Damien Gayet 
  
Jean-Yves Welschinger 
  
Expected topology of random real algebraic submanifolds

Keywords: Mathematics subject classification 2010: 14P25, 32Q15, 60D05 Real projective manifold, ample line bundle, random polynomial, Betti numbers

Let X be a smooth complex projective manifold of dimension n equipped with an ample line bundle L and a rank k holomorphic vector bundle E. We assume that 1 ď k ď n, that X, E and L are defined over the reals and denote by RX the real locus of X. Then, we estimate from above and below the expected Betti numbers of the vanishing loci in RX of holomorphic real sections of E b L d , where d is a large enough integer. Moreover, given any closed connected codimension k submanifold Σ of R n with trivial normal bundle, we prove that a real section of E b L d has a positive probability, independent of d, to contain around ? d n connected components diffeomorphic to Σ in its vanishing locus.

Introduction

Let X be a smooth complex projective manifold of positive dimension n equipped with an ample line bundle L and let E be a holomorphic vector bundle of rank k over X. From the vanishing theorem of Kodaira and Serre, we know that the dimension N d of the complex vector space H 0 pX, E b L d q of global holomorphic sections of E b L d grows as a polynomial of degree n in d. We will assume throughout this paper that 1 ď k ď n and that X, E and L are defined over the reals. We denote by RX the real locus of X and by RH 0 pX, E b L d q the real vector space of real holomorphic sections of E b L d , see [START_REF] Dedieu | On the number of minima of a random polynomial[END_REF]. Its dimension equals N d . The discriminant locus R∆ d Ă RH 0 pX, E b L d q of sections which do not vanish transversally is a codimension one submanifold for d large enough and for every σ in its complement, the real vanishing locus RC σ of σ is a smooth codimension k submanifold of RX. The topology of RC σ drastically depends on the choice of σ P RH 0 pX, E b L d qzR∆ d . When n " k " 1, X " CP 1 , L " O CP 1 p1q and E " O CP 1 for example, σ is a real polynomial of degree d in one variable and RC σ the set of its real roots.

The space RH 0 pX, E b L d q inherits classical probability measures. Indeed, let h E be a Hermitian metric on E and h L be a Hermitian metric of positive curvature on L, both h E and h L being real, that is invariant under the Z{2Z-Galois action of E and L. We denote by h E,d " h E b h d L the induced metric on E b L d . Then, the vector space RH 0 pX, E b L d q becomes Euclidean, with the L 2 -scalar product defined by @σ, τ P RH 0 pX, E b L d q, xσ, τ y "

ż X h E,d pσ, τ qdx,
where dx denotes any chosen volume form on X (our results being asymptotic in d, they turn out not to depend on the choice of dx). It thus inherits a Gaussian probability measure µ R whose density at σ P RH 0 pX, E b L d q with respect to the Lebesgue measure is 1 ?

π N d e ´}σ} 2 .
What is the typical topology of RC σ for σ P RH 0 pX, E b L d q chosen at random for dµ R ? We do not know, but can estimate its average Betti numbers. To formulate our results, let us denote, for every i P t0, ¨¨¨, n ´ku, by b i pRC σ , Rq " dim H i pRC σ , Rq the i-th Betti number of RC σ and by Epb i q " ż RH 0 pX,EbL d qzR∆ d b i pRC σ , Rqdµ R pσq its expected value.

Upper estimates

As in [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], for every i P t0, ¨¨¨, n ´ku, we denote by Sym R pi, n ´k ´iq the open cone of real symmetric matrices of size n ´k and signature pi, n ´k ´iq, by µ R the classical Gaussian measure on the space of real symmetric matrices and by e R pi, n ´k ´iq the numbers e R pi, n ´k ´iq "

ż Sym R pi,n´k´iq | det A|dµ R pAq, (1) 
see §3.1. We then denote by V ol h L pRXq the volume of RX for the Riemannian metric induced by the Kähler metric g h L defined by the curvature form of h L , see ( 3) and (4).

Theorem 1.1.1 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n, k ‰ n. Then, for every 0 ď i ď n ´k,

lim sup dÑ8 1 ? d n Epb i q ď ˆn ´1 k ´1˙e R pi, n ´k ´iq V ol h L pRXq V ol F S pRP k q .
Moreover, when k " n, 1 ? d

n Epb 0 q converges to V ol h L pRXq V ol F S pRP n q as d grows to infinity. In fact, the right hand side of the inequality given by Theorem 1.1.1 also involves the determinant of random matrices of size k ´1 and the volume of the Grassmann manifold of pk ´1q linear subspaces of R n´1 , see Theorem 3.1.2, but these can be computed explicitly. Note that when E is the trivial line bundle, Theorem 1.1.1 reduces to Theorem 1.1 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF].

Theorem 1.1.1 relies on Theorem 3.1.3, which establishes the asymptotic equidistribution of clouds of critical points, see §3.1. We obtain a similar result in a complex projective setting, for critical points of Lefschetz pencils, see Theorem 3.5.1.

Lower estimates and topology

Let Σ be a closed submanifold of codimension k of R n , 1 ď k ď n, which we do not assume to be connected. For every σ P RH 0 pX, E b L d qzR∆ d , we denote by N Σ pσq the maximal number of disjoint open subsets of RX having the property that each such open subset U 1 contains a codimension k submanifold Σ 1 such that Σ 1 Ă RC σ and pU 1 , Σ 1 q is diffeomorphic to pR n , Σq. We then set

EpN Σ q " ż RH 0 pX,EbL d qzR∆ d N Σ pσqdµ R pσq (2) 
and we associate to Σ, in fact to its isotopy class in R n , a constant c Σ which is positive if and only if Σ has trivial normal bundle in R n , see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] for its definition and Lemma 2.2.3. The latter measures à la Donaldson the amount of transversality that a polynomial map R n Ñ R k vanishing along a submanifold isotopic to Σ may have.

Theorem 1.2.1 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n. Let Σ be a closed submanifold of codimension k of R n with trivial normal bundle, which does not need to be connected. Then,

lim inf dÑ8 1 ? d n EpN Σ q ě c Σ V ol h L pRXq.
In particular, when Σ is connected, Theorem 1.2.1 bounds from below the expected number of connected components diffeomorphic to Σ in the real vanishing locus of a random section σ P RH 0 pX, E b L d q. The constant c Σ does not depend on the choice of the triple pX, pL, h L q, pE, h E qq, it only depends on Σ. When k " 1 and E " O X , Theorem 1.2.1 coincides with Theorem 1.2 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. Computing c Σ for explicit submanifolds Σ yields the following lower bounds for the Betti numbers.

Corollary 1.2.2 Under the hypotheses of Theorem 1.2.1, for every i P t0, ¨¨¨, n´ku,

lim inf dÑ8 1 ?
d n Epb i q ě expp´e 84`6n qV ol h L pRXq.

Some related results

The case X " CP 1 , E " O CP 1 and L " O CP 1 p1q was first considered by M. Kac in [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF] for a different measure. In this case and with our measure, Kostlan [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] and Shub and Smale [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF] gave an exact formula for the mean number of real roots of a polynomial, as well as the mean number of intersection points of n hypersurfaces in RP n . Still in RP n , Podkorytov [START_REF] Podkorytov | The mean value of the Euler characteristic of an algebraic hypersurface[END_REF] computed the mean Euler characteristics of random algebraic hypersufaces, and Bürgisser [START_REF] Bürgisser | Average Euler characteristic of random real algebraic varieties[END_REF] extented this result to complete intersections. In [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF], we proved the exponential rarefaction of real curves with a maximal number of components in real algebraic surfaces. In [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF] and [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], we bounded from above the mean Betti numbers of random real hypersurfaces in real projective manifolds and in [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF], we gave a lower bound for them. A similar probabilistic study of complex projective manifolds has been performed by Shiffman and Zelditch, see [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], [START_REF] Shiffman | Number variance of random zeros on complex manifolds[END_REF], [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF] for example, or also [START_REF] Bogomolny | Quantum chaotic dynamics and random polynomials[END_REF], [START_REF] Sodin | Random complex zeroes. I. Asymptotic normality[END_REF]. In particular, the asymptotic equidistribution of critical points of random sections over a fixed projective manifold has been studied in [START_REF] Douglas | Critical points and supersymmetric vacua[END_REF], [START_REF] Douglas | Critical points and supersymmetric vacua. II: Asymptotics and extremal metrics[END_REF] and [START_REF] Macdonald | Density of complex critical points of a real random SOpm `1q polynomial[END_REF], or also [START_REF] Fyodorov | Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices[END_REF], [START_REF] Auffinger | Random matrices and complexity of spin glasses[END_REF], [START_REF] Dedieu | On the number of minima of a random polynomial[END_REF], while we studied critical points of the restriction of a fixed Morse function on random real hypersurfaces, see [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF].

A similar question concerns the mean number of components of the vanishing locus of eigenfunctions of the Laplacian. It has been studied on the round sphere by Nazarov and Sodin [START_REF] Nazarov | On the number of nodal domains of random spherical harmonics[END_REF] (see also [START_REF] Sodin | Lectures on random nodal portraits[END_REF]), Lerario and Lundberg [START_REF] Lerario | Statistics on Hilbert's sixteenth problem[END_REF] or Sarnak and Wigman [START_REF] Sarnak | Topologies of nodal sets of random band limited functions[END_REF]. In a general Riemannian setting, Zelditch proved in [START_REF] Zelditch | Real and complex zeros of Riemannian random waves[END_REF] the equidistribution of the vanishing locus, whereas critical points of random eigenfunctions of the Laplacian have been addressed by Nicolaescu in [START_REF] Nicolaescu | Critical sets of random smooth functions on compact manifolds[END_REF].

