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ABSTRACT

We present an inpainting method for images and videos based

on nonlocal discrete p-Laplace regularization on weighted

graphs. Our work has the advantage of unifying local ge-

ometric methods and nonlocal exemplar-based ones in the

same framework. Our image inpainting benefits from local

and nonlocal regularities within the image. In addition to that,

our video inpainting exploits temporal and spatial redundan-

cies in order to obtain high quality results by considering a

video sequence as a volume and not as a sequence of still

frames. However, our method does not employ any motion

estimation for video inpainting. Experiments demonstrate

that our nonlocal method outperforms the local one by com-

pleting missing data with finer and more consistent details for

textured and non-textured images and videos.

Index Terms— Image and video inpainting, nonlocal dis-

crete regularization, weighted graphs

1. INTRODUCTION

The inpainting process consists in filling in the missing parts

of an image or a video with the most appropriate data in or-

der to obtain harmonious and hardly detectable reconstructed

zones. Recent works on image and video inpainting may

fall under two main categories, namely, the geometric algo-

rithms and the exemplar-based ones. The first category em-

ploys partial differential equations (PDE). Bertalmio et al. [1]

proposed some preliminary work on frame-by-frame PDEs

based video inpainting, whereby areas are filled by propagat-

ing information based on PDE from the outside of the masked

region along level lines (isophotes). The PDE is applied spa-

tially, and completes the video frame by frame. This approach

does not take into account the temporal information that a

video provides. The second group of inpainting algorithms is

based on the texture synthesis. The work of Efros and Leung

[2] on non-parametric sampling is utilized in these exemplar-

based techniques. Wexler et al. [3] proposed a global op-

timization for space-time completion of holes in a video se-

quence. This method yields good results, but is computation-

ally very expensive and over-smoothing is observed.

In this paper, we present a generic framework for non-

local discrete regularization on graphs that exploits and ju-

diciously adapts a variational formulation for inpainting pur-

poses on image and video media. We propose to restore the

missing data using a regularization approach that takes into

account local and nonlocal information. The main advantage

of our method is the unification of the geometric and texture-

based techniques. It is worth mentioning that our method does

not employ any motion estimation for video inpainting unlike

some approaches like the work of Kokaram et al. [4].

In Section 2, we briefly present the principles of regular-

ization on weighted graphs. Thereafter, we state the inpaint-

ing problem in terms of regularization on graphs. In Section

3, we report and discuss empirical results for our proposed

methods for image and video inpainting. We conclude this

paper in Section 4 with a summary of our findings.

2. P -LAPLACE REGULARIZATION

In this section, we describe our discrete regularization frame-

work [5] for image and video inpainting, which we have

recently extended for video denoising [6]. First of all, we

will introduce some preliminary definitions of derivatives on

graphs required for this work.

2.1. Preliminary definitions

Let G = (V, E) be a graph representing a general discrete

domain that could be an image or a video. V = {v1, . . . , vn}
is a finite set of vertices and E ⊆ V × V is a finite set of

edges. G is assumed to be undirected. Two vertices u and

v are said to be adjacent if the edge (u, v) ∈ E. A graph is

weighted if we associate to it a weight function w : V × V →
R

+, that must be a positive symmetric function satisfying:

∀u ∈ E, w(u, u) = 0. Let H(V ) be a Hilbert space of real-

valued functions on vertices. A function f : V → R in

H(V ) assigns a vector fv to each vertex v in V . The local

variation of the weighted gradient operator ‖'‖ of a function

f ∈ H(V ) at a vertex v is defined by:

‖'f(v)‖ =

√

∑

u∼v

w(u, v)(f(v) − f(u))2.



This can be viewed as a measure of the regularity of a function

around a vertex.

The weighted p-Laplace operator, with p ∈ ]0, +∞[, at a

vertex v is defined on H(V ) by:

(∆pf)(v) =
1

p

∑

u∼v

γ(u, v) (f(v) − f(u)) , where,

γ(u, v) = w(u, v)
(

‖'f (v)‖p−2 + ‖'f (u)‖p−2
)

2.2. Inpainting on weighted graphs

Consider a function f0 that could be an image or a video.
This function is defined over the vertices V of a weighted
graph Gw = (V, E, w) by f0 : V → R

m. Let V0 ⊂ V
be the subset of the nodes corresponding to the missing parts.
The inpainting purpose is to interpolate the known values of
f0, V − V0, to V0. We formalize the inpainting problem as a
discrete regularization using the weighted p-Laplace operator
by the minimization of two energy terms:

f
∗ = min

f∈H(V )

