i 1, * , i 2, * ) is (i 1, * , i 2, * )[p -1 N ] = = ( (p 1 + p2 + 1 N ) ⊕ 1 N -1 N , U ((q 1 + q2 + 1 N ) ⊕ 1 N ) U 1 -1 N ) = = ( (p 1 + p2 + 1 N ) ⊕ 1 N -1 N , U ((q 1 + q2 + 1 N ) ⊕ 1 N -1 N ) U 1 = = ([p 1 -p 2 ], [q 1 -q 2 ], which completes the proof of the assertion.

-ii) The only problem might occur in verifying that Ker(j 1 * -j 2 * ) ⊂ Im(i 1 * , i 2 * ). The proof of it is provided by Theorem 36. The remaining verifications are obvious.

-iii) -iii.1) Let u ∈ GL(A µ ). Lemma 38 says that O(u) ⊗ Z[ 1 2 ] lifts as an invertible element over Λ 2,µ . Remark 48 completes the argument stating that ∂u = 0 ∈ K 0 (Λ µ ⊗ Z[ 1 2 ]. This result takes care of the elements belonging to O(Λ ′ µ ). We verify that ∂ • j 1 * = 0. Indeed, let Ũ ∈ GL n (Λ 1,µ ) and U = j ] -[ (0, 0) (0, 0) (0, 0) (1, 1) ] = 0. (115) j 1, * p11 = j 1, * ( (u -1 2 u 1 ) e (q,2n) (u -1 2 u 1 ) -1 ) = j 2, * p12 . (139) This shows that (140) φ := j 1 * (u -1 2 u 1 ) ∈ GL(Λ ′ 1,µ ) establishes and isomorphism between j 1 * p11 and j 1 * e (q,2n) = e (q,2n) .

Recall (see §10.2) that the construction of ∂(U ) involves the lifting A, resp. B, of U , resp. U -1 , in M 2n (Λ 1,µ ). We look for A, B ∈ M 2n (Λ 1,µ ) such that j 1, * A = U and j 1, * B = U -1 .

We may choose the liftings

A = u 1 u -1 2 ∈ GL q+2n (Λ 1,µ ) (141) B = u 2 u -1 1 ∈ GL q+2n (Λ 1,µ ). ( 142 
)
From this we get S 0 = 0 and S 1 = 0.

We get further These complete the proof of Theorem 51.

′ 12 ]′ 12 ) = u j 2 * (p ′ 22 ) u - 1 . 8 . 2 .

 121222182 j 2 * [p ′ 22 ] are local stably isomorphic. Now we are in the position to use Theorem 27. Let u ∈ GL(Λ 2 (A µ )) be the conjugation (57) j 1 * (p Theorem 27 provides the idempotent p = (j 1 * (p ′ 12 ), (j 2 * (p ′ 2 ), u). The desired idempotents are p 10 = p = (j 1 * (p ′ 12 ), (j 2 * (p ′ 2 ), u) ∈ Idemp(Λ µ ) p 20 = 1 N ∈ Idemp(Λ µ ). Constructing invertible matrices over Λ µ .

′µ)

  to elements belonging to O(Λ ′ 1,µ ) and O(Λ ′ 2,µ ). The nature of elements belonging to O(Λ ′ µ ), see formula (48), insures the existence of the lift as an invertible element; the factor 1/2 is needed to insure that the invertible lifts belong to O(Λ ′ 1,µ ) and O(Λ ′ 2,µ ). The presence of the factor 1/2 has important consequences. Proof. The definition of K 1 (Λ ′ µ ), see Definition 19 -20, tells that the description of its elements contains an ambiguity belonging to the sub-module O(Λ ′ µ

10. 1 .

 1 Connecting homo-morphism. Definition 45. Connecting homomorphism-first form. Let U ∈ GL n (Λ ′ µ ). Theorem 27 associates the idempotent p

  We will show that if A ′ and B ′ are two such different lifts and L ′ is the corresponding matrix, then (100)L ′ = L L, with L ∈ GL 2(m+n) (Λ)

11

 11 PU ] = [P U ] ∈ K loc 0 (Λ). It remains to see what happens if A remains unchanged and the lifting B is changed. Let B = B + H, with j 1 (H) = 0. Let L, P and PU be the corresponding matrices. A direct computation =HA -HAHA -BAHA ∆ 12 = -2H + HAB + HAH + BAH -BAHAB -HAHAB ∆ 21 =AHA ∆ 22 = -AH + AHAB.