Section 2 is devoted to lower estimates and the proof of Theorem 1.2.1. In this proof, the L 2 ´estimates of Hörmander play a crucial rôle, see §2.3, and we follow the same approach as in [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF] (see also [START_REF] Gayet | Hypersurfaces symplectiques réelles et pinceaux de Lefschetz réels[END_REF] for a similar construction). Section 3 is devoted to upper estimates and the proof of Theorem 1.1.1. 2 Lower estimates for the expected Betti numbers 2.1 Statement of the results

Aknowledgements

Framework

Let us first recall our framework. We denote by X a smooth complex projective manifold of dimension n defined over the reals, by c X : X Ñ X the induced Galois antiholomorphic involution and by RX " Fixpc X q the real locus of X which we implicitly assume to be non-empty. We then consider an ample line bundle L over X, also defined over the reals. It comes thus equipped with an antiholomorphic involution c L : L Ñ L which turns the bundle projection map π : L Ñ X into a Z{2Z-equivariant one, so that c X ˝π " π ˝cL . We equip L in addition with a real Hermitian metric h L , thus invariant under c L , which has a positive curvature form ω locally defined by

ω " 1 2iπ B B log h L pe, eq (3) 
for any non-vanishing local holomorphic section e of L. This metric induces a Kähler metric g h L " ωp. , i. q (4) on X, which reduces to a Riemannian metric g h L on RX. Let finally E be a holomorphic vector bundle of rank k, 1 ď k ď n, defined over the reals and equipped with a antiholomorphic involution c E and a real Hermitian metric h E . For every d ą 0, we denote by

RH 0 pX, E b L d q " tσ P H 0 pX, E b L d q | pc E b c L d q ˝σ " σ ˝cX u (5) 
the space of global real holomorphic sections of E b L d . It is equipped with the L 2 -scalar product defined by the formula

@pσ, τ q P RH 0 pX, E b L d q, xσ, τ y " ż X h E,d pσ, τ qpxqdx, (6) 
where

h E,d " h E b h d L .
Here, dx denotes any volume form of X. For instance, dx can be chosen to be the normalized volume form dV h L " ω n ş X ω n . This L 2 -scalar product finally induces a Gaussian probability measure µ R on RH 0 pX, E b L d q whose density with respect to the Lebesgue one at σ P RH 0 pX, E b L d q writes 1 ? π N d e ´}σ} 2 , where

N d " dim H 0 pX, E b L d q.
It is with respect to this probability measure that we consider random real codimension k submanifolds (as in the works [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] and [START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF], [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] and [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]).

The lower estimates

The aim of Section 2 is to prove Theorem 1.2.1. In addition to Theorem 1.2.1, we also get the following Theorem 2.1.1, which is a consequence of Proposition 2.4.2 below. Theorem 2.1.1 Under the hypotheses of Theorem 1.2.1, for every 0 ď ǫ ă 1,

lim inf dÑ8 µ R ! σ P RH 0 pX, E b L d q | N Σ pσq ě ǫc Σ V ol h L pRXq ? d n ) ą 0.
In fact, the positive lower bound given by Theorem 2.1.1 can be made explicit, see [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF].

Let us now denote, for every 1 ď k ď n, by H n,k the set of diffeormophism classes of smooth closed connected codimension k submanifolds of R n . For every i P t0, ¨¨¨, n ´ku and every rΣs P H n,k , we denote by b i pΣq " dim H i pΣ; Rq its i-th Betti number with real coefficients and by m i pΣq its i-th Morse number. This is the infimum over all Morse functions f on Σ of the number of critical points of index i of f . Then, we set c rΣs " sup ΣPrΣs c Σ and

Epm i q " ż RH 0 pX,EbL d qzR∆ d m i pRC σ qdµ R pσq.
Corollary 2.1.2 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n. Then, for every i P t0, ¨¨¨, n ´ku,

lim inf dÑ8 1 ? d n Epb i q ě `ÿ rΣsPH n,k c rΣs b i pΣq ˘V ol h L pRXq and likewise (7) lim inf dÑ8 1 ? d n Epm i q ě `ÿ rΣsPH n,k c rΣs m i pΣq ˘V ol h L pRXq. (8) 
Note that in Corollary 2.1.2, we could have chosen one representative Σ in each diffeomorphism class rΣs P H n,k and obtained the lower estimates [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF], [START_REF] Douglas | Critical points and supersymmetric vacua[END_REF] with constants c Σ instead of c rΣs . But it turns out that in the proof of Corollary 2.1.2 we are free to choose the representative we wish in every diffeomorphism class and that the higher c Σ is, the better the estimates [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF], [START_REF] Douglas | Critical points and supersymmetric vacua[END_REF] are. This is why we introduce the constant c rΣs , which is positive if and only if rΣs has a representative Σ with trivial normal bundle in R n , see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] and Lemma 2.2.3.

Closed affine real algebraic submanifolds

We introduce here the notion of regular pair, see Definition 2.2.1, and the constant c Σ associated to any isotopy class of smooth closed codimension k submanifold Σ of R n , see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. Definition 2.2.1 Let U be a bounded open subset of R n and P P Rrx 1 , ¨¨¨x n s k , 1 ď k ď n. The pair pU, P q is said to be regular if and only if 1. zero is a regular value of the restriction of P to U, 2. the vanishing locus of P in U is compact.

Hence, for every regular pair pU, P q, the vanishing locus of P does not intersect the boundary of U and it meets U in a smooth compact codimension k submanifold.

In the sequel, for every integer p and every vector v P R p , we denote by |v| its Euclidian norm, and for every integers p and q, and every linear map F : R p Ñ R q , we denote by F ˚the adjoint of F , defined by the property @v P R p , @w P R q , xF pvq, wy " xv, F ˚pwqy, and denote by }F } its operator norm, that is

}F } " sup vPR p zt0u |F pvq|{|v|.
We will also use the norm

}F } 2 " ? Tr F F ˚.
These norms satisfy }F } ď }F } 2 . Finally, if P " pP 1 , ¨¨¨, P k q P Rrx 1 , ¨¨¨, x n s k , we denote by }P } L 2 its L 2 -norm defined by

}P } 2 L 2 " ż C n |P pzq| 2 e ´π|z| 2 dz " k ÿ i"1 ż C n |P i pzq| 2 e ´π|z| 2 dz " k ÿ i"1 }P i } 2 L 2 . (9) 
Definition 2.2.2 For every regular pair pU, P q given by Definition 2.2.1, we denote by T pU,P q the set of pδ, ǫq P pR ˚q2 such that 1. there exists a compact subset K of U satisfying inf xPU zK |P pxq| ą δ, 2. for every y P U, |P pyq| ă δ ñ @w P R k , |pd |y P q ˚pwq| ě ǫ|w|.

Hence, for every regular pair pU, P q given by Definition 2.2.1, pδ, ǫq belongs to T pU,P q provided the δ-sublevel of P does not intersect the boundary of U while inside this δ-sublevel, P is in a sense ǫ-far from having a critical point. This quantifies how much transversally P vanishes in a way similar to the one used by Donaldson in [START_REF] Donaldson | Symplectic submanifolds and almost-complex geometry[END_REF].

Then, for every regular pair pU, P q, we set R pU,P q " maxp1, sup yPU |y|q, so that U is contained in the ball centered at the origin and of radius R pU,P q . Finally, we set

τ pU,P q " 24kρ R pU,P q }P } 2 L 2 inf pδ,ǫqPT pU,P q p 1 δ 2 `πn ǫ 2 q P R ˚, (10) 
where, for every

R ą 0, ρ R " inf R `gR , (11) 
g R : s P R ˚Þ Ñ pR `sq 2n s 2n e πpR`sq 2 , (

so that

e πR 2 ď ρ R ď 4 n e 4πR 2 . (13) 
This constant τ pU,P q is the main ingredient in the definition of c Σ , see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. The lower τ pU,P q is, the larger c Σ is and the better the estimates given by Theorem 1.2.1 are. Note that τ pU,P q remains small whenever δ, ǫ are not too small, that is when P vanishes quite transversally in U. Now, let Σ be a closed submanifold of codimension k of R n , not necessarily connected. We denote by I Σ the set of regular pairs pU, P q given by Definition 2.2.1, such that the vanishing locus of P in U contains a subset isotopic to Σ in R n . Lemma 2.2.3 Let Σ be a closed submanifold of codimension k ą 0 of R n , not necessarily connected. Then, I Σ is non empty if and only if the normal bundle of Σ in R n is trivial.

Proof. If pU, P q P I Σ , then P : R n Ñ R k contains in its vanishing locus a codimension k submanifold p Σ which is isotopic to Σ in R n . The normal bundle of Σ in R n is thus trivial if and only if the normal bundle of p Σ in R n is trivial. But the differential of P at every point of p Σ provides an isomorphism between the normal bundle of p Σ in R n and the product p Σ ˆRk . Conversely, if Σ has a trivial normal bundle in R n , it has been proved by Seifert [START_REF] Seifert | Algebraische Approximation von Mannigfaltigkeiten[END_REF] (see also [START_REF] Nash | Real algebraic manifolds[END_REF]) that there exist a polynomial map P : R n Ñ R k and a tubular neighbourhood U of Σ in R n such that P ´1p0q X U is isotopic to Σ in U. The strategy of the proof is to first find a smooth function U Ñ R k in a neighborhood of Σ which vanishes transversally along Σ and then to suitably approximate the coordinates of this function by some polynomial, see [START_REF] Seifert | Algebraische Approximation von Mannigfaltigkeiten[END_REF], [START_REF] Nash | Real algebraic manifolds[END_REF]. The pair pU, P q then belongs to I Σ by Definition 2.2.1. ✷ We then set c Σ " 0 if Σ does not have a trivial normal bundle in R n and c Σ " sup pU,P qPI Σ ˆmτ pU,P q 2 n V olpBpR pU,P q qq ˙otherwise,

where V olpBpR pU,P q qq denotes the volume of the Euclidean ball of radius R pU,P q in R n , and where, for every τ ą 0,

m τ " sup r ? τ ,`8r f τ , (15) 
with

f τ : a P r ? τ , `8r Þ Ñ 1 ? π p1 ´τ a 2 q ş `8 a e ´t2 dt.
For large values of m τ , as the ones which appear in §2.6, the estimate c Σ ě e ´2τ pU,P q (16) holds, compare (2.8) of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF].

