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Abstract

Let X be a smooth complex projective manifold of dimension n equipped with
an ample line bundle L and a rank £ holomorphic vector bundle £. We assume that
1 <k <n,that X, F and L are defined over the reals and denote by RX the real
locus of X. Then, we estimate from above and below the expected Betti numbers of
the vanishing loci in RX of holomorphic real sections of £ ® L%, where d is a large
enough integer. Moreover, given any closed connected codimension k submanifold
¥ of R™ with trivial normal bundle, we prove that a real section of £ ® L¢ has a
positive probability, independent of d, to contain around Vd" connected components
diffeomorphic to ¥ in its vanishing locus.

MATHEMATICS SUBJECT CLASSIFICATION 2010: 14P25, 32Q15, 60D05
KEYWORDS: Real projective manifold, ample line bundle, random polynomial, Betti
numbers
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1 Introduction

Let X be a smooth complex projective manifold of positive dimension n equipped
with an ample line bundle L and let E be a holomorphic vector bundle of rank %k over
X. From the vanishing theorem of Kodaira and Serre, we know that the dimension
Ny of the complex vector space H°(X,E ® L¢) of global holomorphic sections of
E ® LY grows as a polynomial of degree n in d. We will assume throughout this
paper that 1 < k < n and that X, E' and L are defined over the reals. We denote
by RX the real locus of X and by RH’(X, F ® L%) the real vector space of real
holomorphic sections of £ ® L%, see (H). Its dimension equals Ny. The discriminant
locus RA; ¢ RHY(X,E ® L9) of sections which do not vanish transversally is a
codimension one submanifold for d large enough and for every ¢ in its complement,
the real vanishing locus RC, of ¢ is a smooth codimension k submanifold of RX.
The topology of RC, drastically depends on the choice of 0 € RH(X, E® L?)\RA,.
Whenn =k =1, X = CP!, L = O¢pi(1) and E = O¢p1 for example, o is a real
polynomial of degree d in one variable and RC, the set of its real roots.

The space RH?(X, E® L%) inherits classical probability measures. Indeed, let hg
be a Hermitian metric on £ and h; be a Hermitian metric of positive curvature on
L, both hg and hj being real, that is invariant under the Z/27Z-Galois action of E
and L. We denote by hg 4 = hE®hdL the induced metric on £® L?. Then, the vector
space RHY(X, E ® L%) becomes Euclidean, with the L?-scalar product defined by

Vo, 7 e RHY(X, E® LY), (o, 7) = f hig.a(o, 7)dz,
X

where dzr denotes any chosen volume form on X (our results being asymptotic in
d, they turn out not to depend on the choice of dz). It thus inherits a Gaussian
probability measure pr whose density at ¢ € RHY(X, E ® L?) with respect to the
Lebesgue measure is ﬁe_”"”?

What is the typical topology of RC, for 0 € RH?(X, E® L) chosen at random for
dur? We do not know, but can estimate its average Betti numbers. To formulate our
results, let us denote, for every i € {0,--- ,n — k}, by b;(RC,,R) = dim H;(RC,,R)
the ¢-th Betti number of RC,, and by

E(bz) = J bz(RCg,R)d,uR(cr)
RHO(X,EQLY)\RA,

its expected value.



1.1 Upper estimates

As in [14], for every i € {0, -- ,n—k}, we denote by Symg(i,n —k —1) the open cone
of real symmetric matrices of size n — k and signature (i,n —k —1), by ur the classical
Gaussian measure on the space of real symmetric matrices and by er(i,n — k — ) the
numbers

er(i,n —k —1) = J | det A|dug(A), (1)
Sympg (i,n—k—1)

see §3.11 We then denote by Volj, (RX) the volume of RX for the Riemannian metric
induced by the Kéhler metric g, defined by the curvature form of hy, see (@) and

).

Theorem 1.1.1 Let X be a smooth real projective manifold of dimension n, (L, hr)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k < n, k # n. Then,
for every 0 <i<n-—k,

‘ 1 n—1 , L Volp, (RX)
1 —E(b;) < — k= R PR
1 sup - (b:) (k: — 1>6R(l’n Z)VOZFS(RPk)

Voly,, (RX)

VolpeEpy 48 d grows to infinaty.

Moreover, when k = n, ﬁE(bo) converges to

In fact, the right hand side of the inequality given by Theorem [LI1] also involves
the determinant of random matrices of size £ — 1 and the volume of the Grassmann
manifold of (k — 1) linear subspaces of R"™!  see Theorem B2l but these can be
computed explicitly. Note that when E is the trivial line bundle, Theorem [LI.T]
reduces to Theorem 1.1 of [I4].

Theorem [L LTl relies on Theorem B.1.3, which establishes the asymptotic equidis-
tribution of clouds of critical points, see §3.11 We obtain a similar result in a complex
projective setting, for critical points of Lefschetz pencils, see Theorem B.5.11

1.2 Lower estimates and topology

Let X be a closed submanifold of codimension k£ of R"”, 1 < k < n, which we do not
assume to be connected. For every o € RHY(X, E® L?)\RA,, we denote by Ny (o)
the maximal number of disjoint open subsets of RX having the property that each
such open subset U’ contains a codimension k submanifold >’ such that ¥ < RC,
and (U’,Y) is diffeomorphic to (R", ). We then set

E(Ng) = f N (0)dpz (o) 2)

RHO(X,EQLY)\RA 4

and we associate to X, in fact to its isotopy class in R", a constant cy which is
positive if and only if ¥ has trivial normal bundle in R", see (I4]) for its definition
and Lemma The latter measures a la Donaldson the amount of transversality
that a polynomial map R® — R* vanishing along a submanifold isotopic to ¥ may
have.



Theorem 1.2.1 Let X be a smooth real projective manifold of dimensionn, (L, hy)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k < n. Let 3 be a
closed submanifold of codimension k of R™ with trivial normal bundle, which does not
need to be connected. Then,

hgig}f\f E(Ny) = csVoly,, (RX).

In particular, when ¥ is connected, Theorem [L2.T]bounds from below the expected
number of connected components diffeomorphic to ¥ in the real vanishing locus of
a random section ¢ € RH(X, F ® L%). The constant cx; does not depend on the
choice of the triple (X, (L,hr), (E,hg)), it only depends on 3. When k£ = 1 and

= Ox, Theorem [LZT] coincides with Theorem 1.2 of [16]. Computing cs for
explicit submanifolds ¥ yields the following lower bounds for the Betti numbers.

Corollary 1.2.2 Under the hypotheses of Theorem[L 21, for everyie€ {0,--- ,n—k},

hffig}f\/— E(b;) = exp(—e**")Vol,,, (RX).

1.3 Some related results

The case X = CP!, E = Ocp1 and L = Oc¢p1(1) was first considered by M. Kac in [18§]
for a different measure. In this case and with our measure, Kostlan [19] and Shub and
Smale [34] gave an exact formula for the mean number of real roots of a polynomial,
as well as the mean number of intersection points of n hypersurfaces in RP". Still in
RP™ Podkorytov [27] computed the mean Euler characteristics of random algebraic
hypersufaces, and Biirgisser [4] extented this result to complete intersections. In
[13], we proved the exponential rarefaction of real curves with a maximal number of
components in real algebraic surfaces. In [I5] and [14], we bounded from above the
mean Betti numbers of random real hypersurfaces in real projective manifolds and in
[16], we gave a lower bound for them.

A similar probabilistic study of complex projective manifolds has been performed
by Shiffman and Zelditch, see [30], [33], [2] for example, or also [3], [36]. In particular,
the asymptotic equidistribution of critical points of random sections over a fixed
projective manifold has been studied in [§], [9] and [22], or also [11I, [1], [5], while
we studied critical points of the restriction of a fixed Morse function on random real
hypersurfaces, see [15], [14].

A similar question concerns the mean number of components of the vanishing
locus of eigenfunctions of the Laplacian. It has been studied on the round sphere
by Nazarov and Sodin [25] (see also [35]), Lerario and Lundberg [20] or Sarnak and
Wigman [28]. In a general Riemannian setting, Zelditch proved in [38] the equidis-
tribution of the vanishing locus, whereas critical points of random eigenfunctions of
the Laplacian have been addressed by Nicolaescu in [26].