(

1

p

X

v∈V

‖"f(v)‖p +
λ(v)

2
‖f − f

0‖2
H(V )

)

(1)

where,

λ(v) =

(

λ = constant, if v ∈ V \V0

0, otherwise.

p ∈ [0, +∞[ is the smoothness degree, λ is the fidelity pa-

rameter, which specifies the trade-off between the two com-

peting terms, and 'f represents the weighted gradient of the

function f over the graph. The solution of problem (1) leads

to a family of nonlinear filters, parameterized by the weight

function, the degree of smoothness, and the fidelity parame-

ter. For missing parts, new values are computed with no initial

values to be taken into account, hence, the fidelity parameter

λ is set to 0.

The first energy in (1) is the smoothness term or regularizer,

whereas the second is the fitting term. Problem (1) has a

unique solution, for p ≥ 1, which satisfies:

(∆pf(v)) + λ(v)(f(v) − f0(v)) = 0, ∀v ∈ V . (2)

For further details on the solution, the more inquisitive reader

is referred to [5].

From now on, we will consider an image as a particular
video with only one frame. We consider a video sequence
as a function f defined over the vertices of a weighted graph
Gk1,k2,k3

= (V, E, w), where k1, k2, k3 ∈ N
3. A vertex u

is defined by a triplet (i, j, t) where (i, j) indicates the spa-
tial position of the vertex and t, which is a frame number,
indicates the temporal position of the vertex within the video
sequence. We denote by u ∼ v a vertex u that belongs to the
neighborhood of v which is defined as follows:

Nk1,k2,k3
(v) =

(

u = (i′, j′, t′) ∈ V \V0 :

|i − i
′| ≤ k1, |j − j

′| ≤ k2, |t − t
′| ≤ k3

)

Similarly, we extend the definition of the patch to videos to

obtain 3D patches. A patch around a vertex v is a box of size

rx × ry × rt, denoted by B(v). Then, we associate to this

patch a feature vector defined by:

F (f0, v) = f0(u), u ∈ B(v), u ∈ V \V0.

The weight function w associated to Gk1,k2,k3
provides a

measure of the distance between its vertices that can simply

incorporate local, semi-local or nonlocal features according

to the topology of the graph and the image.
We consider the following two general weight functions:

wL(u, v) = exp

„

−
|f(u) − f(v)|2

2σ2
d

«

wNL(u, v) = wL(u, v).exp

„

−
‖F (f0, u) − F (f0, v)‖2

h2

«

,

where σ2
d depends on the variations of |f(u) − f(v)| over

the graph. h can be estimated using the standard deviation

depending on the variations of ‖F (f0, u) − F (f0, v)‖ over

the graph.

wL(u, v) is a measure of the difference between f(u) and

f(v) values, and is used in the local approach of denoising. In

addition to the difference between values, wNL(u, v) includes

a similarity estimation of the compared features by measuring

a L2 distance between the patches around u and v. It is the

nonlocal approach.
The regularization problem is solved using the Gauss-Jacobi
iterative algorithm presented in [5] which is specialized as
follows: For all (u, v) in V0,

8

>

>

<

>

>

:

f (0) = f0

γ(k)(u, v) = w(u, v)
`

‖ # f (k)(v)‖p−2 + ‖ # f (k)(u)‖p−2
´

f (k+1)(v) =

P

u∼v γ(k)(u, v)f (k)(u)
P

u∼v γ(k)(u, v)

where γ(k) is the function γ at the kth step. The weights

w(u, v) are typically computed from f0, or could otherwise

be explicitly given as an input.

Related Works

The aforementioned framework unifies and subsumes several

special techniques that are explored in the literature. In fact,

by considering particular parameter values, we recover results

that have been established in image processing. For p = 2,

wNL and one iteration the nonlocal method is equivalent to

the nonlocal means filter of Buades et al. [7] that has been

adapted to inpainting by Wong et al. [8]. With p = 1 and

w = 1, we obtain the local total variation (TV) inpainting of

Chan and Shen [9]. With p = 1 and wNL, it is the nonlocal

TV inpainting. Our method could be considered as an exten-

sion of Efros and Leung’s work [2]. In fact, if we construct

the k-nearest neighbors graph with k = 1 and a patch distance

between nodes, we obtain the same approach. However, we

can consider in our algorithm different values for k.