Hörmander sections

Our key tool to prove Theorems 1.1.1 and 1.2.1 has been developped by L. Hörmander. We introduce in this §2.3 the material we need. For every positive d and every σ P RH 0 pX, E b L d q, we set

}σ} 2 L 2 ph L q " ż X }σ} 2 h E,d dV h L ,
where dV h L " ω n { ş X ω n , compare [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète[END_REF]. Let us choose a field of h L -trivializations of L on RX given by Definition 4 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. It provides in particular, for every x P RX, a local holomorphic chart ψ x : pW x , xq Ă X Ñ pV x , 0q Ă C n isometric at x, and a non-vanishing holomorphic section e of L defined over W x such that φ " ´log h L pe, eq vanishes at x and is positive elsewhere. Moreover, there exist a positive constant α 1 such that @y P V x , |φ ˝ψ´1

x pyq ´π|y| 2 | ď α 1 |y| 3 . ( 17 
)
Restricting W x if necessary, we choose a holomophic trivialization pe 1 , ¨¨¨, e k q of E |Wx which is orthonormal at x. This provides a trivialization pe

1 b e d , ¨¨¨, e k b e d q of E b L d |Wx .
In this trivialization, the restriction of σ to W x writes

σ " k ÿ j"1 f j σ e j b e d (18) 
for some holomorphic functions f j σ :

W x Ñ C, We write f σ " pf 1 σ , ¨¨¨, f k σ q and we set |σ| " |f σ |, (19) 
so that on W x , }σ} 2 h E,d " › › ř k j"1 f k σ e j › › 2 
h E e ´dφ and }σpxq} 2 h E,d " |σpxq| 2 since the frames pe 1 , ¨¨¨, e k q and e are orthonormal at the point x so that in particular φpxq " 0. For every z P W x , we define

}d |z σ} 2 " }d |y pf σ ˝ψ´1 x q} 2 , (20) 
}d |z σ} " }d |y pf σ ˝ψ´1 x q}, (21) 
and

pd |z σq ˚" pd |y pf σ ˝ψ´1 x qq ˚, (22) 
where y " ψ x pzq. Finally, we denote, for every small enough r ą 0, by Bpx, rq Ă W x the ball centered at x and of radius r for the flat metric of V x pulled back by ψ x , so that Bpx, rq " ψ ´1 x pBp0, rqq.

Proposition 2.3.1 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n. We choose a field of h L -trivializations on RX. Then, for every regular pair pU, P q, every large enough integer d, every x in RX and every local trivialization of E orthonormal at x, there exist σ pU,P q P RH 0 pX, E b L d q and an open subset U d of Bpx, R pU,P q ? d q X RX such that 1. }σ pU,P q } L 2 ph L q be equivalent to

}P } L 2 ?
δ L as d grows to infinity, where }P } L 2 is defined by ( 9) and δ L " ş X ω n , 2. pU d , σ ´1 pU,P q p0q X U d q be diffeomorphic to pU, P ´1p0q X Uq Ă R n , 3. for every pδ, ǫq P T pU,P q given by Definition 2.2.2, there exists a compact subset

K d Ă U d such that inf U d zK d |σ pU,P q | ą δ 2 ? d n ,
while for every y in U d ,

|σ pU,P q pyq| ă δ 2 ? d n ñ @w P R k , |pd |y σ pU,P q q ˚pwq| ě ǫ 2 ? d n`1 |w|. (24) 
Proof. We proceed as in the proof of Proposition 3.2 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. Let pU, P q be a regular pair, x P RX and d large enough. We set

U d " ψ ´1 x p 1 ? d Uq Ă Bpx, R pU,P q ? d q and K d " ψ ´1 x p 1 ? d Kq. Let χ : C n Ñ r0
, 1s be a smooth function with compact support in Bp0, R pU,P q q, which equals one in a neighbourhood of the origin. Then, let σ be the global smooth section of E b L d defined by σ |XzWx " 0 and

σ |Wx " pχ ˝ψx q `k ÿ j"1 P j p ? dψ x qe j b e d ˘,
where P " pP 1 , ¨¨¨, P k q is now considered as a function C n Ñ C k . From the L 2estimates of Hörmander, see [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF] or [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF], there exists a global section τ of E b L d such that Bτ " Bσ and }τ } L 2 ph E,d q ď } Bσ} L 2 ph E,d q for d large enough. This section τ can be chosen orthogonal to holomorphic sections and is then unique, in particular real. Moreover, there exist positive constants c 1 and c 2 , which do not depend on x, such that }τ } L 2 ph E,d q ď c 1 e ´c2 d and sup U d p|τ | `}τ } 2 q ď c 2 e ´c2 d , see Lemma 3.3 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. We then set σ pU,P q " ? d n pσ ´τ q. It has the desired properties as can be checked along the same lines as in the proof of Proposition 3.2 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF] and thanks to Lemma 2.3.2.✷ Lemma 2.3.2 Let U be an open subset of R n , 1 ď k ď n, f : U Ñ R k be a function of class C 1 and pδ, ǫq P pR ˚q2 be such that 1. there exists a compact subset K of U such that inf U zK |f | ą δ, 2. for every y in U, |f pyq| ă δ ñ @w P R k , |pd |y f q ˚pwq| ě ǫ|w|.

Then, for every function g : U Ñ R k of class C 1 such that sup U |g| ă δ and sup U }dg} ă ǫ, zero is a regular value of f `g and pf `gq ´1p0q is compact and isotopic to f ´1p0q in U.

Proof. The proof is analogous to the one of Lemma 3.4 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF], since }pdgq ˚} " }dg}. ✷

The following Lemma 2.3.3 establishes the existence of peak sections for higher rank vector bundles.

Lemma 2.3.3 (compare Lemma 1.2 of [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]) Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n. Let x P RX, pp 1 , ¨¨¨, p n q P N n , i P t1, ¨¨¨, ku and p 1 ą p 1 `¨¨¨`p n . There exists d 0 P N independent of x such that for every d ą d 0 , there exists σ P RH 0 pX, E b L d q with the property that }σ} L 2 ph L q " 1 and if py 1 , ¨¨¨, y n q are local real holomorphic coordinates in the neighbourhood of x and pe 1 , ¨¨¨e k q is a local real holomorphic trivialization of E orthonormal at x, we can assume that in a neighbourhood of x, σpy 1 , ¨¨¨, y n q " λy p 1 1 ¨¨¨y pn n e i b e d p1 `Opd ´2p 1 qq `Opλ|y|

2p 1 q, ( 25 
)
where λ ´2 " ş Bpx, log d ? d q |y p 1 1 ¨¨¨y pn n | 2 }e d } 2 h d L dV h L , with dV h L " ω n { ş X ω n
and where e is a local trivialization of L whose potential ´log h L pe, eq reaches a local minimum at x with Hessian πωp., i.q.

Proof. The proof goes along the same lines as the one of Lemma 1.2 of [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. Let η be a cut-off function on R with η " 1 in a neighbourhood of 0, and

ψ " pn `2p 1 qη `d}z} 2 log 2 d ˘log `d}z} 2 log 2 d
ȋn the coordinates z on X. Then, iB Bψ is bounded from below by ´Cω, where C is some uniform constant independent of d and x. Let s P C 8 pX, E b L d q be the real section defined by

s " η `d}z} 2 log 2 d ˘yp 1 1 ¨¨¨y pn n e i b e d .
Then, from Theorem 5.1 of [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète[END_REF], for d large enough not depending on x, there exists a real section u P C 8 pX, E b L d q such that Bu " Bs and satisfying the Hörmander

L 2 -estimates ż X }u} 2 h E,d e ´ψdV h L ď ż X } Bs} 2 h E,d e ´ψ dV h L .
The presence of the singular weight e ´ψ forces the jets of u to vanish up to order 2p 1 at x. As in Lemma 1.2 of [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF], we conclude that the real holomorphic section σ " ps ´uq{}s ´u} L 2 ph E,d q satisfies the required properties. ✷

In this first section we will only need peak sections given by Lemma 2.3.3 with ř n i"1 p i " 0, whereas in the second one we will need those given with ř n i"1 p i ď 2. Definition 2.3.4 For i P t1, ¨¨¨, ku, let σ i 0 be the section given by Lemma 2.3.3 with p 1 " 3 and p 1 " ¨¨¨" p n " 0. Likewise, for every j P t1, ¨¨¨, nu, let σ i j be a section given by ( 25) with p 1 " 3, p j " 1 and p l " 0 for l P t1, ¨¨¨, nuztju. Finally, for every 1 ď l ď m ď n, let σ i lm be a section given by ( 25) with p 1 " 3, p j " 0 for every j P t1, ¨¨¨, nuztl, mu and p l " p m " 1 if l ‰ m, while p l " 2 otherwise. The asymptotic values of the constants λ in (25) are given by Lemma 2.3.5 (compare Lemma 2.1 of [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]).

Lemma 2.3.5 For every i P t1, ¨¨¨, ku, the sections given by Definition 2.3.4 satisfy

σ i 0 { a δ L d n " dÑ8 e i b e d `Op}y} 6 q, (26) 
@j P t1, ¨¨¨, nu, σ i j { a πδ L d n`1 " dÑ8 y j e i b e d `Op}y} 6 q, ( 27 
) @l, m P t1, ¨¨¨, nu, l ‰ m, σ i lm { `πa δ L d n`2 ˘" dÑ8 y l y m e i b e d `Op}y} 6 q, ( 28 
)
and @l P t1, ¨¨¨, nu,

σ i ll { `πa δ L d n`2 ˘" dÑ8 1 ? 2 y 2 l e i b e d `Op}y} 6 q. ( 29 
)
Moreover, these sections are asymptotically orthonormal as d grows to infinity, as follows from Lemma 2.3.6.

Lemma 2.3.6 (compare Lemma 3.1 of [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]) For every x P RX, the sections pσ i j q 1ďiďk 0ďjďn and pσ i lm q 1ďiďk 1ďlďmďn given by Definition 2.3.4 have L 2 -norm equal to one and their pairwise scalar product are dominated by a Opd ´1q which does not depend on x. Likewise, their scalar products with every section of RH 0 pX, E b L d q of L 2 -norm equal to one and whose 2-jet at x vanishes is dominated by a Opd ´3{2 q which does not depend on x.

Proof. The proof goes along the same lines as the one of Lemma 3.1 of [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. ✷ Lemma 2.3.7 Denote by v the density of dV h L " ω n { ş X ω n with respect to the volume form dx chosen in [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète[END_REF], so that dV h L " vpxqdx. Then the sections given by Defintion 2.3.4 times a vpxq are still asymptotically orthonormal for [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète[END_REF].