Section [2 is devoted to lower estimates and the proof of Theorem [L2.Il In this
proof, the L?—estimates of Hormander play a crucial role, see §2.3] and we follow
the same approach as in [16] (see also [I2] for a similar construction). Section Bl is



devoted to upper estimates and the proof of Theorem [Tl
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2 Lower estimates for the expected Betti numbers

2.1 Statement of the results
2.1.1 Framework

Let us first recall our framework. We denote by X a smooth complex projective
manifold of dimension n defined over the reals, by cx : X — X the induced Galois
antiholomorphic involution and by RX = Fix(cy) the real locus of X which we
implicitly assume to be non-empty. We then consider an ample line bundle L over
X, also defined over the reals. It comes thus equipped with an antiholomorphic
involution ¢y, : L — L which turns the bundle projection map = : L — X into a
Z/27-equivariant one, so that cy om = 7w o cy. We equip L in addition with a real
Hermitian metric Ay, thus invariant under ¢z, which has a positive curvature form w

locally defined by
1
W= %6ﬁlog hi(e,e) (3)

for any non-vanishing local holomorphic section e of L. This metric induces a Kahler
metric

9h, = w(.,i.) (4)

on X, which reduces to a Riemannian metric g5, on RX. Let finally £ be a holomor-
phic vector bundle of rank k, 1 < k < n, defined over the reals and equipped with a
antiholomorphic involution cg and a real Hermitian metric hg. For every d > 0, we
denote by

RHY(X,EQLY) ={ce HYX,E®Q L) | (cg ®cra) oo =cocx} (5)

the space of global real holomorphic sections of £ ® L%. It is equipped with the
L?-scalar product defined by the formula

V(o,7) e RHY(X,EQ L"), {(o,7) = J hga(o,7)(x)dz, (6)
X
where hp g = hp® hdL. Here, dx denotes any volume form of X. For instance, dz can
be chosen to be the normalized volume form dVj, = S“’% This L%-scalar product
X

finally induces a Gaussian probability measure ur on RH®(X, E® L?) whose density
with respect to the Lebesgue one at o € RH(X, E ® L) writes ﬁe—l\a\\{ where

Ny = dim HY(X, E ® L%). Tt is with respect to this probability measure that we
consider random real codimension k submanifolds (as in the works [19] and [34], [15],

[14] and [16]).



2.1.2 The lower estimates

The aim of Section [2is to prove Theorem [L2.1l In addition to Theorem [L.2.1] we also
get the following Theorem 2.1.1], which is a consequence of Proposition 2.4.2] below.

Theorem 2.1.1 Under the hypotheses of Theorem L2, for every 0 < e < 1,
lim inf s {o— e RH(X, E® LY) | Nx(0) = ecsVolp, (RXWE"} )
—00

In fact, the positive lower bound given by Theorem 1.1l can be made explicit, see
B0).

Let us now denote, for every 1 < k < n, by H, the set of diffeormophism
classes of smooth closed connected codimension £k submanifolds of R"”. For every
i€{0,---,n—k} and every [X] € H,x, we denote by b;(¥) = dim H;(X; R) its i-th
Betti number with real coefficients and by m;(X) its i-th Morse number. This is the
infimum over all Morse functions f on X of the number of critical points of index ¢
of f. Then, we set ¢z = supyg[y) ¢ and

E(m;) — f mi(RC, ) dyiz (o).
HO(X,E®LY)\RA,

Corollary 2.1.2 Let X be a smooth real projective manifold of dimension n, (L, hr)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k < n. Then, for
every i € {0, - - - ,n—k},

lim inf ——zE(b) > ( cbi(2)) Voly, (RX) and likewise (7)
S \f [z];;n,k .
liminf —E(m;) > (). cmm(3))Voly, (RX). (8)

d—o0
\/7 [Z]E’Hmk

Note that in Corollary 1.2 we could have chosen one representative ¥ in each
diffeomorphism class [X] € H,,, and obtained the lower estimates (), (8) with con-
stants cy instead of ¢x;). But it turns out that in the proof of Corollary 2.1.2 we
are free to choose the representative we wish in every diffeomorphism class and that
the higher cy is, the better the estimates (7)), (8) are. This is why we introduce the
constant cpy;, which is positive if and only if [¥] has a representative ¥ with trivial
normal bundle in R™, see (I4]) and Lemma 223

2.2 Closed affine real algebraic submanifolds

We introduce here the notion of regular pair, see Definition 22211 and the constant
¢y, associated to any isotopy class of smooth closed codimension £ submanifold ¥ of

R™, see ([I4]).

Definition 2.2.1 Let U be a bounded open subset of R and P € Rlwzy,- - x,]*,
1 <k <n. The pair (U, P) is said to be reqular if and only if



1. zero is a reqular value of the restriction of P to U,

2. the vanishing locus of P in U is compact.

Hence, for every regular pair (U, P), the vanishing locus of P does not intersect
the boundary of U and it meets U in a smooth compact codimension k submanifold.

In the sequel, for every integer p and every vector v € RP, we denote by |v| its
Euclidian norm, and for every integers p and ¢, and every linear map F' : R? — RY,
we denote by F™* the adjoint of I, defined by the property

Vo e RP Yw e RY, (F(v),w) = (v, F*(w)),
and denote by |F'| its operator norm, that is

|Fl = sup [F(v)|/|v].
veRP\ {0}

We will also use the norm

|F|ly = VTt FF*.

These norms satisfy |F| < |F|s. Finally, if P = (Py,---, P) € Rlay, - ,2,]", we
denote by ||P| 2 its L?>-norm defined by

k k
1P, = L P()e s = Y L B2 s = Y P2 (9)

i=1

Definition 2.2.2 For every regular pair (U, P) given by Definition 2.2, we denote
by Tw,p) the set of (6,¢) € (R%)? such that

1. there exists a compact subset K of U satisfying infyepn i | P(2)] > 9,

2. for every y € U, |P(y)| < § = Yw € R*, |(d|,P)*(w)| = €|wl|.

Hence, for every regular pair (U, P) given by Definition L2} (4, €) belongs to Ty, p)
provided the d-sublevel of P does not intersect the boundary of U while inside this
0-sublevel, P is in a sense e-far from having a critical point. This quantifies how much
transversally P vanishes in a way similar to the one used by Donaldson in [7].

Then, for every regular pair (U, P), we set R p) = max(1,sup,c; |y[), so that U
is contained in the ball centered at the origin and of radius Ry py. Finally, we set

. 1 ™
Tu,p) = 24kpR(U,P) HPH%Q inf <_ +

—) e R* 10
(57€)€7—(U,P) 52 62 ) € +7 ( )

where, for every R > 0,

PR = iRIlng’ (11)
R+ s)™
gR : SeRi — %eﬂ'(R*f’s)Q’ (12)
so that , ,
e7rR < OR < 4n€47rR ) (13)



This constant 7, py is the main ingredient in the definition of ¢y, see (I4]). The lower
Tw,p) is, the larger ¢y is and the better the estimates given by Theorem [[L2.1] are.
Note that 7y, p) remains small whenever 9§, € are not too small, that is when P vanishes
quite transversally in U.

Now, let 3 be a closed submanifold of codimension & of R™, not necessarily con-
nected. We denote by Zs the set of regular pairs (U, P) given by Definition 2Z.2.7]
such that the vanishing locus of P in U contains a subset isotopic to ¥ in R™.

Lemma 2.2.3 Let 3 be a closed submanifold of codimension k > 0 of R"™, not nec-
essarily connected. Then, Is, is non empty if and only if the normal bundle of ¥ in
R" s trivial.

Proof. If (U, P) € Iy, then P : R" — RF contains in its vanishing locus a codimension
k submanifold & which is isotopic to ¥ in R™. The normal bundle of ¥ in R™ is thus
trivial if and only if the normal bundle of S in R™ is trivial. But the differential of P
at every point of Z provides an isomorphism between the normal bundle of S in R"
and the product 3 x R,

Conversely, if ¥ has a trivial normal bundle in R", it has been proved by Seifert
[29] (see also [24]) that there exist a polynomial map P : R® — R* and a tubular
neighbourhood U of ¥ in R™ such that P~1(0) n U is isotopic to ¥ in U. The strategy
of the proof is to first find a smooth function U — R* in a neighborhood of ¥ which
vanishes transversally along ¥ and then to suitably approximate the coordinates of
this function by some polynomial, see [29], [24]. The pair (U, P) then belongs to Zyx
by Definition 2221 O

We then set ¢ = 0 if ¥ does not have a trivial normal bundle in R™ and

Cx = sup < Trwp) )otherwise (14)
(U,P)eTs, 2"VOZ(B(R(U7P))) ’

where Vol(B(Rw,py)) denotes the volume of the Euclidean ball of radius Ry p) in
R™, and where, for every 7 > 0,

m,; = sup fr, (15)
[V7,+oo]

with f, : a € [\/7, o0 — 7(1 - 3) S;roo e ¥ dt. For large values of m., as the ones
which appear in 2.6 the estimate

Cx 2 G_ZT(UJD) (]_6)

holds, compare (2.8) of [16].