  1 * Ũ . Then ∂ • j 1, * [ Ũ ] = ∂[U ].The elements U , U -1 have the liftings A = Ũ and B = Ũ -1 . Then the corresponding elements S 0 and S 1 are equal to zero. Therefore

∈

  M 2(m+n+q) (Λ µ ). (143) This shows that (144) ∂U = [p 11 ] -[p 22 ] = ([p 11 ] -[e 0,2n ]) -([p 22 ] -[e 0,2n ]) = [p 1 ] -[p 2 ].
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e 2 = 0 0 0 e (0,n)

∈ GL 2(m+n) (Λ 1,µ ). (94)

The invertible matrix L is used to produce the idempotent

S 0 e (0,n) S 0 S 0 e (0,n) (1 + S 0 )B A e (0,n) S 0 A e (0,n) (1 + S 0 )B ∈ Idemp 2(m+n) (Λ 1,µ-2 ). (95)

The idempotent P is used to construct the double-matrix idempotent P U := (S 0 e (0,n) S 0 , 0) (S 0 e (0,n) (1 + S 0 )B, 0) (A e (0,n) S 0 , 0) (A e (0,n) (1 -S 0 )B, e (0,n) )

∈ Idemp 2(m+n) (Λ 1,µ-2 ⊕ Λ 2,µ-2 ).

(

The matrix P U is an idempotent in M 2(m+n) (Λ µ-2 ). We may verify directly that (j 1, *j 2, * )P U = 0. Indeed, j 1 * is a ring homomorphism and j 1 * (S 0 ) = j 1 * (S 0 ) = 0; finally, the hypothesis (89) gives

). The fact that the matrix

follows from the fact that P and e 2 are idempotents along with the discussion above.

Definition 47. Connecting homomorphism -third form.

We suppose the assumptions and constructions of §10.2 above are in place. For any

Remark 48. If the lifts A, resp. B, of the isomorphisms U , resp. U -1 , in Λ m+n Proof. It is easy to see that P U behaves correctly with respect to stabilisation and sums.

Given that any ∂ξ, with ξ ∈ O µ (Λ ′ µ), represents the zero element in K 1 (A µ ), see Proposition 22. -ii), we have to show that ∂ξ = 0. To do this we take into account the Definition 46 together with formula (48). In fact, this last formula shows that the invertible element ξ has an invertible lifting in GL(Λ 2,µ ). This lifted element together with its inverse produce a pair of elements A, B, see Definition 45, for which the corresponding elements S 0 = S 1 = 0. Formulas (86), (87) show that ∂ξ = 0.

It remains to follow up how P U depends of the choice of the lifts A and B of U and U -1 . We observe that a different choice of A and B has the effect of modifying just the matrix The RHS of ( 106) is a product of invertible matrices; therefore, it is an invertible matrix. Proceeding as above we get

which completes the proof of the Proposition 49.

Remark 50. The connecting homomorphism ∂ could be defined by the same formula (95), ( 96), (98) where L ∈ GL 2n (Λ 1,µ ) is any invertible lifting of the matrix

If L, L ′ are two such liftings, the corresponding idempotents P U are conjugate

11. Six terms exact sequence.

Theorem 51. The six terms sequence

More precisely, the following sequences are exact -i)

]

We verify that Ker(j

where p 1 , p 2 , q 1 , q 2 are idempotents. The pair of K-theory classes may be re-written

, where P U is given by formula (89). Then

On the other side,

We have to prove that there exist invertible matrices

∂[u] = 0 means (after stabilisation) that P u is l-conjugate to [(e 2 , e 2 )], i.e. there exists

which, as components of an invertible matrix over Λ µ , satisfy the compatibility condition (120)

such that 

We may assume that the idempotent p 2 is trivial; indeed, the matrix (1-p 2 , 1-p 2 ), seen as a matrix in M n (Λ µ ), is an idempotent over Λ µ (here we have assumed that Λ 1,µ = Λ 2,µ ) and therefore

Here 131), (132) tell that after possible stabilisations (let p11 ∈ Idemp 2n+q (Λ 1,µ ), resp. p12 ∈ Idemp 2n+q (Λ 2,µ ) and e (q,2n) be the stabilised idempotents (with the same q, sufficiently large), there exist invertible elements u

After such stabilisations, the new double matrix p1 := (p 11 , p12 ) is still an idempotent in M q+2n (Λ µ ).

The isomorphisms u 1 , u 2 tell that the pair p1 := (p 11 , p12 ) is (Λ 1,µ , Λ 2,µ )-isomorphic to the pair of trivial idempotents (e (q,2n) , e (q,2n) ). Notice, however, that in general, j 1 * u 1 = j 2 * u 2 ; this is why this isomorphism is not necessarily a Λ µ -isomorphism.

We may further simplify the description of the idempotent p1 ∈ Idemp(Λ µ ). To do this we replace the idempotent p1 by the idempotent p1 := ( p11 , p12 ) := U p1 U -1 , where U is the double matrix (135) Ũ := (u -1 2 , u -1 2 ) ∈ GL q+2n (Λ µ ). After this modification p11 =u -1 2 p11 u 2 = (u -1 2 u 1 ) e (q,2n) (u -1 2 u 1 ) -1 (136) p12 =u -1 2 p12 u 2 = u -1 2 (u 2 e (q,2n) u -1 2 )u 2 = e (q,2n) . (137) As a result of all these transformations, the element [p] is stably Λ µ -isomorphic to (138)

[p] = [p 1 ] -[p 2 ] = [(u -1 2 u 1 ) e (q,2n) (u -1 2 u 1 ) -1 , e (q,2n) ] -[e (q,2n) , e (q,2n) ]. From the equations (133), (134) we get