Proof. This is a direct consequence of Lemmas 2. 

Proof of Theorem 1.2.1

We first compute the expected local C 1 -norm of sections.

Proposition 2.4.1 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n. We equip RX with a field of h L -trivializations, see §2.3. Then, for every positive R,

lim sup dÑ8 sup xPRX 1 d n E `sup Bpx, R ? d q |σ| 2 vpxq ˘ď 6kδ L ρ R and lim sup dÑ8 sup xPRX 1 d n`1 E `sup Bpx, R ? d q }dσ} 2 2 vpxq ˘ď 6πnkδ L ρ R ,
where v is given by Lemma 2.3.7 and ρ R is given by [START_REF] Fyodorov | Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices[END_REF], see [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] and [START_REF] Lerario | Statistics on Hilbert's sixteenth problem[END_REF] for the definitions of |σ| and }dσ} 2 .

Note that a global estimate on the sup norm of L 2 random holomorphic sections is given by Theorem 1.1 of [START_REF] Shiffman | Random polynomials of high degree and Levy concentration of measure[END_REF].

Proof. The proof goes along the same lines as the proof of Proposition 3.5 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. We first establish from the mean value inequality that for every x P RX, R ą 0 and s ą 0,

E `sup Bpx, R ? d q |σ| 2 ˘ď 1 V olpBp s ? d qq ż Bpx, R`s ? d q
Ep|σ| 2 qψ x dy for d large enough not depending on x. Then, for every z P Bpx, R`s ? d q X RX, we write σ " ř k i"1 a i σ i 0 `τ , where τ P RH 0 pX, E b L d q vanishes at z and pσ i 0 q i"1,¨¨¨k are the peak sections at z given by Definition 2.3.4. In particular, by Lemma 2.3.5, at the point z, for every i " 1, ¨¨¨, k,

}σ i 0 } h E,d " dÑ8 ? δ L d n .
Moreover, since pe 1 , ¨¨¨, e n q is orthonormal at x,

|σ i 0 pzq| 2 " }σ i 0 pzq} 2 h E,d p1 `Op|z ´x|qe dφpzq ď δ L d n e πpR`sq 2 p1 `op1qq
from the inequalities [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF], where the opd n q can be chosen not to depend on x P RX. Suppose that dy " dV h L . Then, by Lemma 2.3.6, the peak sections are asymptotically orthogonal to each other for the scalar product defined by [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète[END_REF], and asymptotically orthogonal to the space of sections τ vanishing at x. We deduce that Ep|σpzq| 2 q " Ep ˇˇk ÿ

i"1

a i σ i 0 ˇˇ2 q p1 `op1qq " p k ÿ i"1 |σ i 0 pzq| 2 q 1 ? π ż R a 2 e ´a2 da p1 `op1qq ď 1 2 kδ L d n e πpR`sq 2 p1 `op1qq.
When z R Bpx, R`s ? d q X RX, the space of real sections vanishing at z gets of real codimension 2k in RH 0 pX, E b L d q. Let xθ i 1 , θ i 2 , i P t1, ¨¨¨, kuy be an orthonormal basis of its orthogonal complement. From Remark 2.3.8, for every i P t1, ¨¨¨, ku, j P t1, 2u, lim sup

dÑ8 1 d n |θ i j pzq| 2 ď 2δ L e πpR`sq 2 ,
an upper bound which does not depend on z. We deduce that

Ep|σpzq| 2 q " ż R 2k | k ÿ i"1 pa i 01 θ i 1 pzq `ai 02 θ i 2 pzqq| 2 e ´řk i"1 pa i 01 q 2 `pa i 02 q 2 1 π k Π k i"1 da i 01 da i 02 ď 2δ L d n e πpR`sq 2 p1 `op1qq k ÿ i"1 ż R 2 `pa i 01 q 2 `pa i 02 q 2 `2|a i 01 ||a i 02 | ˘. . . . . . 1 π e ´pa i 01 q 2 ´pa i 02 q 2 da i 01 da i 02 ď 6δ L d n e πpR`sq 2 p1 `op1qq.
We deduce the first part of Proposition 2.4.1 by taking the supremum over RX, choosing s which minimize g R pU,P q and taking the lim sup as d grows to infinity.

In general, the Bergman section at x for the L 2 -product (6) associated to the volume form dx is equivalent to the Bergman section σ 0 at x for dV h times a vpxq, see Lemma 2.3.7. The same holds true for the σ j 's, and the result follows by replacing δ L with vpxqδ L .

The proof of the second assertion goes along the same lines, see the proof of Proposition 3.5 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF] (and [START_REF] Shiffman | Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds[END_REF] for similar results). ✷

As in [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF], we then compute the probability of presence of closed affine real algebraic submanifolds, inspired by an approach of Nazarov and Sodin [START_REF] Nazarov | On the number of nodal domains of random spherical harmonics[END_REF], see also [START_REF] Lerario | Statistics on Hilbert's sixteenth problem[END_REF]. Let pU, P q be a regular pair given by Definition 2.2.1 and Σ " P ´1p0q Ă U. Then, for every x P RX, we set B d " Bpx, R pU,P q ? d qXRX, see [START_REF] Mehta | Random matrices[END_REF], and denote by P rob x,Σ pE bL d q the probability that σ P RH 0 pX, E b L d q has the property that σ ´1p0q X B d contains a closed submanifold Σ 1 such that the pair pB d , Σ 1 q be diffeomorphic to pR n , Σq. That is,

P rob x,Σ pE b L d q " µ R σ P RH 0 pX, E b L d q | pσ ´1p0q X B d q Ą Σ 1 , pB d , Σ 1 q " pR n , Σq ( .
We then set P rob Σ pE b L d q " inf xPRX P rob x,Σ pE b L d q.

Proposition 2.4.2 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n. Let pU, P q be a regular pair given by Definition 2.2.1 and Σ " P ´1p0q Ă U. Then,

lim inf dÑ8 P rob Σ pE b L d q ě m τ pU,P q , see (15). 
Proof. The proof is the same as the one of Proposition 3.6 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF] and is not reproduced here. ✷

The proof of Theorem 1.2.1 (resp. Corollary 2.1.2) then just goes along the same lines as the one of Theorem 1.2 (resp. Corollary 1.3) of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF].

Proof of Theorem 2.1.1

Let pU, P q be a regular pair given by Definition 2.2.1. For every d ą 0, let Λ d be a maximal subset of RX with the property that two distinct points of Λ d are at distance greater than 2R pU,P q ?

d . The balls centered at points of Λ d and of radius R pU,P q ? d are disjoints, whereas the ones of radius 2R pU,P q ? d cover RX. Note that if we use the local flat metric given by a trivial h L -trivialization, then the associated lattice has asymptotically the same number of balls than Λ d as d grows to infinity, so we can suppose from now on that the balls are defined for this local metric. For every σ P RH 0 pX, E b L d q, denote by N Σ pΛ d , σq the number of x P Λ d such that the ball B d " Bpx, R pU,P q ? d q X RX contains a codimension k submanifold Σ 1 with Σ 1 Ă σ ´1p0q and pB d , Σ 1 q diffeomorphic to pR n , Σq. By definition of N Σ pσq, N Σ pΛ d , σq ď N Σ pσq, see §1.2, while from Proposition 2.4.2, for every 0 ă ǫ ă 1,

|Λ d |m τ pU,P q ď ÿ xPΛ d P rob x,Σ pE b L d q ď |Λ d | ÿ j"1 jµ R tσ|N Σ pΛ d , σq " ju ď ǫm τ pU,P q |Λ d |µ R σ|N Σ pΛ d , σq ď ǫm τ pU,P q |Λ d | ( `|Λ d |µ R σ|N Σ pΛ d , σq ě ǫm τ pU,P q |Λ d | ( .
We deduce that p1 ´ǫqm τ pU,P q ď µ R σ| N Σ pσq ě ǫm τ pU,P q |Λ d | (

and the result follows by choosing a sequence pU p , P p q p P I Σ such that Recall the following.

lim pÑ8 m τ pUp ,Ppq |Λ d | " c Σ V ol h L pRXq ? d n , see (14) 
Lemma 2.6.2 (Lemma 2.2 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF])

If P " ř pi 1 ,¨¨¨,inqPN n a i 1 ,¨¨¨,in z i 1 1 ¨¨¨z in n P Rrz 1 , ¨¨¨, z n s, then }P } 2 L 2 " ż C n |P pzq| 2 e ´π|z| 2 dz " ÿ pi 1 ,¨¨¨,inqPN n |a i 1 ,¨¨¨,in | 2 i 1 ! ¨¨¨i n ! π i 1 `¨¨¨`in .
Proof of Proposition 2.6.1.

For every n ą 0, we set P k px 1 , ¨¨¨, x n q " ř n j"k x 2 j ´1. For every x P R n and δ ą 0,

|P k pxq| ă δ ô 1 ´δ ă n ÿ i"k x 2 i ă 1 `δ ñ }d |x P k } 2 2 " 4 n ÿ i"k x 2 i ą 4p1 ´δq.
Moreover from Lemma 2.6.2,

}P k } 2 L 2 " 1 `2pn ´k `1q π 2 ď n ´k `2.
Now set P S " pP 1 , ¨¨¨, P k q with P j pxq " x j for 1 ď j ď k ´1, so that

}P S } 2 L 2 ď pk ´1q{π `pn ´k `2q ď n `1 ď 2n.
Since for every w " pw 1 , ¨¨¨, w k q P R k and every x P R n ,

|d |x P S pwq| 2 " k´1 ÿ i"1 w 2 i `w2 k }d |x P k } 2 2 ,
we get that }d |x P S } 2 ě min `1, 4p1 ´δq ˘if |P k pxq| ă δ. Choose

U S " tpx 1 , ¨¨¨, x n q P R n | n ÿ j"1 x 2 j ă 4u. Then if 0 ă δ ă 1, K δ " # x P U S | 1 ´δ ď n ÿ i"k x 2 i ď 1 `δ and k´1 ÿ i"1 x 2 k ď 1 ´1 2 p1 `δq 2 +
is compact in U S and taking R 2 pU S ,P S q " 4, we see that the pair pU S , P S q is regular in the sense of Definition 2.2.1. The submanifold P ´1 S p0q Ă U S is isotopic in R n to the unit sphere S n´k . We deduce that p3{4, 1q P T pU S ,P S q . From ( 10) and ( 13) we deduce τ pU S ,P S q ď 24k4 n e 16π 2np2 `πnq ď e 53`5n .