2.3 Hormander sections

Our key tool to prove Theorems[[LT.T]and [[.2.T]has been developped by L. Hormander.
We introduce in this §2.3] the material we need. For every positive d and every
ce RHY (X, E® L), we set

ol = | ol @V

8



where dV,, = w"/{, w", compare (@). Let us choose a field of h/-trivializations of
L on RX given by Definition 4 of [16]. It provides in particular, for every z € RX,
a local holomorphic chart v, : (W,,z) ¢ X — (V,,0) < C" isometric at x, and a
non-vanishing holomorphic section e of L defined over W, such that ¢ = —log h (e, €)
vanishes at x and is positive elsewhere. Moreover, there exist a positive constant ay
such that

Yy € Vi, [ ods () — mlyl*] < enfyl’. (17)
Restricting W, if necessary, we choose a holomophic trivialization (eq,---,ex) of
Ejw, which is orthonormal at z. This provides a trivialization (e; ® e?,- -+ , e, ® e)

of E® wax. In this trivialization, the restriction of o to W, writes

k
o= Z fle; ® et (18)
j=1
for some holomorphic functions fJ : W, — C, We write f, = (fL, -, f¥) and we set
o] = [/, (19)
so that on W, o7 = | Zle ffejHiEe_d¢ and o ()|}, = |o(x)]* since the frames
(e1,--- ,ex) and e are orthonormal at the point  so that in particular ¢(x) = 0. For
every z € W,, we define
|dzoll2 = lldy(fo 0 52, (20)
ldzoll = ldy(fo 0 ¥z, (21)
and
(dz0)* = (dy(fo 0 ¥ 1)), (22)

where y = 1,(z). Finally, we denote, for every small enough r > 0, by B(z,r) < W,
the ball centered at x and of radius r for the flat metric of V, pulled back by v, so
that

B(x,r) =, (B(0,r)). (23)

Proposition 2.3.1 Let X be a smooth real projective manifold of dimensionn, (L, hy)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k < n. We choose
a field of hy-trivializations on RX. Then, for every reqular pair (U, P), every large
enough integer d, every x in RX and every local trivialization of E orthonormal at
xz, there exist o,p) € RHY(X, E® L%) and an open subset Uy of B(x, R%P)) NRX
such that

1. |low,p)l 2, be equivalent to % as d grows to infinity, where | P| 2 is defined

by (@) and ép, = § w",
2. (Us, 07 py(0) 0 Uy) be diffeomorphic to (U, P71(0) n U) = R,



3. for every (6,¢) € Tw,py given by Definition 222, there exists a compact subset
K, < U, such that

0 ,rmn
inf > —+/d
Sk, lownl > gV,
while for every y in Uy,

0 rn . € rntl
low,py(y)] < 5\/& = Yw e R, [(dyow,p))*(w)] = 5\/& lw]. (24)

Proof. We proceed as in the proof of Proposition 3.2 of [I6]. Let (U, P) be a
regular pair, x € RX and d large enough. We set Uy = @D;l(ﬁU) c B(x, R(\%P)) and
K, = w;l(ﬁK). Let x : C* — [0, 1] be a smooth function with compact support in

B(0, R,py), which equals one in a neighbourhood of the origin. Then, let o be the
global smooth section of E ® L% defined by ox\w, = 0 and

o\w, = xowm \fwr €J®€)

”M”

where P = (Py,---, B,) is now considered as a function C* — C*. From the L*-
estimates of Hormander, see [I7] or [21], there exists a global section 7 of E® L such
that 01 = do and | 7] 2, ) < |00 2y, for d large enough. This section 7 can
be chosen orthogonal to holomorphic sections and is then unique, in particular real.
Moreover, there exist positive constants ¢; and ¢y, which do not depend on x, such
that HTHLz () < cre”?® and supy, (7] + | 7]2) < 267, see Lemma 3.3 of [I]Eﬂ We
then set o p) = \/8"(0— — 7). It has the desired properties as can be checked along
the same lines as in the proof of Proposition 3.2 of [16] and thanks to Lemma 23210

Lemma 2.3.2 Let U be an open subset of R®, 1 <k <n, f:U — R¥ be a function
of class C* and (6,¢€) € (R*)? be such that

1. there exists a compact subset K of U such that infin g |f| > 9,
2. for every y in U, |f(y)| <6 = Yw e R, |(d, f)*(w)] = €w].

Then, for every function g : U — R* of class C' such that supy |g| < & and
supy |dg| < €, zero is a regular value of f + g and (f + ¢g)~'(0) is compact and
isotopic to f~1(0) in U.

Proof. The proof is analogous to the one of Lemma 3.4 of [16], since |(dg)*| = |dg]|.
O

The following Lemma [2.3.3] establishes the existence of peak sections for higher
rank vector bundles.

Lemma 2.3.3 (compare Lemma 1.2 of [37]) Let X be a smooth real projective
manifold of dimension n, (L,hy) be a real holomorphic Hermitian line bundle of
positive curvature over X and (E, hg) be a rank k real holomorphic Hermitian vector
bundle, with 1 < k < n. Let x € RX, (p1, -+ ,pn) € N, i e {l,-- [k} and p/ >

10



p1+ -+ pn. There exists dy € N independent of x such that for every d > dy, there
exists 0 € RHY(X, E ® L%) with the property that |o|z2¢,) = 1 and if (y1, -, yn)
are local real holomorphic coordinates in the neighbourhood of x and (ey,---ey) is a
local real holomorphic trivialization of E orthonormal at x, we can assume that in a
neighbourhood of x,

oy, y) = At yhre @ (1 4+ O(d™) + O(y[*), (25)
where \™% = SB(%%) Yyt - -y£"|2|\ed\|i%thL, with dVy,, = w"/§, w™ and where e is
a local trivialization of L whose potential —log hy (e, e) reaches a local minimum at x

with Hessian ww(.,1.).

Proof. The proof goes along the same lines as the one of Lemma 1.2 of [37]. Let n
be a cut-off function on R with 7 = 1 in a neighbourhood of 0, and

d|z|? d|z|?
= (n+ 29
,l/} (n p)n(logZ d) 0g (10g2 d)
in the coordinates z on X. Then, idd% is bounded from below by —Cw, where C is

some uniform constant independent of d and x. Let s € C*(X, E® L%) be the real
section defined by

dlzI*y a
s =n(—— ceybre; @ e
'rz(log2 vy
Then, from Theorem 5.1 of [6], for d large enough not depending on z, there exists
a real section u € C*(X, E ® L%) such that du = 0s and satisfying the Hormander

L?-estimates
f ul?, edVi, < f |Gs|2, e~ dVi,.
X X

The presence of the singular weight e~% forces the jets of u to vanish up to order
2p' at x. As in Lemma 1.2 of [37], we conclude that the real holomorphic section
o= (s—u)/|s —ulr2n,, satisfies the required properties. O

In this first section we will only need peak sections given by Lemma 2.3.3 with
> pi = 0, whereas in the second one we will need those given with Y}  p; < 2.
Definition 2.3.4 Forie {1,--- k}, let o be the section given by Lemmal2:3.3 with
p =3 and py = -+ =p, = 0. Likewise, for every j € {1,--- ,n}, let 0'; be a section
given by (23) with p’ =3, pj =1 and py = 0 forl e {1,--- ,n}\{j}. Finally, for every
1 <1 <m <n, let o], be a section given by (23) with p' = 3, p; = 0 for every
jged{l,-- ,n}\{{,m} and p; = p, = 1 if | # m, while p, = 2 otherwise.

The asymptotic values of the constants A in (25) are given by Lemma [Z3.5] (compare
Lemma 2.1 of [37]).