2.3. Global Description of our Algorithm

Our method consists in filling that mask from its outer line to

its center recursively in a series of nested outlines. The reg-

ularization process is applied iteratively on each node. This

leads to an enhanced visual result. Once the entire outer line is

processed, it is removed from V0 and is considered as known

data to take into account to process remaining holes. This

means that we do not include the computed value of a pixel in

the estimation of the other pixels on the same level. Thus, the

risk of error propagation is reduced. As the inpainting process

progresses, the mask gets dynamically smaller and eventually

becomes empty. At this point, all the holes are filled in.

3. EXPERIMENTAL RESULTS

We present now some tests that demonstrate the efficiency of

our proposed inpainting procedure. To this end, several media

were selected. The patch distance was determined based on

the intensity.

Fig. 1. Inpainting a synthetic video. Each frame of this video is

a translation of the previous one. From left to right: the corrupted

image, the result of local inpainting and the result of our nonlocal

inpainting method.

In our first example, our algorithm was applied to a syn-

thesis image. Figure 1 indicates that the image was perfectly

reconstructed using our nonlocal algorithm, whereas the local

inpainting approach produced poor results. This test serves as

a basic verification of the nonlocal algorithm.

The result on a texture image is reported in Figure 2.

Observe that the reconstructed zones are not detectable and

merge harmoniously with the uncorrupted data.

Fig. 2. Texture inpainting on weave image using a window 61 and

patch 31. From left to right: the corrupted image, the result of a

local inpainting and the result of our proposed nonlocal inpainting

method.

The results of the inpainting on complex images contain-

ing zones of variable homogeneity are also very encouraging.

Figure 3 reports the restoration of the reference image of Bar-

bara. We purposely removed zones in a homogeneous region,

textured zones, and zones of variable homogeneity to test the

robustness of our method.

Fig. 3. Inpainting on barbara image using a window 21 and patch 5.

From left to right, the original image, the corrupted image, the result

of a local inpainting and our nonlocal inpainting result.

In Figure 4, we present the result of our algorithm for in-

painting large zones. In this example, we removed all persons

on the image to keep the beautiful landscape with the pyra-

mid only. The removed area is very large. We observe on the

down right corner that the bricks texture is extended to fill in

the adjacent hole as well as the gradient blue color of the sky

in the top left corner.

In Figure 5, it is possible to observe the contribution of

temporal redundancy in the inpainting process. We corrupted

one frame in the well-known video corpus of Suzie. The re-

sults demonstrate the high efficiency of our nonlocal approach

in coping with both texture and structures in the video. For

instance, thin structures such as Suzie’s hair or homogeneous

zones like the background are equally well recovered whereas

the local approach shows its limits.

To test our algorithm on object removal applications from

videos, we masked the ball in the tennis sequence. We can

observe in Figure 6 that the ball is removed correctly and the

inpainting yields very good results.

4. CONCLUSION

In this paper, we introduced a new algorithm for image and

video inpainting based on nonlocal p-Laplace regularization

on graphs. We take advantage of local and nonlocal regulari-



ties to complete the missing parts in a way that is harmonious

with the uncorrupted parts of the damaged media. For video

inpainting, temporal and spatial redundancies are combined

to enhance inpainting results for videos. Our work unifies ge-

ometric and texture-based inpainting methods.

Fig. 4. Large holes inpainting on an image of Gizeh pyramid using

a window 61 and patch 13 and ten iterations. From left to right, the

original image, the corrupted image, the result of a local inpainting

and our nonlocal inpainting results for p = 2 and p = 1.

Fig. 5. From left to right, the corrupted frame, the local inpainting

and the nonlocal video inpainting results using a window size of 21

and a patch size of 6. The second line shows a zoomed in region of

the first line.

Fig. 6. Object removal from a color video. From left to right, frames

from the original video, the corrupted video, the video without the

tennis ball.

Our tests demonstrate the efficiency of our algorithm for

completing the missing parts harmoniously with the data in

the neighborhood so that no sharp edges appear between the

existing data and the reconstructed portions. Moreover, we

empirically observe that our results do not exhibit pronounced

blur effects. Finally, it is worth mentioning that our algorithm

can be advantageously applied to a broad spectrum of image

and video editing applications.
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