The estimate c S n´1 ě expp´e 54`5n q follows then from [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. ✷ Proposition 2.6.3 For every 1 ď k ď n and every 0 ď i ď n ´k, c S i ˆSn´i´k ě expp´e 82`6n q.

Proof. For every 1 ď k ď n and every 0 ď i ď n ´k, we set

Q k ppx 1 , ¨¨¨, x i`1 q, py 1 , ¨¨¨, y n´i´1 qq " `|x| 2 ´2˘2 `n´k´i ÿ j"1 y 2 j ´1.
For every px, yq P R i`1 ˆRn´i´1 and 0 ă δ ă 1{2,

|Q k px, yq| ă δ ô 1 ´δ ă p|x| 2 ´2q 2 `n´k´i ÿ j"1 y 2 j ă 1 `δ ñ }d |px,yq Q k } 2 2 " 4 n´k´i ÿ j"1 y 2 j `16|x| 2 p|x| 2 ´2q 2 ,
with |x| 2 ą 2 ´?1 `δ ą 1{2. Thus }d |px,yq Q k } 2 2 ą 4p1 ´δq, compare Lemma 2.6 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. Moreover from Lemma 2.6.2, }Q k } 2 L 2 ď 13n 2 , compare §2.3.2 of [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. Now set Q " pQ 1 , ¨¨¨, Q k q with Q j px, yq " y n´i´j for 1 ď j ď k ´1, so that

}Q} 2 L 2 ď pk ´1q{π `13n 2 ď 13pn `1q 2 .
For every w " pw 1 , ¨¨¨, w k q P R k and every px, yq P R i`1 ˆRn´i´1 ,

|d |px,yq Q ˚pwq| 2 " k´1 ÿ i"1 w 2 i `w2 k }d |px,yq Q k } 2 2 ą minp1, 4p1 ´δqq|w| 2 if |Q k px, yq| ď δ ă 1{2. We choose U " tpx, yq P R i`1 ˆRn´i´1 | |x| 2 `|y| 2 ă 6u, K δ " # px, yq P U | 1 ´δ ď p|x| 2 ´2q 2 `n´k´i ÿ j"1 y 2 j ď 1 `δ and k´1 ÿ j"1 y 2 n´i´j ď 1 ´δ+ ,
and R 2 pU,Qq " 6. The pair pU, Qq is regular in the sense of Definition 2.2.1 and Q ´1p0q Ă U is isotopic in R n to the product S i ˆSn´i´k of unit spheres in R i`1 and R n´i´k`1 . We deduce that for every positive ǫ, p1{2 ´ǫ, 1q P T pU,Qq and from ( 10) and ( 13) that τ pU,Qq ď 24k4 n e 24π 13pn `1q 2 p4 `πnq ď e 81`6n .

The estimate c S i ˆSn´i´k ě expp´e 82`6n q follows then from [START_REF] Gayet | Lower estimates for the expected betti numbers of random real hypersurfaces[END_REF]. ✷ 3 Upper estimates for the expected Betti numbers

Statement of the results

For every 1 ď k ď n, we denote by Grpk ´1, n ´1q the Grassmann manifold of pk ´1q-dimensional linear subspaces of R n´1 . The tangent space of Grpk ´1, n ´1q at every H P Grpk ´1, n ´1q is canonically isomorphic to the space of linear maps LpH, H K q from H to its orthogonal H K and we equip it with the norm

A P LpH, H K q Þ Ñ }A} 2 " a T rpA ˚Aq P R `.
The total volume of Grpk ´1, n ´1q for this Riemannian metric is denoted by V olpGrpk ´1, n ´1qq and we set

V k´1,n´1 " 1 ? π pk´1qpn´kq V olpGrpk ´1, n ´1qq
its volume for the rescaled metric A P LpH, H K q Þ Ñ 1 ? π }A} 2 . Likewise, we equip M k´1 pRq with the Euclidean norm A P M k´1 pRq Þ Ñ }A} 2 " a T rpA ˚Aq and set dµpAq " 1 π k´1 e ´}A} 2 2 dA the associated Gaussian measure on M k´1 pRq. Then, we set

E k´1 p| det | n´k`2 q " ż M k´1pRq
| det A| n´k`2 dµpAq.

Remark 3.1.1 1. The orthogonal group O n´1 pRq acts transitively on the Grassmannian Grpk ´1, n ´1q with fixators isomorphic to O k´1 pRq ˆOn´k pRq. We deduce that

V ol `Grpk ´1, n ´1q ˘" V olpO n´1 pRqq{ `V olpO k´1 pRqq ˆV ol `On´k pRqq " ˆn ´1 k ´1˙? π pk´1qpn´kq ś k´1 j"1 Γp1 `j{2q ś n´1 j"n´k`1 Γp1 `j{2q
, where Γ denotes the Gamma function of Euler, see for example Lemma 3.4 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF].

2. From formula (15.4.12) of [START_REF] Mehta | Random matrices[END_REF] follows that

E k´1 p| det | n´k`2 q " k´1 ź j"1 Γp n´k`2`j 2 q Γp j 2 q
, so that V k´1,n´1 E k´1 p| det | n´k`2 q " pn´1q! pn´kq!2 k´1 .

We now keep the framework of §2.1. Let us denote, for every i P t0, ¨¨¨, n ´ku, by b i pRC σ , Rq " dim H i pRC σ , Rq the i-th Betti number of RC σ and by m i pRC σ q " inf f Morse on RCσ |Crit i pf q| its i-th Morse number, where |Crit i pf q| denotes the number of critical points of index i of f . We then denote by

Epb i q " ż RH 0 pX,EbL d qzR∆ d b i pRC σ , Rqdµ R pσq and Epm i q " ż RH 0 pX,EbL d qzR∆ d m i pRC σ qdµ R pσq
their expected values. The aim of §3 is to prove the following Theorem 3.1.2, see [START_REF] Auffinger | Random matrices and complexity of spin glasses[END_REF] for the definition of e R pi, n ´k ´iq.

Theorem 3.1.2 Let X be a smooth real projective manifold of dimension n, pL, h L q be a real holomorphic Hermitian line bundle of positive curvature over X and pE, h E q be a rank k real holomorphic Hermitian vector bundle, with 1 ď k ď n ´1. Then, for every 0 ď i ď n ´k,

lim sup dÑ8 1 ? d n Epm i q ď 1 Γp k 2 q V k´1,n´1 E k´1 p| det | n´k`2 qe R pi, n ´k ´iqV ol h L pRXq.
Note that the case k " n is covered by Theorems 1.1.1 and 3.1.3. When k " 1 and E " O X , V ol F S pRP k q " ? π, see Remark 2.14 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], so that Theorem 3.1.2 reduces to Theorem 1.0.1 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] in this case. The proof of Theorem 3.1.2 actually goes along the same lines as the one of Theorem 1.1 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. The strategy goes as follows. We fix a Morse function p : RX Ñ R. Then, almost surely on σ P RH 0 pX, E b L d q, the restriction of p to RC σ is itself a Morse function. For i P t0, ¨¨¨, n ´ku, we denote by Crit i pp |RCσ q the set of critical points of index i of this restriction and set

ν i pRC σ q " 1 ? d n ÿ xPCrit i pp |RCσ q δ x if n ą k and ν 0 pRC σ q " 1 ? d n ř xPRCσ δ x if k " n. We then set Epν i q " ż RH 0 pX,EbL d q ν i pRC σ qdµ R pσq
and prove the following equidistribution result (compare Theorem 1.2 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]).

Theorem 3.1.3 Under the hypotheses of Theorem 3.1.2, let p : RX Ñ R be a Morse function. Then, for every i P t0, ¨¨¨, n ´ku, the measure Epν i q weakly converges to

1 Γp k 2 q V k´1,n´1 E k´1 p| det | n´k`2 qe R pi, n ´k ´iqdvol h L
as d grows to infinity. When k " n, Epν 0 q converges weakly to We set

π 1 : pσ, xq P I i Þ Ñ σ P RH 0 pX, E b L d q and (31) π 2 : pσ, xq P I i Þ Ñ x P RX. (32) 
Then, for every pσ 0 , x 0 q P ppRH 0 pX, E b L d qzR∆ d p q ˆpRXzCritppqqq, π 1 is invertible in a neighbourhood RU of σ 0 , defining an evaluation map at the critical point

ev pσ 0 ,x 0 q : σ P RU Þ Ñ π 2 ˝π´1 1 pσq " x P Crit i pp |RCσ q X RV,
where RV denotes a neighbourhood of x 0 in RX, compare §2.4.2 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. We denote by d |σ 0 ev K pσ 0 ,x 0 q the restriction of its differential map d |σ 0 ev pσ 0 ,x 0 q at σ 0 to the orthogonal complement of π 1 pπ ´1 2 px 0 qq in RH 0 pX, E b L d q. Proposition 3.2.1 Under the hypotheses of Theorem 3.1.3,

Epν i q " 1 ? d n pπ 2 q ˚pπ 1 dµ R q.
Moreover, at every point x P RXzCritppq,

pπ 2 q ˚pπ 1 dµ R q |x " 1 ? π n ż π 1 pπ ´1 2 pxqq | det d |σ ev K pσ,xq | ´1dµ R pσqdvol h L .
Proof. The proof is the same as in the one of Proposition 2.10 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] and is not reproduced here. ✷

Fix x P RXzCritppq. Then π 1 pπ ´1 2 pxqq is open in a subspace of RH 0 pX, E b L d q. Namely, π 1 pπ ´1 2 pxqq " σ P RH 0 pX, E b L d qzR∆ d p | σpxq " 0 and (33) 
Dλ P RpE b L d q |x , λ ˝∇|x σ " d |x p ( , (34) 
where RppE b L d q |x q is the real part of the fibre pE b L d q |x . We deduce a well-defined map

ρ x : π 1 pπ ´1 2 pxqq Ñ Grpn ´k, ker d |x pq ˆpRpE b L d q |x zt0uq (35) σ Þ Ñ pker ∇ |x σ, λq. (36) 
For every σ P RH 0 pX, E b L d qzR∆ d p , the tangent space of π 1 `π´1 2 pxq ˘at σ reads

T σ π 1 pπ ´1 2 pxqq " 9 σ P RH 0 pX, E b L d q | 9
σpxq " 0 and

D 9 λ P RpE b L d q |x | 9 λ ˝∇|x σ `λ ˝∇ 9 σ |x " 0 ( .
Likewise, for every λ P RpE b L d q |x zt0u, the tangent space of ρ ´1 x pGrpn ´k, ker d |x pq tλuq at σ reads

T σ ρ ´1 x pGrpn ´k, ker d |x pq ˆtλuq " t 9 σ P RH 0 pX, E b L d q | 9
σpxq " 0 and λ ˝∇|x 9 σ " 0u.