Lemma 2.3.5 For every i€ {1,---,k}, the sections given by Definition[2.3.4 satisfy

00/+/Srdr o a®e+0(ly[°), (26)

vje{l, - nhop/VmoLdt ~ yie®et+O0(lyl), (27

Vi,me{l,- - ,n}, 1l #m, alim/(wvéLd””) S yyme: @ e+ O(||ly[%), (28)
and ¥l e {1,--- ,n},ah/(m\/0,d"+?) o \%yfel-@edJrO(]y\G). (29)
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Moreover, these sections are asymptotically orthonormal as d grows to infinity, as
follows from Lemma 2.3.6]

Lemma 2.3.6 (compare Lemma 3.1 of [37]) For everyz € RX, the sections (o) 1<i<k

J osj<n

and (0},.) 1<i<k  gwen by Definition[2.3.4) have L*-norm equal to one and their pair-

I<i<m<n
wise scalar product are dominated by a O(d~') which does not depend on x. Likewise,
their scalar products with every section of RH(X, E ® L) of L*-norm equal to one
and whose 2-jet at x vanishes is dominated by a O(d=3?) which does not depend on
x.

Proof. The proof goes along the same lines as the one of Lemma 3.1 of [37]. O

Lemma 2.3.7 Denote by v the density of dV),, = w"/ SX w™ with respect to the volume
form dx chosen in (@), so that dV},, = v(z)dz. Then the sections given by Defintion

times A/v(z) are still asymptotically orthonormal for (6).

Proof. This is a direct consequence of Lemmas 2.3.3 and 2.3.6] and the asymptotic
concentration of the support of the peak sections near z. O

Remark 2.3.8 The complex analogues of Lemmas[2.3.3, and[2.3.4 hold, com-

pare [37).

2.4 Proof of Theorem I.2.1]

We first compute the expected local C'-norm of sections.

Proposition 2.4.1 Let X be a smooth real projective manifold of dimensionn, (L, hy)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k <n. We equip RX
with a field of hy-trivializations, see §2.3. Then, for every positive R,

1 2
limsup sup —E( sup ﬂ) < 6kdppr and
dow aerx A" gy 0(T)
Vi
d 2
lim sup sup 1E( | UH2) < 6mnkdrpr,
d>o  zeRx AT Bla, ) v(x)

where v is given by Lemma [2.5.7 and pg is given by (I1), see (I9) and (20) for the
definitions of |o| and |do||s.

Note that a global estimate on the sup norm of L? random holomorphic sections is
given by Theorem 1.1 of [32].

Proof. The proof goes along the same lines as the proof of Proposition 3.5 of
[T6]. We first establish from the mean value inequality that for every 2 € RX, R > 0
and s > 0,

2 ; 0_2 *
E( sup |o]) < Vol(B(=)) L}(% E(lo[")vzdy

R R+s

12



for d large enough not depending on z. Then, for every z € B(x, %s) NRX, we write

o= Zle a;ol + 7, where 7 € RHY(X, E ® L?) vanishes at z and (0});=1 .. are the

peak sections at z given by Definition 2.3.4l In particular, by Lemma 2.3.5] at the

point z, for every i = 1,--- ,k, |0¢|np, o Vord®. Moreover, since (eq,- - ,e,) is
g

orthonormal at z,
o5 = lo(2)lh,, (1 + O(|z — 2[)e™®
< 6pd*e™ B(1 + 0(1))
from the inequalities ([I7), where the o(d"™) can be chosen not to depend on x € RX.
Suppose that dy = dV},,. Then, by Lemma[2.3.6] the peak sections are asymptotically

orthogonal to each other for the scalar product defined by (), and asymptotically
orthogonal to the space of sections 7 vanishing at x. We deduce that

E(o(z)*) = E(| X aicp|) (L +0(1))

k

i ()]2) a2e " da )
SONGEIR ﬁfR da (1 + o(1)

1

< §k5Ld”e”(R+s)2(1 + 0o(1)).

When z ¢ Bz, %S) N RX, the space of real sections vanishing at z gets of real
codimension 2k in RH(X, E ® L%). Let (0,05 i€ {1,--- k}> be an orthonormal

basis of its orthogonal complement. From Remark 23.8 for every i € {1,---  k},
Jef{l,2},

: 1 % g s
lim sup %|9j(z)|2 < 26,e™ A7
d—0

an upper bound which does not depend on z. We deduce that

k
i pi i pi S5 (a2 4+ (aby)? L i
E(lo(2)]?) = JR%|Z(@0191(2)+a0292(2))|26 Li=1(%1)"+ (450) ﬁnfﬂdamd%z

i=1

k
n _m 5)2 i i i i
< 28T (L o) Y, [ () + (a)? + 2y lab) -
i=1

1 ; ; D
o ;6_(“01)2_(“02)2da’01da62

< 60Ld"e™ T (1 4 o(1)).

We deduce the first part of Proposition 2.4.1] by taking the supremum over RX,
choosing s which minimize gg, , and taking the limsup as d grows to infinity.

In general, the Bergman section at z for the L?-product (B) associated to the
volume form dz is equivalent to the Bergman section og at x for dVj, times +/v(x),
see Lemma[2.3.7 The same holds true for the o;’s, and the result follows by replacing
dr, with v(x)dr.

The proof of the second assertion goes along the same lines, see the proof of
Proposition 3.5 of [16] (and [31] for similar results). O
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As in [16], we then compute the probability of presence of closed affine real alge-
braic submanifolds, inspired by an approach of Nazarov and Sodin [25], see also [20].
Let (U, P) be a regular pair given by Definition 22T and ¥ = P~1(0) < U. Then, for

every r € RX, we set By = B(x, %) NRX, see [23)), and denote by Prob, »(E®QL?)
the probability that o €e RH°(X, E ® L?) has the property that o=1(0) n B, contains
a closed submanifold >’ such that the pair (B, ¥') be diffeomorphic to (R, 3). That

18,
Prob,s(E® L") = g {o e RH* (X, EQ L") | (c7'(0) n By) o ¥/, (B, ¥') ~ (R, X)}.
We then set Probs(E ® LY) = inf,erx Prob, »(E ® LY).

Proposition 2.4.2 Let X be a smooth real projective manifold of dimensionn, (L, hy)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k < n. Let (U, P) be
a reqular pair given by Definition 221 and ¥ = P~1(0) < U. Then,

lim inf PTObz(E ® Ld) = mT(U,P)’

d—00

see (I3).

Proof. The proof is the same as the one of Proposition 3.6 of [I6] and is not
reproduced here. O

The proof of Theorem [[L2.] (resp. Corollary ZT.2]) then just goes along the same
lines as the one of Theorem 1.2 (resp. Corollary 1.3) of [16].

2.5 Proof of Theorem [2.1.1]

Let (U, P) be a regular pair given by Definition 2211 For every d > 0, let Ay
be a maximal subset of RX with the property that two distinct points of Ay, are
at distance greater than QR(#P). The balls centered at points of Ay and of radius

Rw.p

o are disjoints, whereas the ones of radius 2&%’” cover RX. Note that if we use
the local flat metric given by a trivial hp-trivialization, then the associated lattice
has asymptotically the same number of balls than A; as d grows to infinity, so we
can suppose from now on that the balls are defined for this local metric. For every
o e RHY(X, E® L%, denote by Nx(Ag4, o) the number of x € Ay such that the ball
By = B(x, R(\%P)) N RX contains a codimension k submanifold ¥’ with ¥ < ¢71(0)
and (Bg, Y') diffeomorphic to (R",3). By definition of Nx(0), Ns(A4, 0) < Nx(o),
see L2 while from Proposition 2242 for every 0 < € < 1,

[Aalmry, < Z Prob, s(E ® L%

:BEAd
|Aql
< ZjNR{U|NZ(Ad>U) = j}
j=1
S My py | Adlpr {U|NE(Ad7 o) < EMr iy, py |Ad|}

+|Adlpr {o| N5 (Mg, 0) = emry, , [Adl}-
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We deduce that

(1 - €)mTUP) HRr {U| NE ) 6m7—UP)|Ad|} (30)

and the result follows by choosing a sequence (U, P,), € Iy, such that

]}i_)nolcmT(Up’Pp)|Ad| = esVoly, (RX)Vd',

see (I4)). O

2.6 Proof of Corollary

In this paragraph, for every positive integer p, SP denotes the unit sphere in RP*!L,
Corollary [[L2.2]is a consequence of Theorem [L2.T] and the following Propositions [Z.6.1]
and 2.6.3]

Proposition 2.6.1 For every 1 <k < n, cgnr = exp(—e>"),
Recall the following.
Lemma 2.6.2 (Lemma 2.2 of [16]) If P =3 ., cnn Qi a2 e Rz, 2],

then il
_ 2 In-:
L I N O

(41, ,in)EN?

Proof of Proposition 2.6.11 For every n > 0, we set Py(xq, -+ ,x,) =

n

a5 — 1. For every x € R" and § > 0,

|Pr(z)| <0 1—6<>al <1+d8=|d,Pef3 =4) 27 >4(1-0).

i=k i=k
Moreover from Lemma 2.6.2]
2(n—k+1)

[Pz =1+ p <n—k+2.

Now set Pg = (P, -+, P;) with Pj(x) = x; for 1 < j <k — 1, so that

|1Ps7, < (k—1)/m+(n—k+2)<n+1<2n.

Since for every w = (wy, - ,wy) € R¥ and every z € R",
k-1
|djx P§ (w Zw +wkHd\kaH2v
=1

we get that |d),PZ[? = min (1,4(1 — §)) if |Py(z)| < 6. Choose

Us = {(z1,- ,2a) eR"| Y a7 < 4},

15



Then if 0 <6 <1,
n k—1 1
K(;:{xEUSH—(Ség;Cx?él—FcSand ;x§<1—§(1+5)2}

is compact in Ug and taking R?Us,Ps) = 4, we see that the pair (Ug, Ps) is regular in
the sense of Definition 22211 The submanifold Pg'(0) < Us is isotopic in R™ to the
unit sphere S"*. We deduce that (3/4,1) € T(s.py). From ([I0) and [I3) we deduce

The estimate cgn-1 > exp(—e****") follows then from (I). O

Proposition 2.6.3 For every 1 < k < n and every 0 < ¢ < n — k, cgiygn-i-r =
exp(—e82+0n).

Proof. For every 1 < k <n and every 0 < i <n — k, we set
) n—k—i
Qe((z1, -+ s wi1), (Y1, Ynic1)) = (J2P = 2)" + Z y? - L
j=1
For every (z,y) e R x Rt and 0 < 6 < 1/2,

—k—
Quay] <6 = 1-5< (2 -2 2 <144

n—k—i

= |di@y@il3 =4 D i + 16z (|2 — 2)*,
j=1

with 2> > 2 — /1 +0 > 1/2. Thus |d|(;,,)Qx|3 > 4(1 — ), compare Lemma 2.6 of
[16]. Moreover from Lemma 262 [Qx]3. < 13n?, compare §2.3.2 of [16]. Now set
Q= (Q1, , Q) with Q;(z,y) = yn—i—; for 1 <j <k —1, so that

1Q|7, < (k—1)/m+ 13n* < 13(n + 1)%.

For every w = (wy,--- ,wg) € R* and every (z,y) € R x Rr—i-1,

k-1
ey @ )P = > wf + wildia Q3
> min(1,4(1 —§))|w|?
if |Qx(z,y)] <9 < 1/2. We choose
U={(z,y) e R x R"" | [a] + [y|* < 6},

k—i k—1
Z y <1+ and Zyi_i_jél—cS},
j=1

7j=1

n—

Ka={(fv,y)€U|1— (lz* — 2)* +
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and R(QU,Q) = 6. The pair (U, Q) is regular in the sense of Definition 22211 and

Q~1(0) = U is isotopic in R™ to the product S* x S"~=* of unit spheres in R and
R+ We deduce that for every positive €, (1/2—¢, 1) € Ty and from (I0) and

(@) that

Tw.q) < 24k4"e*™13(n + 1)*(4 + mn) < ¥,

The estimate cgiygni-x = exp(—e®?7) follows then from (IG). O

3 Upper estimates for the expected Betti numbers

3.1 Statement of the results

For every 1 < k < n, we denote by Gr(k — 1,n — 1) the Grassmann manifold of
(k — 1)-dimensional linear subspaces of R"~!. The tangent space of Gr(k —1,n — 1)
at every H € Gr(k — 1,n — 1) is canonically isomorphic to the space of linear maps
L(H, H*) from H to its orthogonal H+ and we equip it with the norm

Ae L(H, H) — |Aly = /Tr(A*A) e RT.

The total volume of Gr(k — 1,n — 1) for this Riemannian metric is denoted by
Vol(Gr(k —1,n— 1)) and we set

! ) Vol(Gr(k —1,n—1))

Vicin-1 = —7——
ﬁ(kfl)(nf

its volume for the rescaled metric A € L(H, H*) ﬁHAHQ Likewise, we equip

My_1(R) with the Euclidean norm A € My 1(R) — [Alz = +/Tr(A*A) and set
dpu(A) = e MEdA the associated Gaussian measure on M;_;(R). Then, we set

Ek—1(| det, |n—k+2) _ f |det A|n_k+2du(A).
My 1)

Remark 3.1.1 1. The orthogonal group O,_1(R) acts transitively on the Grass-
mannian Gr(k — 1,n — 1) with fizators isomorphic to Or_1(R) x O,_x(R). We
deduce that

Vol(Gr(k—1,n—=1)) = Vol(0,-1(R))/ (Vol(Or-1(R)) x Vol(Op—k(R)))
_ <n - 1) Do) Hf;l (1 +5/2)
k—1 [T T+ /2)]
where T denotes the Gamma function of Euler, see for example Lemma 3.4 of
[74).
2. From formula (15.4.12) of [23] follows that

Ep (| det ") = | | ——2—2,
H I'(3)

k—1 F(nfk+2+j)

<

so that Vi_1,—1E,_1(| det |["7F2) = (n(_%%
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We now keep the framework of §2.I1 Let us denote, for every i € {0, -+ ,n — k},
by b;(RC,,R) = dim H;(RC,,R) the i-th Betti number of RC,, and by
m;(RC,) = inf |Crit; (f)]

f Morse on RC,

its i-th Morse number, where |Crit;(f)| denotes the number of critical points of index

1 of f. We then denote by

E(bz) = J bz(RCg,R)d,uR(cr)
RHO(X,EQLY)\RA,

and

E(m;) = m;(RC,)dug (o)

JRHO(X,E@)Ld)\RAd
their expected values. The aim of §3is to prove the following Theorem B2 see ()
for the definition of eg(i,n — k — 7).

Theorem 3.1.2 Let X be a smooth real projective manifold of dimension n, (L, hy)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 < k <n—1. Then, for
every 0 <1 <n —k,

1

1
limsup —=E(m;) < = Vic1n1Ep_1(| det["**?)er(i,n — k — i)Volp, (RX).
d—0 d 1—‘(5)

Note that the case k = n is covered by Theorems [LT.1] and B3l When k£ = 1 and
E = Ox, Volps(RP*) = \/7, see Remark 2.14 of [I4], so that Theorem reduces
to Theorem 1.0.1 of [I4] in this case. The proof of Theorem actually goes along
the same lines as the one of Theorem 1.1 of [T4]. The strategy goes as follows. We
fix a Morse function p : RX — R. Then, almost surely on 0 € RH(X, E ® L%), the
restriction of p to RC, is itself a Morse function. For i € {0,--- ,n — k}, we denote
by Crit;(pre, ) the set of critical points of index 4 of this restriction and set

1
vi(RC,) = W Z Sy

zeCrit; (pURCU )

if n > k and 1y(RC,) = ﬁ Y werc, Oz if B =mn. We then set

E(v;) = vi(RC,)dpr(0)

fRHO(X,E@Ld)
and prove the following equidistribution result (compare Theorem 1.2 of [14]).

Theorem 3.1.3 Under the hypotheses of Theorem 312, let p : RX — R be a Morse
function. Then, for every i€ {0,--- n—k}, the measure E(v;) weakly converges to
1

—Vic1n- 181 (| det " e (i,n — k — i)dvoly,
I'(3)
1

as d grows to infinity. When k = n, E(vy) converges weakly to —F(”T“)dvoth.

s
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In Theorem dvoly,, denotes the Lebesgue measure of RX induced by the Kéhler
metric. Theorem is deduced from Theorem by integration of 1 over RX.
The next paragraphs are devoted to the proof of Theorem

Proof of Theorem [I. 1.3l It follows from Theorem[3.1.2 the Morse inequalities,
Remark BT and the computation VolpsRP™ = /m/T'(%£+) (see Remark 2.14 of [14])
when k <n — 1 and from Theorem when k =n. O

3.2 Incidence varieties

Under the hypotheses of Theorem B.1.3] we set

RAY = {7 e RH"(X, E® L%)| o € RA, or pre, is not Morse}

p:

and
I, = {(0,2) € (RH*(X, E® L)\RAY) x (RX\Crit(p)) | = € Crit;(prc, )}
We set
m:(o,x)el; — oeRHYX,E® LY and (31)
my: (o,2)el; — xeRX. (32)

Then, for every (oo, ) € (RH(X, E® L?)\RA?) x (RX\Crit(p))), m is invertible
in a neighbourhood RU of 0y, defining an evaluation map at the critical point

€V(gz0) : 0 € RU — my o1y ' (0) = x € Crit;(pre, ) N RV,

where RV denotes a neighbourhood of xy in RX, compare §2.4.2 of [14]. We denote by
d‘ooev(L z0) the restriction of its differential map d,,ev(s,,40) at oo to the orthogonal

g0,

complement of (7, ! (xg)) in RH(X, E® L%).
Proposition 3.2.1 Under the hypotheses of Theorem [F1.3,

1 *
E(Vz) = W(ﬂ?)*(ﬂld#]}%)-
Moreover, at every point x € RX\Crit(p),
1
(72)s (77 dpi) o = W . | det d\gev(f,,x)|_1duR(a)dvoth.