Finally, for every K P Grpn ´k, ker d |x pq, the tangent space of ρ ´1 x pK, λq at σ reads

T σ ρ ´1 x pK, λq " t 9 σ P RH 0 pX, E b L d q| 9 σpxq " 0, ∇ |x 9 σ |K " 0 and λ ˝∇|x 9 σ " 0u.
Let us choose local real holomorphic coordinates px 1 , ¨¨¨, x n q of X near x such that pB{Bx 1 , ¨¨¨, B{Bx n q be orthonormal at x, with d |x p being colinear to dx 1 and such that K " ker ∇ |x σ " xB{Bx k`1 , ¨¨¨, B{Bx n y. Let us choose a local real holomorphic trivialization pe 1 , ¨¨¨, e k q of E near x that is orthonormal at x and be such that ker λ |x " xe 2 b e d , ¨¨¨, e k b e d y |x . For d large enough, we define the following subspaces of RH 0 pX, E b L d q:

H x " xpσ i 0 q 1ďiďk , pσ 1 j q k`1ďjďn y (37)

H λ " xpσ 1 j q 1ďjďk y (38) 
H K " xpσ i j q 2ďiďk k`1ďjďn y, (39) 
where the sections pσ i 0 q 1ďiďk and pσ i j q 1ďiďk 1ďjďn of RH 0 pX, E b L d q are given by Lemma 2.3.3 and Definition 2.3.4.

H K is a complement of T σ ρ ´1 x pK, λq in T σ ρ ´1 x pGrpn ´k, ker d |x pq ˆtλuq, H λ is a complement of T σ ρ ´1 x pGrpn ´k, ker d |x pq ˆtλuq in T σ π 1 pπ ´1 2 pxqq and H x is a comple- ment of T σ π 1 pπ ´1 2 pxqq in RH 0 pX, E b L d q.
Then, from Lemmas 2.3.6 and 2.3.7, up to a uniform rescaling by a vpxq, these complements are asymptotically orthogonal and their given basis orthonormal. Hence, we can assume from now on that v " 1. Lemma 3.2.2 Under the hypotheses of Theorem 3.1.3, let pσ, xq P I i and λ P RpE b L d q |x zt0u such that λ ˝∇|x σ " d |x p. Then, λ ˝∇2 σ |Kx " ∇ 2 pp |RCσ q |x , so that the quadratic form λ ˝∇2 σ |Kx is non-degenerated of index i.

Proof. The proof is similar to the one of Lemma 2.9 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. ✷

Computation of the Jacobian determinants

Jacobian determinant of ρ x

Under the hypotheses of Theorem 3.1.3, let pσ, xq P I i . We set pK, λq " ρ x pσq and denote by d |σ ρ H

x the restriction of d |σ ρ x to H K 'H λ . We then denote by detpd |σ ρ H x q the Jacobian determinant of d |σ ρ H

x computed in the given basis of H λ and H K , see ( 38), (39) and in orthonormal basis of T K Grpn ´k, ker d |x pq ˆRpE b L d q |x . By assumption, the operator ∇ |x σ does not depend on the choice of a connection ∇ on E b L d and is onto. We denote by ∇ |x σ K its restriction to the orthogonal

K K of K " ker ∇ |x σ, ∇ |x σ K : K K Ñ RpE b L d q |x .
Likewise, for every p 9 σ K , 9 σ λ q P H K 'H λ , the operators ∇ |x 9 σ K and ∇ |x 9 σ λ do not depend on the choice of a connection ∇ on E b L d . Finally, we write at a point y P RX near x σpyq "

k ÿ i"1 `ai 0 σ i 0 `n ÿ j"1 a i j σ i j `ÿ 1ďlďmďn a i lm σ i lm ˘pyq `op|y| 2 q,
where pa i 0 q, pa i j q and pa i lm q are real numbers and pσ i 0 q, pσ i j q and pσ i lm q are given by Definition 2.3.4. From Lemma 2.3.5 and (33), we deduce that a i 0 " 0 " a 1 j for 1 ď i ď k and k `1 ď j ď n, and that

}λ} a πδ L ? d n`1 |a 1 1 | " }d |x p} `op1q, (40) 
where the op1q term is uniformly bounded over RX.

Lemma 3.3.1 Under the hypotheses of Theorem 3.1.3, let pσ, xq P I i and pK, λq " ρ x pσq. Then,

d |x ρ H x writes H K ' H λ Ñ T K Grpn ´k, ker d |x pq ˆRpE b L d q |x p 9 σ K , 9 σ λ q Þ Ñ `´p∇ |x σ K q ´1 | ker λ ˝∇|x 9 σ K|K , ´λ ˝∇|x 9 σ λ ˝p∇ |x σ K q ´1˘. Moreover, | det d |σ ρ H x | ´1 " |a 1 1 | }λ} k | detpa i j q 2ďi,jďk | n´k`1 p1 `op1qq
, where the op1q term is uniformly bounded over RX.

Proof. Let p 9 σ K , 9 σ λ q P H K ' H λ and pσ s q sPs´ǫ,ǫr be a path of π 1 pπ ´1 2 pxqq such that σ 0 " σ and 9 σ 0 " 9 σ K `9 σ λ . Then, for every s Ps ´ǫ, ǫr and every v s P ker ∇ |x σ s , there exists λ s P RpE b L d q |x such that " ∇ |x σ s pv s q " 0 and λ s ˝∇|x σ s " d |x p.

By derivation, we deduce " ∇ |x 9 σ 0 pv 0 q `∇|x σp 9 v 0 q " 0 and 9 λ 0 ˝∇|x σ `λ ˝∇|x 9 σ 0 " 0.

By setting 9 v the orthogonal projection of 9 v 0 onto K K , we deduce that " 9 v " ´p∇ |x σ K q ´1 ˝∇|x 9 σ K pv 0 q and 9 λ 0 " ´λ ˝∇|x 9

σ λ ˝p∇ |x σ K q ´1.
The first part of Lemma 3.3.1 follows. Now, recall that d |x p is colinear to dx 1 , that K is equipped with the orthonormal basis pB{Bx k`1 , ¨¨¨, B{Bx n q, K K with the orthonormal basis pB{Bx 1 , ¨¨¨, B{Bx k q, and that ker λ |x is spanned by the orthonormal basis pe 2 , ¨¨¨, e k q |x . From Lemma 2.3.3, the map

9 σ K P H K Þ Ñ ∇ |x 9
σ K|K P LpK, ker λq just dilates the norm by the factor ? πδ L d n`1 p1 `op1qq, where the op1q term is uniformly bounded over RX. Now, since the matrix of the restriction of ∇ |x σ K to K K X ker d |x p in the given basis of K K X ker d |x p and ker λ equals a πδ L d n`1 pa i j q 2ďi,jďk `op ?

d n`1 q,
where the op ? d n`1 q term is uniformly bounded over RX. We deduce that the Jacobian determinant of the map

M P LpK, ker λq Þ Ñ p∇ |x σ K | ker λ q ´1 ˝M P LpK, K K X ker d |x pqq equals `pa πδ L d n`1 q k´1 | detpa i j q 2ďi,jďk |p1 `op1qq ˘k´n .
The Jacobian determinant of the map

9 σ K P H K Þ Ñ p∇ |x σ K q ´1 | ker λ ˝∇|x 9 σ K|K P T K Grpn ´k, ker d |x pq
thus equals | detpa i j q 2ďi,jďk | k´n `op1q, where the op1q is uniformly bounded over RX. Likewise, from Lemma 2.3.3, the map 9 σ λ P H λ Þ Ñ λ ˝∇|x 9 σ λ P pK K q just dilates the norm by a factor ? πδ L d n`1 }λ} `op ? d n`1 q, where the op ? d n`1 q is uniformly bounded over RX, while the Jacobian determinant of the map

M P pK K q ˚Þ Ñ M ˝p∇ |x σ K q ´1 P RpE b L d q |x
equals p ? πδ L ? d n`1 q ´k| detpa i j q 1ďi,jďk | ´1p1 `op1qq so that the Jacobian determinant of the map 9 

σ λ P H λ Þ Ñ λ ˝∇|x 9 σ λ ˝p∇ |x σ K q ´1 P RpE b L d q |x equals }λ} k | detpa i j q 1ďi,jďk | ´1 `
k ÿ i"1 `ai 0 σ i 0 `n ÿ j"1 a i j σ i j `ÿ 1ďlďmďn a i lm σ i lm ˘pyq `op|y| 2 q, (41) 
where a i 0 , a i j and a i lm are real numbers. We then set, for 1 ď l, m ď n, ã1 ll " ? 2a Proof. We choose a torsion free connection ∇ T X (resp. a connection ∇ EbL 

Recall that T x RX is the direct sum K ' K K , where K " ker ∇ |x σ. We write 9

x " p 9 x K , 9

x K K q the coordinates of 9

x in this decomposition. From the first equation we deduce, keeping the notations of §3.3.1, that 9

x K K " ´p∇ |x σ K q ´1p 9 σpxqq. From Lemma 2.3.3, the evaluation map at x

9 σ P xpσ i 0 q 1ďiďk y Þ Ñ 9 σpxq P E b L d |x
just dilates the norm by a factor ? δ L d n p1 `op1qq, , where the op1q term is uniformly bounded over RX, while | detp∇ |x σ K q| " p a πδ L d n`1 q k | detpa i j q 1ďi,jďk |p1 `op1qq. We deduce by composition that the Jacobian of the map 