Proof. The proof is the same as in the one of Proposition 2.10 of [I4] and is not
reproduced here. O

Fix € RX\Crit(p). Then m (7, (x)) is open in a subspace of RH*(X, E ® L%).

Namely,
m(myt(z)) = {cr eRH'(X,E® Ld)\RAg | o(x) =0 and (33)
INeR(E® LY, AoV 0 = d,p}, (34)

|2
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where R((E'® Ld)|*$) is the real part of the fibre (F® Ld)‘*x. We deduce a well-defined
map

pe:m(my(x)) — Gr(n —k,kerd;,p) x (R(E® Ld)r‘m\{O}) (35)
o — (ker Vo). (36)

For every 0 € RH(X, E® L*)\RA?, the tangent space of i (m; ' (2)) at o reads
T,m(my ' (z)) = {6eRH"(X,E®QL’) | (z) =0 and
NeR(EQ®LY), | Ao Vo + Ao Vi, =0},

Likewise, for every \ € R(E@Ld)r‘m\{O}, the tangent space of p, ! (Gr(n—k, ker dj,p) x
{\}) at o reads

T,p, " (Gr(n—k,ker d,p) x {\}) = {6 e RH*(X, E®L?) | 6() = 0 and AoV, = 0}.
Finally, for every K € Gr(n — k, ker d|,p), the tangent space of p; (K, \) at o reads
T,op, (K, \) = {0 e RH(X,E® L)|6(x) = 0,V |,01x = 0 and Ao V|, = 0}.

Let us choose local real holomorphic coordinates (z1,- - ,x,) of X near z such that
(0/0xy,---,0/0xy,) be orthonormal at x, with d,p being colinear to dr; and such
that K = ker V|,o0 = (0/0x}41,---,0/0xy,). Let us choose a local real holomorphic
trivialization (ey,---,e;) of E near x that is orthonormal at x and be such that
ker A, = lea®ed, -+ ek®ed>‘x. For d large enough, we define the following subspaces
of RHY(X, E® L%):

H, = <(Ué)1<i<ka(%1‘)k+1<j<n> (37)

Hy = {ojh<j<r) (38)

Hig = {(0}) 2<i<k ), (39)
kE+1<j<n

where the sections (0});<i< and (aé)lélfk of RH(X,E ® L?) are given by Lemma
and Definition 234 J

Hp is a complement of T,p, (K, ) in T,p,*(Gr(n — k, ker dj;p) x {\}), H is a
complement of T,p, ' (Gr(n — k,ker d,p) x {\}) in T,mi (75 *(x)) and H, is a comple-
ment of T, (m; (7)) in RHY(X, E® L%). Then, from Lemmas and 237 up
to a uniform rescaling by /v(z), these complements are asymptotically orthogonal
and their given basis orthonormal. Hence, we can assume from now on that v = 1.

Lemma 3.2.2 Under the hypotheses of Theorem[3 1.3, let (o,2) € Z; and A € R(F®
Ld)‘*x\{()} such that X\ o V,o = dizp. Then, Ao V?0x, = V*(Pre, )z, S0 that the
quadratic form X\ o VQO"Kx is non-degenerated of index i.

Proof. The proof is similar to the one of Lemma 2.9 of [14]. O
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3.3 Computation of the Jacobian determinants

3.3.1 Jacobian determinant of p,

Under the hypotheses of Theorem B.I3] let (o,z) € Z;. We set (K, \) = p,(0) and
denote by d|0pf the restriction of d|;p, to Hx@H),. We then denote by det(d‘apf) the
Jacobian determinant of d|,pZ computed in the given basis of Hy and Hy, see (B3,
[9) and in orthonormal basis of TxGr(n — &, ker dj,p) x R(E@Ld)‘*x. By assumption,

the operator V|0 does not depend on the choice of a connection V on £ ® L% and is
onto. We denote by V|350'L its restriction to the orthogonal K+ of K = ker V.0,

Vo K > R(E®LY),.

Likewise, for every (o, 05) € Hx@®H,, the operators V|,0x and V|0, do not depend
on the choice of a connection V on F® L%. Finally, we write at a point y € RX near

T
k n
o(y) = (abog + dabos+ D1 ap,0h,) W)+ o(yl®),
i=1 j=1

1<i<m<n

where (ag), (a}) and (af,,) are real numbers and (03), (0}) and (of,,) are given by

Definition 234 From Lemma 2335 and (B3), we deduce that af = 0 = aj for
1<i<kand k+1< 7 <n,and that

n+1
INVASLNVA [at| = |diep]| + o(1), (40)

where the o(1) term is uniformly bounded over RX.
Lemma 3.3.1 Under the hypotheses of Theorem[3 1.3, let (0,x) € I; and (K, \) =
px(0). Then, dpY writes

Hx®Hy, — TxGr(n—kkerd,p) x R(E® L)},

(61,0%) = (- (vlrUL)ﬁler,\ oVz0K|k ;» —A0 V|00 (V‘xaL)’l)_

Moreover, |det djypi|™! = %| det(al)a<ij<k"* 1 (1 + o(1)), where the o(1) term is

uniformly bounded over RX .

Proof. Let (6x,0)) € Hx ® Hy and (0)se]—c[ be a path of m (75 ' (2)) such that
0o = 0 and g = o + d5. Then, for every s €] — €, €[ and every v, € ker V.05, there
exists A\s € R(E® Ld)‘*x such that

Vizos(vs) = 0 and
)\SOV|mUS = d‘xp.

By derivation, we deduce

V|mdQ(U0) + V|$O'(’Uo) =0 and
XoVgo+AoVio = 0.

By setting © the orthogonal projection of 7y onto K+, we deduce that

o= —(Vipo0) 1oV ,0k(vg) and
Ao = —)\OV@d)\O(V\xJL)_l.
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The first part of Lemma [3.3. T follows. Now, recall that d|,p is colinear to dxy, that K
is equipped with the orthonormal basis (0/0xy1,- - ,d/dx,), K+ with the orthonor-
mal basis (0/0xy,---,0/0xy), and that ker \|, is spanned by the orthonormal basis
(€2, ,ex)z- From Lemma 233 the map

d’K € HK —> V|$O'K‘K eL(K,ker)\)

just dilates the norm by the factor /mo,d"+1(1 + o(1)), where the o(1) term is uni-
formly bounded over RX. Now, since the matrix of the restriction of V|mcrL to
K+ nker d;p in the given basis of K+ nker dzp and ker A equals

. n+1
VLA (0 ) g s + oV,

where the 0(\/&7”1) term is uniformly bounded over RX. We deduce that the Jaco-
bian determinant of the map

M e L(K ker A) = (V|4071ern) " 0 M € L(K, K" n ker dj,p))

equals
((V/mopdr 1) det(ah o< <kl (1 + 0(1))) .