9 σ P xpσ i 0 q 1ďiďk y Þ Ñ 9 x K K " ´p∇ |x σ K q ´1p 9 σpxqq equals `?π k d k | detpa i j q 2ďi,
: K Ñ K ˚equals p}λ}π a δ L d n`2 q n´k | detpã 1 lm q k`1ďl,mďn |p1 `op1qq. (44) 
Here, the op1q term is no more uniformly bounded over RX though. Indeed, from Lemma 2.3.5 and (41),

λ ˝∇2 σ |K " a 1 1 p}λ} a πδ L d n`1 qp∇ T X dx 1 q `ÿ 1ďlďmďn ã1 lm p}λ} a πδ L d n`2 qdx l b dx m ,
since the relation λ ˝∇|x σ " d |x p imposes that a 1 j vanishes for j ą 1. Moreover, since dp " ř n i"1 α i dx i , with α 2 pxq " ¨¨¨" α n pxq " 0 and |α 1 pxq| " }d |x p}, we get that

0 " ∇ T X pdpq |K " α 1 p∇ T X dx 1 q |K `n ÿ i"1 pdα i b dx i q |K , so that }∇ T X dx 1|K } " 1 }d |x p} } ř n i"1 dα i b dx i }
has a pole of order one at x. In formula (44), the op1q term has thus a pole of order at most n ´k near the critical points of p.

We deduce that the Jacobian determinant of the map 9 σ P xpσ 1 j q k`1ďjďn y Þ Ñ 9

x K " ´pλ ˝∇2 σ |K q ´1 ˝pλ ˝∇|x 9 σ |K q P K equals p ? π n´k d n´k | detpã 1 lm q k`1ďl,mďn |q ´1p1 `op1qq, up to sign, where op1q term has a pole of order at most n ´k near the critical points of p. The result follows. ✷ 

Epν i q " 1 ? π n d n `żπ 1 pπ ´1 2 pxqq | det d |σ ev K pσ,xq | ´1dµ R pσq ˘dvol h L .
From the coarea formula (see [START_REF] Federer | Geometric measure theory[END_REF]), we likewise deduce that

Epν i q " 1 ? π n d n `żGrpn´k,ker d |x pqˆRpEbL d q |x zt0u e ´pa 1 1 q 2 dK ^dλ ? π pn´kqpk´1q`k ... ... ż ρ ´1 x pK,λq | det d |σ ev K pσ,xq | ´1| det d |σ ρ K x | ´1dµ R pσq ˘dvol h L ,
since with the notations (41), σ P ρ ´1 x pK, λq if and only if @i P t1, ¨¨¨, ku and @j P tk `1, ¨¨¨, nu, a i 0 " 0 " a i j while @j ě 2, a 1 j " 0 and |a 

| detpa i j q 2ďi,jďk | n´k`2 dµpa i j q ż Sym R pi,n´k´iq | detpã 1 lm q k`1ďl,mďn |dµpã 1 lm q... ... ż Grpn´k,ker d |x pqˆRpEbL d q |x zt0u pa 1 1 q 2 e ´pa 1 1 q 2 }λ} k dK ^dλ ? π pn´kqpk´1q`k ,
where the convergence is dominated by a function in L 1 pRX, dvol h L q, see Remark 3.3.3. We deduce that Epν i q gets equivalent to

}d |x p} 2 δ L d n`1 ? π k`2 V k´1,n´1 E k´1 p| det | n´k`2 qe R pi, n ´k ´iq `żRpEbL d q |x zt0u e ´pa 1 1 q 2 }λ} k`2 dλ ˘dvol h L . Now, }d |x p} 2 πδ L d n`1 ż RpEbL d q |x zt0u e ´pa 1 1 q 2 }λ} k`2 dλ " V olpS k´1 q}d |x p} 2 πδ L d n`1 ż `8 0 e ´pa 1 1 q 2 }λ} 3 d}λ} " V olpS k´1 q ż `8 0 e ´r2 rdr " 1 2 
V olpS k´1 q.

Since V olpS k´1 q " 2 ?

π k

Γpk{2q , we finally deduce that Epν i q weakly converges to

1 Γpk{2q V k´1,n´1 E k´1 p| det | n´k`2 qe R pi, n ´k ´iqdvol h L ,
where the convergence is dominated by a function in L 1 pRX, dvol h L q. ✷

The case k " n

When the rank of E equals the dimension of X, the vanishing locus of a generic section σ of RH 0 pX, E b L d q is a finite set of points. We set ν " 1 ? d n ř xPRCσ δ x , and define the incidence variety as

I " tpσ, xq P pRH 0 pX, E b L d qzR∆ d q ˆRX | σpxq " 0u.
The projections π 1 and π 2 are defined by [START_REF] Shiffman | Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds[END_REF] and [START_REF] Shiffman | Random polynomials of high degree and Levy concentration of measure[END_REF]. As before, for every pσ 0 , x 0 q P pRH 0 pX, E b L d qzR∆ d q ˆRX, π 1 is invertible in a neighbourhood RU of σ 0 , defining an evaluation map at the critical point

ev pσ 0 ,x 0 q : σ P RU Þ Ñ π 2 ˝π´1 1 pσq " x P RC σ X RV,
where RV denotes a neighbourhood of x 0 in RX, compare §2.4.2 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. We denote by d |σ 0 ev K pσ 0 ,x 0 q the restriction of its differential map d |σ 0 ev pσ 0 ,x 0 q at σ 0 to the orthogonal complement of π 1 pπ ´1 2 px 0 qq in RH 0 pX, E b L d q. Then, from Proposition 3.2.1,

Epνq " 1 ? d n pπ 2 q ˚pπ 1 dµ R q |x " 1 ? πd n ż π 1 pπ ´1 2 pxqq | det d |σ ev K pσ,xq | ´1dµ R pσqdvol h L .
The space H x " xpσ i 0 q 1ďiďk y is a complement to T σ π 1 pπ ´1 2 pxqq in RH 0 pX, E b L d q and in the decomposition (41), a i 0 " 0 for every i " 1, ¨¨¨, k. The tangent space of I at pσ, xq reads

T pσ,xq I " tp 9 σ, 9 xq P RH 0 pX, E b L d q ˆTx RX | 9 σpxq `∇|x σp 9 xq " 0u.
As in the proof of Lemma 3.3.2, we deduce that the Jacobian determinant of the map

9 σ P H x Þ Ñ 9 x " ´p∇ |x σ K q ´1p 9 σpxqq P T x RX equals ? π n d n | detpa i j q 1ďi,jďn |p1 `op1qq, so that | det d |σ ev H pσ,xq | ´1 " ?
πd n | detpa i j q 1ďi,jďn |p1 `op1qq, where the op1q term is uniformly bounded over RX. From lemma 2.3.6 we deduce that Epνq gets equivalent to

`żMnpRq | detpa i j q 1ďi,jďn |dµpa i j q ˘dvol h L " E n p| det |qdvol h L .
Formula (15.4.12) of [START_REF] Mehta | Random matrices[END_REF], see Remark 3.1.1, now gives

E n p| det |q " Γp n`1 2 q Γp1{2q " 1 V ol F S pRP n q ,
see Remark 2.14 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], hence the result. ✷

Equidistribution of critical points in the complex case

Let X be a smooth complex projective manifold of dimension n, pL, h L q be a holomorphic Hermitian line bundle of positive curvature ω over X and pE, h E q be a rank k holomorphic Hermitian vector bundle, with 1 ď k ď n. For every d ą 0, we denote by L d the dth tensor power of L and by h d the induced Hermitian metric on L d . We denote by H 0 pX, L d q its complex vector space of global holomorphic sections and by N d the dimension of H 0 pX, L d q. We denote then by x., .y the L 2 -Hermitian product on this vector space, defined by the relation @σ, τ P H 0 pX, L d q, xσ, τ y " 

where dσ denotes the Lebesgue measure of H 0 pX, L d q. For every d ą 0, we denote by ∆ d the discriminant hypersurface of H 0 pX, E b L d q, that is the set of sections σ P H 0 pX, EbL d q which do not vanish transversally. For every σ P H 0 pX, EbL d qzt0u, we denote by C σ the vanishing locus of σ in X. For every σ P H 0 pX, E b L d qz∆ d , C σ is then a smooth codimension k complex submanifold of X. We equip X with a Lefschetz pencil p : X CP 1 . We then denote, for every d ą 0, by ∆ d p the set of sections σ P H 0 pX, E b L d q) such that σ P ∆ d , or C σ intersects the critical locus of p, or the restriction of p to C σ is not a Lefschetz pencil. For d large enough, this extended discriminant locus is of measure 0 for the measure µ C .

For every σ P H 0 pX, E b L d qz∆ d p , we denote by Critpp |Cσ q the set of critical points of the restriction of p to C σ and set, for 1 ď k ď n ´1,

νpC σ q " 1 d n ÿ xPCritpp |Cσ q δ x , (47) 
where δ x denotes the Dirac measure of X at the point x. When k " n, νpC σ q " 1 d n ř xPCσ δ x . Theorem 3.5.1 Let X be a smooth complex projective manifold of dimension n, pL, h L q be a holomorphic Hermitian line bundle of positive curvature ω over X and pE, h E q be a rank k holomorphic Hermitian vector bundle, with 1 ď k ď n. Let p : X CP 1 be a Lefschetz pencil. Then, the measure Epνq defined by (47) weakly converges to `n´1 k´1 ˘ωn as d grows to infinity.

When k " 1, Theorem 3.5.1 reduces to Theorem 3 of [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], see also Theorem 1.3 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF].

Proof. The proof goes along the same lines as the one of Theorem 3.1.2, so we only give a sketch of it. Firstly, the analogue of Proposition 3.2.1 provides Epνq " 1 d n pπ 2 q ˚pπ 1 dµ C q, and at every point x P XzpCritppq Y Baseppqq, where Baseppq denotes the base locus of p, | detpa i j q 2ďi,jďk | 2pn´k`2q dµpa i j q...

pπ 2 q ˚pπ 1 dµ C q |x " 1 π n ż π 1 pπ

... ż

Sym C pn´kq | detpã 1 lm q k`1ďl,mďn | 2 dµpã 1 lm q.

We deduce that Epνq is equivalent to }d |x p} 4 pπδ L d n`1 q 2 1 π pn´kqpk´1q`k V olpGr C pk ´1, n ´1qq... Hence, Epνq is equivalent to 1 2π pn´kqpk´1q`k V olpGr C pk ´1, n ´1qqV olpS 2k´1 q E C k´1 p| det | 2pn´k`2q qe C pn ´kq

ω n n! ,
where e C pn ´kq " pn ´k `1q! by Proposition 3.8 of [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF], V olpS 2k´1 q " 2π k {pk ´1q!, E C k´1 p| det | 2pn´k`2q q " ś k´1 j"1 Γppn ´k `2q `jq ś k´1 j"1 Γpjq " ś n`1 j"n´k`3 Γpjq ś k´1 j"1 Γpjq by formula 15.4.12 of [START_REF] Mehta | Random matrices[END_REF] and V olpGr C pk ´1, n ´1qq " ś k´1 j"1 Γpjq ś n´1 j"n´k`1 Γpjq π pk´1qpn´kq by a computation analogous to the one given in the real case by Remark 3.1.1. We conclude that Epνq weakly converges to `k´1 n´1 ˘ωn , where the convergence is dominated by a function in L 1 pX, ω n n! q, for it has poles of order at most 2pn ´kq near the critical points of p and at most 2 near the base points, see [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]. ✷
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  d ) on RXzCritppq (resp. on E b L d ) such that ∇ T X dp " 0. They induce a connection on T ˚X b E b L d which makes it possible to differentiate twice the elements of RH 0 pX, E b L d q. The tangent space of I i then reads T pσ,xq I i " p 9 σ, 9 xq P RH 0 pX, E b L d q ˆTx RX | 9 σpxq `∇ 9 x σ " 0 and (42) D 9 λ P RpE b L d q |x , 9 λ ˝∇|x σ `λ ˝∇|x 9 σ `λ ˝∇2 9 x,. σ " 0 ( .

3. 4

 4 Proof of Theorem 3.1.3 3.4.1 The case k ă n From Proposition 2.4.1 we know that

żXh

  d pσ, τ qdx. (45) The associated Gaussian measure is denoted by µ C . It is defined, for every open subset U of H 0 pX, L d q, by µ C pUq " 1 π N d ż U e ´}σ} 2 dσ,

2 ż pEbL d q |x zt0u e ´|a 1 1 | 2 }λ}

 212 ... E C k´1 p| det | 2pn´k`2q qe C pn ´kq `żpEbL d q |x zt0u e ´|a 1 1 | 2 }λ} 2pk`2q dλ ˘ωn n! , where e C pn ´kq " ş Sym C pn´kq | det A| 2 dµ C pAq andE C k´1 p| det | 2pn´k`2q q " ż M k´1 pCq | det A| 2pn´k`2q dµ C pAq.Now,}d |x p} 4 pπδ L d n`1 q 2k`4 dλ " V olpS 2k´1 q }d |x p} 4 pπδ L d n`1 q 2

  In this paragraph, for every positive integer p, S p denotes the unit sphere in R p`1 .

	. ✷
	2.6 Proof of Corollary 1.2.2
	Corollary 1.2.2 is a consequence of Theorem 1.2.1 and the following Propositions 2.6.1
	and 2.6.3.

Proposition 2.6.1 For every 1 ď k ď n, c S n´k ě expp´e 54`5n q.

  In Theorem 3.1.3 dvol h L denotes the Lebesgue measure of RX induced by the Kähler metric. Theorem 3.1.2 is deduced from Theorem 3.1.3 by integration of 1 over RX. The next paragraphs are devoted to the proof of Theorem 3.1.3. RH 0 pX, E b L d q| σ P R∆ d or p |RCσ is not Morseu and I i " tpσ, xq P pRH 0 pX, E b L d qzR∆ d p q ˆpRXzCritppqq | x P Crit i pp |RCσ qu.

	Proof of Theorem 1.1.1. It follows from Theorem 3.1.2, the Morse inequalities, Remark 3.1.1 and the computation V ol F S RP n " ? π{Γp n`1 2 q (see Remark 2.14 of [14]) when k ď n ´1 and from Theorem 3.1.3 when k " n. ✷
	3.2 Incidence varieties
	Under the hypotheses of Theorem 3.1.3, we set
	R∆ d p " tσ P

1 ? π Γp n`1 2 qdvol h L .

  op1q, with a op1q uniformly bounded over RX.Again, under the hypotheses of Theorem 3.1.3 and for pσ, xq P I i , we set for every y in a neighbourhood of x,

	σpyq "
	As a
	consequence,
	| det d |σ ρ H x | ´1 " }λ} ´k| detpa i j q 2ďi,jďk | n´k`1 |a 1 1 |p1 `op1qq,
	with a op1q uniformly bounded over RX, since the relation λ ˝∇|x σ " d |x p implies that a 1 j vanishes for 2 ď j ď n. ✷

  1 ll , ã1 lm " a 1 lm if l ă m and ã1 lm " a 1 ml if l ą m. We denote by d |σ ev H pσ,xq the restriction of d |σ ev pσ,xq to H x , see (37) and by det d |σ ev H pσ,xq its Jacobian determinant computed in the given basis of H x and orthonormal basis of T x RX. Under the hypotheses of Theorem 3.1.3, let pσ, xq P I i . Then, | det d |σ ev H pσ,xq | ´1 " ? π n d n |a 1 1 || detpa i j q 2ďi,jďk || detpã 1 lm q k`1ďl,mďn |p1 `op1qq, where the op1q term has poles of order at most n ´k near the critical points of p. Remark 3.3.3 In Lemma 3.3.2, a function f is said to have a pole of order at most n ´k near a point x if r n´k f is bounded near x, where r denotes the distance function to x. Such a function thus belongs to L 1 pRX, dvol h q.

	Lemma 3.3.2

  Likewise, from Lemma 2.3.3, the Jacobian of the map λ ˝∇2 σ |K

	From Lemma 2.3.3, the map
	9 σ P xpσ 1 j q k`1ďjďn y Þ Ñ ´λ ˝∇|x 9 σ |K P K dilates the norm by a factor }λ} ? πδ L d n`1 p1 `op1qq, with op1q term is uniformly just bounded over RX.
	jďk ||a 1 1 | ˘´1 p1`op1qq, where the op1q term is uniformly bounded over RX. Now, equation (43) restricted to K reads
	λ ˝∇2

  Lemma 2.3.6 and the relation (40), we deduce that for every x P RXzCritppq and every pK, λq P Grpn ´k, ker d |x pq ˆRpE b L d q |x zt0u, ż

	ż	ρ ´1 x pK,λq	| det d |σ ev K pσ,xq | ´1| det d |σ ρ K x | ´1dµ R pσq
	" dÑ8	ρ ´1 x pK,λq	| det d |σ ev H pσ,xq | ´1| det d |σ ρ H x | ´1dµ R pσq.
	Thus, from Lemmas 3.3.1, 3.3.2 and 3.2.2, Epν i q converges to ż
	M k´1 pRq		
			1 1 | "	}d |x p} ? }λ} πδ L ? d n`1 . From

  see Proposition 2.10 of[START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]. Choosing complex coefficients in decomposition (41), Lemmas 3.3.1 and 3.3.2 remain valid in the complex setting, see Remark 2.3.8. We deduce that `żGr C pn´k,ker d |x pqˆpEbL d q |x zt0u e ´|a 1 1 | 2 dK ^dλ π pn´kqpk´1q`k ... with |a 1 1 | given by (40), see Lemma 2.3.6 as before. Here, Gr C pn ´k, ker d |x pq denotes the Grassmann manifold of n ´k-dimensional complex linear subspaces of ker d |x p. From the complex versions of Lemma 2.3.5 and 2.3.6, see Remark 2.3.8 and the relation (40), we deduce that for every x P XzpCritppq Y Baseppqq and every pK, λq P Grpn ´k, ker d |x pq ˆpE b L d q |x zt0u, ż ρ ´1 x pK,λq | det d |σ ev K pσ,xq | ´2| det d |σ ρ K x | ´2dµ C pσq "

	dÑ8	|a 1 1 | 4 π n d n }λ} 2k	ż	M k´1 pCq
						´1 2 pxqq	| det d |σ ev K pσ,xq | ´2dµ R pσq	ω n n!	,
	Epνq " " dÑ8	1 π n d n 1 π n d n	`żπ 1 pπ ´1 2 pxqq	| det d |σ ev K pσ,xq | ´2dµ C pσq	˘ωn n!
		...			

ż ρ ´1 x pK,λq | det d |σ ev K pσ,xq | ´2| det d |σ ρ K x | ´2dµ C pσq ˘ωn n! ,

x K ,. σ |K " ´λ ˝∇|x 9 σ |K .

Corollary 3.5.2 Under the hypotheses of Theorem 3.5.1, for every generic σ P RH 0 pX, E b L d q, let |Crit p |Cσ | be the number of critical points of p |Cσ . Then,

Proof. Corollary 3.5.2 follows from Theorem 3.5.1 by integration of 1 over X.

A direct proof can be given though. The modulus of p is a Morse function on

, where F 0 (resp. F 8 ) is the fibre of 0 (resp. of 8) of p : X CP 1 . Moreover, the index of every critical point of |p| is n ´k. As in the proofs of Propositions 1 and 2 in [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], we deduce that Ep|Crit p |Cσ |q is equivalent to |χpC σ q| as d grows to infinity. Now,

while from the adjunction formula, cpC σ q ^cpE b L d q |Cσ " cpXq. Moreover, for 0 ď i ď k, c i pE b L d q " `k i ˘di c 1 pLq i `opd i q, so that

From the formula p1 `xq ´k " ř 8 j"0 p´1q j pk´1`jq! j!pk´1q! x j , we then deduce that c n´k pC σ q " p´1q n´k `n´1 k´1 ˘dn´k c 1 pLq n´k `opd n´k q and finally that

Hence the result. ✷