The Jacobian determinant of the map
O € Hi — (V|$oi)|_kler)\ o V.0k |k € Tk Gr(n — k, ker d|,p)

thus equals | det(a’)s<; j<k|* " + o(1), where the o(1) is uniformly bounded over RX.
Likewise, from Lemma 2.3.3] the map
0")\ S H)\ — Ao V‘x(f}\ S (KJ')*

n+1

just dilates the norm by a factor v/mopd* 1|\ + 0(\/&11“), where the o(+/d
uniformly bounded over RX, while the Jacobian determinant of the map

) is
Me (KY)*— Mo (Vo) ' eR(EQ L),

equals (\/7T5L\/gn+1)*k| det(a})1<ij<k| " (1 + o(1)) so that the Jacobian determinant
of the map
or € Hy— Ao Voro (Vi.oh) ' eR(E® LY,

equals [A*| det(a’)1<ij<k| " + o(1), with a o(1) uniformly bounded over RX. As a
consequence,

[ detdjopy |1 = | A 7" det(ag)z<ij<rl" ™ arl(1 + o(1)),

with a o(1) uniformly bounded over RX, since the relation A o V|,0 = d|,p implies
that a} vanishes for 2 < j <n. O
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3.3.2 Jacobian determinant of the evaluation map

Again, under the hypotheses of Theorem B.I.3] and for (o, x) € Z;, we set for every y
in a neighbourhood of x,

a(y) = > (aboy + dlaiol+ DT ap,0,) (W) + ol|yl?), (41)

i=1 Jj= 1<i<m<n

where af, @} and aj,, are real numbers. We then set, for 1 < I,m < n, aj; = V2a},
Qjy, = @y, if 1 < m and &, = ay, if I > m. We denote by dj,ev{] ,, the restriction of
d|x€V(0,2) to Hy, see [37) and by det d|aev{ix) its Jacobian determinant computed in
the given basis of H, and orthonormal basis of T, RX.

Lemma 3.3.2 Under the hypotheses of Theorem[3 1.3, let (o,z) € Z;. Then,
| det djpevy |71 = Vandr|ay]| det(a))oss i<kl | det (@i, )ks1<imenl (1 + 0(1)),
where the o(1) term has poles of order at most n — k near the critical points of p.

Remark 3.3.3 In Lemmal3.32, a function f is said to have a pole of order at most
n—k near a point x if r"* f is bounded near x, where r denotes the distance function
to x. Such a function thus belongs to L' (RX, dvoly,).

Proof. We choose a torsion free connection VI¥ (resp. a connection VE®Ld) on
RX\Crit(p) (resp. on E ® L) such that V'¥dp = 0. They induce a connection
on T*X ® EF ® L% which makes it possible to differentiate twice the elements of
RH°(X, E® L%). The tangent space of Z; then reads

TowZi = {(6,2) e RH'(X,E® L) x T,RX | 6(x) + Vzo =0 and  (42)
M eR(EQLYE, AoV,o0 +AoV,6+AoV2o=0}.  (43)

|z

Recall that T,RX is the direct sum K @ K+, where K = ker Vigzo. We write z =
(Tf,Tx1) the coordinates of 2 in this decomposition. From the first equation we
deduce, keeping the notations of §3.31], that ;. = —(V|,0) 7 (¢(z)). From Lemma
233 the evaluation map at x

o€ {(00)1<icky — 6(z) € EQ® ler

just dilates the norm by a factor v/d;d™(1 + o(1)), , where the o(1) term is uniformly
bounded over RX, while

|det(V|$aL)| = (\/mopdn+1)¥| det(a§)1<i7j<k|(1 + o(1)).

We deduce by composition that the Jacobian of the map
o € {(gphr<ick) = Tt = —(Vigot) " (o (2))

equals (Vkdk| det(a))o<; i<kl |al]) _1(1—1—0(1)), where the o(1) term is uniformly bounded
over RX. Now, equation ([3]) restricted to K reads

AoVi ok =—-AoVik.
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From Lemma [2.3.3] the map
oel{(o )k+1<]<n> — —Ao V|01 € K*

just dilates the norm by a factor |[A|+v/mo,d" (1 + o(1)), with o(1) term is uniformly
bounded over RX. Likewise, from Lemma 233, the Jacobian of the map Ao V2o :
K — K™ equals

(IMlm/brdm+2)" "] det(ay, )is1<tmenl (1 + o(1)). (44)

Here, the o(1) term is no more uniformly bounded over RX though. Indeed, from
Lemma and (4T)),

Ao V3o = ay([AIVmoLd ) (VT Ndey) + ). afy, (| AV 7opd™2)dry @ da,

1<i<m<n

since the relation Ao V|,0 = d|,p imposes that a} vanishes for j > 1. Moreover, since
dp = > apdx;, with as(z) = -+ = ay(x) = 0 and |ay(z)| = |dp|, we get that

0=V"(dp)x = a,(V™dzy) 1 + E(d%‘ ® dx;)|i

-1
so that |[VTXday k| = WH >, da; ® dxg|| has a pole of order one at z. In formula

(@4)), the o(1) term has thus a pole of order at most n — k near the critical points of

We deduce that the Jacobian determinant of the map
o € {(0))ks1<jeny = ix = —(Ao Vo) o (Ao Vo) € K

equals (V" =kdr—F| det(aj,,)kr1<im<n]) " (1 + 0(1)), up to sign, where o(1) term has
a pole of order at most n — k near the critical points of p. The result follows. O

3.4 Proof of Theorem [3.1.3

3.4.1 The case k <n

From Proposition 2.4.1] we know that

1
E(y;) = J detd(,evfm ’ld,uR o))dvoly,, .
( ) \/W( - )| | (o, )| ( )) L

2 (2

From the coarea formula (see [10]), we likewise deduce that

1 (132 dK A dX
E(y) = e~ (@) RGO
VA" " JGr(n—k ker djyp) xR(EQLA)E\ {0} N

J |detd‘oev 1B ' det dj,px | duz (o)) dvoly,,
Pz (KN)

since with the notations [{Il), o € p, ' (K, \) if and only if Vi € {1,--- ,k} and Vj €

= ()= gt ; ; 1 _ 1 _ ldj=pl
{k+1,---,n}, ay = 0 = a} while Vj > 2, aj = 0 and |a,] Ve il From
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Lemma and the relation (@), we deduce that for every x € RX\Crit(p) and
every (K, \) € Gr(n — k, kerd,p) x R(E® Ld)‘*x\{()},

JI(K N | det d|gev(f,7$) |~ det djppy |~ dur (o)
Pt (K,

~ fl(K N | det d|06vg,m) |71| det d|0'pf|71d,u]R(0-)-
p b

d—o0

Thus, from Lemmas B3T] B32 and B:22, E(v;) converges to

f | det(a)aca yeul ™™+ 2dpu(al) f | det (@, s 1ctmendia(, )...
M1 (R) Symp(i,n—k—1)

f (a})2e= @) dK A d)
) Gr(n—k ker d|;p) xR(EQL™) ¥ \{0} (B ﬁ("*k)(kfl)%’

where the convergence is dominated by a function in L'(RX, dvoly, ), see Remark
333 We deduce that E(v;) gets equivalent to

|dp.p)? o , o—(al)?
—————— Vi 11 Epi (| det ") er (i, n— k —1) J ———d\)dvoly, .
5Ld”+1\/%k+2 ( R(EQL) \{0} IA[E+2 ) "
Now,
Hd\poQ J e—(ai)? B VOl(Skil)Hd\xp‘P JJroo o—(al)? N
mopdrtl R(EQL)¥\{0} | A[|F+2 wopdntt [A[3

+00

— Vol(Skl)J e rdr = %Vol(Skl).

0

Since Vol(S*1) = IE(kL;r;)’ we finally deduce that E(v;) weakly converges to

1 . )
va,l,n,lEk,lﬂ det |" " )eg (i,n — k — i)dvoly,, ,

where the convergence is dominated by a function in L'(RX, dvoly,). O

3.4.2 The case k=n

When the rank of E equals the dimension of X, the vanishing locus of a generic
section o of RHY(X, E® LY) is a finite set of points. We set v = ﬁ D werc, Oz, and
define the incidence variety as

7 ={(o,2) e (RH"(X,E® L)\RA,) x RX | o(z) = 0}.

The projections m; and 7y are defined by (1)) and ([B2). As before, for every (o¢, zo) €
(RH(X, E® L?)\RA,) x RX, 7 is invertible in a neighbourhood RU of oy, defining
an evaluation map at the critical point

EV(roz0) - 0 € RU — myo ' (0) =z € RC, n RV,
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where RV denotes a neighbourhood of xy in RX, compare §2.4.2 of [T4]. We denote by

d‘aoev(fm z0) the restriction of its differential map d,,ev(,,) at oo to the orthogonal

complement of 7 (7, ! (x0)) in RH°(X, E ® L?). Then, from Proposition B.21]

1 1
E(v) = —= (m2)s(7d l“:—"f det d evt | tdpug(o)dvoly, .
( ) \/a ( 2) ( 1 MR)\ m 7r1(7r2_1(36))| | (o, )| /”LR( ) hr,

The space H, = {(0})1<i<k) is a complement to T, (75 ' (z)) in RH*(X, E®Q L) and
in the decomposition (), ajy = 0 for every i = 1,--- , k. The tangent space of Z at
(o, ) reads

TowI ={(¢,2) e RH(X, E® L) x T,RX | 5(x) + V|,0(%) = 0}.
As in the proof of Lemma B.3.2] we deduce that the Jacobian determinant of the map
e H, —i=—(Vo) (o(x) e ,RX

equals v/7"d"| det(a})1<ij<n|(1 + 0(1)), so that

| det d|aev(fi7x)|_1 = V7d"| det(a§)1<i7j<n|(1 + o(1)),
where the o(1) term is uniformly bounded over RX. From lemma we deduce
that E(r) gets equivalent to

(f | det(a})1<ij<nldp(al))dvoly, = E, (| det |)dvoly, .
n(R)

Formula (15.4.12) of [23], see Remark BTl now gives

r(z) 1

I(1/2)  Volpg(RP™)’
see Remark 2.14 of [I4], hence the result. O

E,(|det]) =

3.5 Equidistribution of critical points in the complex case

Let X be a smooth complex projective manifold of dimension n, (L, hz) be a holo-
morphic Hermitian line bundle of positive curvature w over X and (F,hg) be a rank
k holomorphic Hermitian vector bundle, with 1 < k£ < n. For every d > 0, we denote
by L? the dth tensor power of L and by h? the induced Hermitian metric on L¢. We
denote by H°(X, L%) its complex vector space of global holomorphic sections and by
Ny the dimension of H°(X, L%). We denote then by (.,.) the L2-Hermitian product
on this vector space, defined by the relation

Vo,7e H'(X,LY), {0, 7) = L ht(o, 7)dz. (45)

The associated Gaussian measure is denoted by uc. It is defined, for every open
subset U of HO(X, L9), by

e (46)

TriVd
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where do denotes the Lebesgue measure of H°(X, LY). For every d > 0, we denote
by A? the discriminant hypersurface of H°(X, E ® L?), that is the set of sections
o€ H°(X, EQL?) which do not vanish transversally. For every o € H%(X, EQL)\{0},
we denote by C, the vanishing locus of o in X. For every o0 € HY(X, F ® L%)\A?,
C, is then a smooth codimension k complex submanifold of X. We equip X with
a Lefschetz pencil p : X --» CP!. We then denote, for every d > 0, by A;f the set
of sections o0 € HY(X, E ® L)) such that o € A%, or C, intersects the critical locus
of p, or the restriction of p to C, is not a Lefschetz pencil. For d large enough, this
extended discriminant locus is of measure 0 for the measure pc.

For every 0 € H*(X, EQ L*)\AL, we denote by Crit(pic,) the set of critical points
of the restriction of p to C, and set, for 1 <k <n-—1,

WC) =7 3 (47)

zeCrit(p|c, )

where §, denotes the Dirac measure of X at the point x. When k = n, v(C,) =
1
— Oy

dan zeCy

Theorem 3.5.1 Let X be a smooth complex projective manifold of dimension n,
(L,hr) be a holomorphic Hermitian line bundle of positive curvature w over X and
(E,hg) be a rank k holomorphic Hermitian vector bundle, with 1 < k < n. Let

p: X --» CP' be a Lefschetz pencil. Then, the measure E(v) defined by ([{7) weakly
converges to (Zj)w" as d grows to infinity.
When k = 1, Theorem B.5.T] reduces to Theorem 3 of [15], see also Theorem 1.3 of
[14].

Proof. The proof goes along the same lines as the one of Theorem B.1.2] so we
only give a sketch of it. Firstly, the analogue of Proposition B.2.1] provides

1 *
— —(m)a(mldpic),

and at every point x € X\ (Crit(p) U Base(p)), where Base(p) denotes the base locus
of p,

E(v)

n

* 1 _ w
(m2)u(midpic)is = — [det djpevfs | dpin(0) =7,

" -1
mi(my (2))
see Proposition 2.10 of [I4]. Choosing complex coefficients in decomposition ({I]),
Lemmas [3.3.1] and B.3.2] remain valid in the complex setting, see Remark 2.3.8 We
deduce that

1 w'
E(v) = — (J | det d‘oevi,x |_2duc(o))—
m"d w1 (5 L () (o) n!
1 7|a1|2 dK N\ d)\
~ e 1

d—owo " J‘Grc(n—k,ker djzp) % (E@Ld)?;\{O} ﬂ(n—k)(k—l)-i-k

n

| det d‘oev(ff7x)|_2| det d‘opi|_2d,u(c(cr))w—',
pz (KN n

with |a}| given by @0), see Lemma 238 as before. Here, Gre(n — k, ker dj,p) denotes
the Grassmann manifold of n — k-dimensional complex linear subspaces of ker d,p.
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From the complex versions of Lemma and Z3.0] see Remark and the
relation (@), we deduce that for every x € X\(Crit(p) U Base(p)) and every (K, \) €
Gr(n — k,kerdjzp) x (E® Ld)‘*x\{O},

Jl(K N | det d‘aev(tx) 72| det djppy | 2dpc (o)
Pz )

jat

TN YEC JM (@'det<a3>2<m<k|2(""“”>du<a§>~--
k—1

f | det (@l s 1ctmen|2du(aL, ).
Symec(n—k)

We deduce that E(v) is equivalent to

|dp]* 1
(7T5Ldn+1)2 qn—k)(k—1)+k

Vol(Gre(k —1,n —1))...

7‘”’%‘2 wn
.. BY (| det PR er (n — k) f S
. Uisasarson T

|x

nl’

where ec(n — k) = Ssymc(nfk) | det A|?duc(A) and
Ep_y(| det [P0F42)) = J | det AP F D dpc(A).
Mj,_1(C)

Now,

ldjop|l* f
(mépdntt)? (BOLA)*\{0} | A[[2R+4

—lalf? &

d\ = Vol(S*™h

dapl [ el
7f dI|

(mord™1)* Jo AP
+00

2 1
= Vol(S%_l)f e " ridr = §V0l(52k_1).

0
Hence, E(v) is equivalent to

1
WVOZ(GTC(IC - ]_, n — 1))V0l(52k_1) E/(E—l(| det |2("_k+2))ec(n — k?)

where ec(n — k) = (n — k + 1)! by Proposition 3.8 of [14], Vol(S?*~1) = 27%/(k — 1)!,

. [0 —k+2)+5) T2 ,..T3G)
B (| et [20h+2)) — =22 - 5

[T T0) [T T0)

wn
nl’

by formula 15.4.12 of [23] and

k=11 -
H{:I ') (k1) (n—k)

Hj=n—k+1 P(])

by a computation analogous to the one given in the real case by Remark B.T.1 We

conclude that E(v) weakly converges to (Zj)w", where the convergence is dominated

by a function in L'(X, fL—T), for it has poles of order at most 2(n — k) near the critical
points of p and at most 2 near the base points, see [15]. O

Vol(Gre(k—1,n—1)) =
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Corollary 3.5.2 Under the hypotheses of Theorem [0, for every generic o €
RH(X,E® L%), let |Crit pic,| be the number of critical points of pic,. Then,

1 | k-1 .
%EGC’WS pic, ) S (n B 1> JX e (L)".

Proof. Corollary follows from Theorem B.5.1] by integration of 1 over X.
A direct proof can be given though. The modulus of p is a Morse function on
C,\(Base (p) U Fy U Fy), where Fy (resp. F,) is the fibre of 0 (resp. of o) of
p: X --» CP!. Moreover, the index of every critical point of |p| is n — k. As in the
proofs of Propositions 1 and 2 in [I5], we deduce that E(|Crit pc,|) is equivalent to
IX(Cy)| as d grows to infinity. Now,

X(Cy) = J Cni(Cy) = JX cn_i(Cy) A cx(E® LY,

while from the adjunction formula, ¢(Cy) A ¢(E ® L%) ¢, = ¢(X). Moreover, for
0<i<k c(BE®LY) = (¥)d'ei(L)" + o(d’), so that

(E® LY = (1 +dei(L)* + o((1 + dey(L))F).

From the formula (1 + x)~% = Z;O:O(—l)j(ﬁ(_kljﬂ)!'xj, we then deduce that ¢, 1(C,) =

(—1)n* (Zj)dn_kﬁ(L)"_k + o(d" %) and finally that

n—1

(Cy) = (—1)"—k<k - 1)d" L ()" + ofd").

Hence the result. O
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